
Automatic Generation of Control Programs for
Walking Robots Using Genetic Programming

Jens Busch, Jens Ziegler, Christian Aue, Andree Ross, Daniel Sawitzki, and
Wolfgang Banzhaf

University of Dortmund,
Department of Computer Science, Chair of Systems Analysis (LS XI)

D-44221 Dortmund, Germany
{banzhaf, busch, ziegler, sigel}@ls11.cs.uni-dortmund.de

http://ls11-www.cs.uni-dortmund.de/˜sigel

Abstract. We present the system SIGEL that combines the simulation
and visualization of robots with a Genetic Programming system for the
automated evolution of walking. It is designed to automatically generate
control programs for arbitrary robots without depending on detailed an-
alytical information of the robots’ kinematic structure. Different fitness
functions as well as a variety of parameters allow the easy and inter-
active configuration and adaptation of the evolution process and the
simulations.

1 Introduction

Autonomous mobile robots are becoming more and more important, because
they are expected to solve tasks that humans are not able to cope with or
that humans ought not to cope with [3,4]. This requires extensively autonomous
robots, because with growing complexity of the problems it will be no longer pos-
sible for the programmer to take all eventualities into account from the outset.
A special form of mobile robots are walking robots. This term includes all robots
that locomote without wheels, caterpillars or similar devices on firm ground. The
evolution of robot control programs has been the topic of recent publications.
A general introduction into the concept of Genetic Programming can be found
in [2,10]. Several applications of Genetic Programming (or, more generally, Evo-
lutionary Algorithms) to the task of controlling autonomous robots are given in,
e.g., [8,13]. The evolution of crawling or walking robots can be found e.g. in [11,
15,6]. For biological inspiration, gait patterns of stick insects have been analyzed
to gain more detailed information on natural gait coordination algorithms [5],
that in turn has influences on the design of robust and fast walking gait patterns.
A good overview over the evolution of neural network controllers can be found
in [12].

To evolve gait patterns or walking agents, we use simulated robots. Simu-
lating walking robots allows more flexible architectures and rapid prototyping,
which is, compared to experiments with real hardware, less expensive. Addi-
tionally, simulation is fast and does not strain the hardware. The evolution of

J.A. Foster et al. (Eds.): EuroGP 2002, LNCS 2278, pp. 258–267, 2002.
c© Springer-Verlag Berlin Heidelberg 2002



Automatic Generation of Control Programs for Walking Robots 259

movements of virtual agents in a simulated environment has been successfully
demonstrated [14,9,16].

The approach presented here does not imply that the evolved controllers
depend on specific information on the robot morphology such as certain lengths
or distances. On the contrary, it was one of the main goals of this work to make
the evolution of robot controllers as independent as possible from morphology
specific information. So morphology-related information, although available, will
not be used for evaluating individuals.

Simulation-
parameter

Physical Simulation

GP-System

User Interface

Simulation parameter
Fitness function
Morphology
GP-Parameter

Fitness data

Programm-
code

Morphology

Visual information

Simulation parameter
Programm code
Morphology

Orientation

Position

Speed

Fig. 1. Schematic view of the main components of SIGEL. Explanations see text.

The system SIGEL [1] is composed of three main components: The Genetic
Programming module (described in Section 2), the physical robot simulation
(Sect. 3) and the user interface (see Fig.1). The latter consists of the graphical
interface as well as the underlying mechanisms to manage the experiments. An
experiment mainly consists of GP and simulation parameters and the robot
morphology. The following two sections are devoted to the description of the
tested robot models and the results of the experiments.

2 The Genetic Programming System

The objective of a GP run is to evolve a robot control program that enables a
simulated robot to walk. Our system uses linear genomes as a representation.
Thus each program of a GP population is a sequence of robot instructions. The
following instructions are element of the function set: ADD, SUB, MUL, DIV
and MOD for arithmetic operations, COPY and LOAD for register manipula-
tion, CMP, JMP, DELAY and NOP for execution control, and the SENSE and
MOVE command as instructions that are directly connected to the robot. Each
instruction is chosen with a predefined probability and needs one or two registers
or constants as parameters. The program length is not fixed but a minimum and
maximum length can be defined. By default, programs are initialized randomly,



260 J. Busch et al.

but it is possible to import manually defined code or programs of a previous
experiment as well. A user interface provides easy access to the population for
import and export of GP individuals and parameter adjustment. Other impor-
tant GP parameters like population size, number of generations and variation
probabilities may vary considerably between experiments and are explained in
detail in Sect. 5.

Genetic Operators

Crossover, mutation and reproduction are applied with probabilities pc,pm and
pr, respectively. The crossover operator uses one-point crossover and thus swaps
linear genome sequences between the mating partners. The crossover point is
selected randomly. The genome of the offspring is cut or expanded to fulfill
length restrictions. The mutation operator randomly changes different parts of
the genome. (i) It deletes an arbitrary instruction. (ii) It inserts a new randomly
initialized instruction at an arbitrary position. (iii) It replaces an arbitrary in-
struction by a new randomly initialized instruction. (iv) It modifies an arbitrary
instruction. Either the function or its operand(s) are altered. The reproduction
operator simply copies an individual. The genetic code will not be changed.

Selection and Parallelized Fitness Computation

The evaluation of control programs for walking robots in a physical simulation
is computationally expensive. To save execution time of an evolutionary cycle
we implemented a parallelized fitness evaluation. A number of tournaments T
is scheduled and topologically sorted with respect to a partial order ≺ which is
defined as follows:

Tx ≺ Ty :⇔ (∃ individual i : (i is participant of Tx and of Ty and x < y))

This method ensures a reproducible series of tournaments so that the experiment
is independent of system parameters such as network traffic or workstation load.
The resulting minimal set of tournaments is distributed over a heterogenous
network of workstations using PVM.

3 Dynamic Simulation of Robots

In our system we simulate robots in a three-dimensional physical environment by
using the DynaMechs software package (see [7]). This C++ programming library
takes a model description of the robot and simulates its dynamics. The robot is
given by a set of rigid bodies called links and their kinematic structure. The links
are described by their physical attributes like inertia properties, mass, center of
mass and their geometry in a polygonal representation. The robot’s kinematic
structure is defined by connecting links with joints. Additional parameters are
global gravity and maximum and minimum joint forces and angles. Further forces



Automatic Generation of Control Programs for Walking Robots 261

result from the collision of the robot links with the floor. Collision between robot
links is not taken into account in the actual implementation. To circumvent
the intersection of links the appropriate allowed joint angles must be restricted
manually. The implemented fitness function evaluates a robot and its program
by measuring the distance it has moved during the simulation. The value is given
in [ms ]. Additionally, it examines if the distance between the robot torso and the
ground is larger than 0.5 length units. If this condition cannot be kept, so that
the robot seems to break down, the robot program will receive a penalty value
of zero. We supposed this function to be advantageous for a development of a
nice movement, so we called this function nice walking fitness function. In the
following experiments, the movement of the torso link of the robot is measured
from the starting point to the point it has reached when the simulation stops.
The faster and more linear an individual moves, the better is its fitness. The
simulation is divided into discrete simulation steps translating the simulated
system from time t to time t + h where h is the granularity of the simulation.
A small granularity leads to a more accurate simulation process. In each step
the control program may effect the simulation in two aspects: (i) the program
may apply forces at prismatic joints or torques at rotational joints with a move
command. (ii) The program may read the actual angle of joints and store the
values in the registers of the virtual machine with a sense command. These values
can be used for future computations of forces and torques. Each simulation step
consists of two substeps. First, the interpreter executes the next n commands of
the control program with n being the maximum number of commands that can
be executed in time h. Second, the system dynamics is calculated to update the
simulation parameters consisting of the bodies’ positions, orientations, velocities
and accelerations. Given the set of forces affecting the system the DynaMechs
simulation library calculates the motions (accelerations) of all links. Once the
accelerations are known, numerical integration is used to determine the positions,
orientations and velocities of the links at time t + h.

4 The Robots

We tested the system on several different robot architectures including simple
“hoppers” consisting of only two links and one rotational joint (Fig. 2 a). This
simple architecture was used for general experiments to gain experience with the
dynamic simulation. We used more complex architectures in our experiments:

The caterpillar robot. This caterpillar robot consists of four links and three
rotational joints (Fig. 2 b). Its head is shaped like a cube, in difference to the
tail, which ends in a half cylinder. The head and the tail are connected to the
inner links with horizontal rotational joints. The two identical inner links are
connected together with a vertical rotational joint.

The two-legged robot. This robot has two symmetrical legs hinged to the torso
link (Fig. 2 c). Each leg consists of three links and three rotational joints.



262 J. Busch et al.

a) b)

c) d)

e) f)

Fig. 2. The robots. From top left to bottom right: The hopper, the caterpillar, the
two-legged and three-legged robot, the robot with four legs and the six-legged robot.

The three-legged robot. This robot has three symmetrical legs hinged around the
torso link with a 120 degree angle between them (Fig. 2 d). Each leg consists of
three links and three rotational joints. The legs are the same as the legs of the
two-legged robot.

The four-legged robot. This robot has four symmetrical legs hinged around the
torso link with a 90 degree angle between them (Fig. 2 e). This is the only dif-
ference between the architectures of the four-legged and the three-legged robot.

The six-legged robot. This robot consists of nineteen links and eighteen rotational
joints arranged in a symmetrical architecture (Fig. 2 f). Its torso is carried by six
identical legs, three on the left and three on the right side. Each of the six legs
consists of three links. The shoulder-joint of each leg allows horizontal movement,
the other two joints, for knee and ankle, have vertical axes of rotation.



Automatic Generation of Control Programs for Walking Robots 263

5 Experiments and Results

The aim of our experiments was the development of control programs which let
the robots walk straight-line and fast. Additionally, we wanted the robots to walk
with the torso lifted to a specified level. In a series of experiments the effects
of changing GP parameter settings have been investigated, whereas a second
series analyzed the effects of changing kinematic structures. Each experiment
includes several evolutions, which are not interdependent (with the exception of
experiment 5, which takes some individuals of experiment 1).

Experiments with the Four-Legged Robot

We studied varying genetic operator probabilities and a reduced function set.
The robot architecture (the four-legged robot), fitness function (niceWalking),
and the simulation time remained unchanged.

Experiment 1 – Evolution with high mutation rate. We have chosen a high muta-
tion probability of 80% and a crossover probability of 5% for the first experiment.
The reproduction probability was defined to be 15%. Each evolution took place
in a population of 100 individuals, which have been initialized randomly with
an arbitrarily chosen number of between 100 and 1000 program lines. Table 1
shows the chosen genetic parameter settings. The simulation time was set to one
minute. Overall, the best fitness averages out at 0.19 m/s. The best fitness is
reached after 270 generations on average (Fig. 3). As expected, the standard er-
ror of the average fitness is small. This allows to state that all experiments with
small mutation rate have a similar performance. In sum, by using a dominant
mutation operator the GP System was capable to evolve various robot programs
that have moved the four-legged robot.

Experiment 2 – Evolution with a high crossover rate. By using a high crossover
rate of 80% in combination with a low mutation rate of 5% we have chosen
the most usual genetic parameter settings for the second experiment. The other
parameter settings remained unchanged (Tab. 1). So the effect of a changing
dominant genetic operator should be analyzed. Figure 3 shows the average de-
velopment of the best fitness over the time. Overall, the best fitness averages
out at 0.26 m/s. The best fitness is reached on average after 240 generations.
Similar to the first experiment, the standard error of the average fitness is small.
Again, the experiments show related performance. Compared to exp. 1, a high
crossover rate seems to result in a better quality of the solutions.

Experiment 3 – Evolution with a reduced robot instruction set. While the first two
experiments used all instructions available for the robot programs, we analyzed
the effect of a limited instruction set (Tab. 1). As expected, the development of
the best fitness is not as fast as in the first experiments, which can be explained
with the reduced instruction set (Fig. 3). The best fitness of 0.08 m/s on average
is reached after 290 generations. The standard error is small, pointing to the alike



264 J. Busch et al.

Table 1. GP parameters

Parameter Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5
objective fast linear movement

terminal set random constants
function set MOVE, SENSE, COPY,

LOAD, ADD, SUB,
MUL, DIV, MOD,
DELAY, MAX, MIN

MOVE,
SENSE,
COPY,
LOAD, ADD

see exp. 1

crossover prob. 5% 80% 5% 80%
mutation prob. 80% 5% 80% 5%

robot model four-legged modified four-legged
initialization random 50% pre-evolved,

50% random
population size 100

selection tournament
max. prg. length 100 lines
min. prg. length 1000 lines

termination after 300 generations
reprod. prob. 15%

performance of all experiments. Although a strongly reduced instruction set was
used, the GP System was capable to evolve different effective robot programs.
This result underlines the assumption that the set of supported instructions can
be subdivided into sets of necessary and not necessary instructions. In parallel,
this result also proves the power of GP in finding good solutions in a limited
solution space. The solutions of experiments 1-3 clearly show differences in qual-
ity. The high crossover rate is superior to the other two settings, while a reduced
instruction set only allows poor walking speed.

Experiments with an Altered Four-Legged Robot

In a second series of experiments the kinematic structure of the four-legged
robot was altered while the general control parameters remained unchanged.
The initial GP population of a subsequent evolution cycle was augmented with
previously evolved control programs. This reflects the situation in which a chang-
ing kinematic structure – maybe due to a technical defect – and/or a changing
environment (e.g. change of terrain from flat to rugged) require an adequate
response in robot control.

Experiment 4 – Four-legged robot with stiff leg. To test the capabilities of our
system to cope with changes of the robot’s kinematic structure we altered the
four-legged robot by immobilizing the joints of one leg. This was achieved by
modifying the joint limits. First we evolved control programs with the same set of



Automatic Generation of Control Programs for Walking Robots 265

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 50 100 150 200 250 300

F
itn

es
s

Generation

Convergence of exp. 1-3

high crossover rate
high mutation rate

reduced instruction set

Fig. 3. Mean fitness and the standard error of exp. 1-3. Top: Evolution with high
crossover rate. Middle: High mutation rate. Bottom: Reduced instruction set.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

F
itn

es
s

Generation

Convergence of exp. 4

random init

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300

F
itn

es
s

Generation

Convergence of exp. 5

50% pre-evolved

Fig. 4. Mean fitness and standard error of exp. 4 and 5. Left: New evolution of four-
legged robot with stiff leg. Right: Evolution using pre-evolved individuals.

parameters as in experiment 1 (parameters see Tab. 1). The resulting programs
differed from the programs of exp. 1–3 in that they successfully compensate the
reduced degrees of freedom. It is interesting to note that the quality of movement
is visibly better than in all earlier experiments (Fig. 4, left).

Experiment 5 – Four-legged robot with stiff leg, individuals from previous exp. We
repeated the evolution with only fifty individuals created randomly and another
fifty individuals taken from the evolved population of experiment 1. The best
fitness of all runs seems to be about 30% higher (i.e. the robot moves faster)
than in exp. 4, but the standard error is greater, indicating highly varying runs.
In general, it was not the case that using individuals from earlier experiments



266 J. Busch et al.

results in faster evolution. Pre-evolved programs seem to be highly adapted to
their architecture and thus may prevent better progress and quality when re-used
for other morphologies. However, it can be advantageous to import individuals
from other experiments. To make more detailed statements, further experiments
with different handicaps and different ratios of randomly initialized and imported
individuals need to be analyzed. Interestingly, this intuitive approach does not
lead to as big improvements as expected.

Achieved Walking Strategies

In fact nearly all evolutionary runs showed good results by means of regularly
walking with speeds up to 0.85 m/s. It seems that our system evolves more
successful programs for the altered version of the four-legged robot. We observed
mainly four different kinds of moving. (i) Some runs led to walking strategies
which only kept the avoided fast and sudden movements. As a consequence this
behavior limited the speed of walking. (ii) These strategies used just one leg to
generate an impulse in the walking direction. The other legs are only used for
stability. (iii) In these cases one leg pushes the robot forward while the other
legs are again stabilizing it. (iv) Another kind of walking was observed only for
the altered four-legged robot. In contrast to the other mentioned strategies all
three flexible legs of the robot are used. This results in a continuous and fast
natural like movement.

6 Conclusions

We presented SIGEL1, an integrated software package that combines the simu-
lation and visualization of robots with a Genetic Programming system for the
parallelized evolution of walking. The capabilities of the system were investi-
gated with six different robot morphologies. We could show that it is possible
to get control programs for arbitrary walking robots without having insight into
their architecture and kinematic structure. The advantages of this approach are
two-fold: On the one hand, people without engineering background are enabled
to control walking robots. On the other hand, engineers are less restricted in the
design of robots since the system allows rapid prototyping and testing.

The successful automatic compensation of a technical defect by using pre-
liminary evolved control programs saves time for reprogramming the walking
algorithm. In conjunction with the detection of either unpredictable environ-
mental conditions or malfunctioning of parts of the robot, our system increases
the robustness of the robot control. The download of off-line evolved control
programs to real robots is an important step in this direction and will be the
topic of our future work.
1 More information on the system SIGEL, including experiment files, screenshots
and video files showing the walking robots can be found on the web (http://ls11-
www.cs.uni-dortmund.de/people/sigel/).



Automatic Generation of Control Programs for Walking Robots 267

References

[1] C. Aue, A. Benkacem, M. Gregorius, A. Ross, S. R. Abdallah, D. Sawitzki,
V. Strunk, H. Türk, M. C. Varcol, J. Busch, and J. Ziegler. Simulator für GP-
evolvierte Laufrobotersteuerungsprogramme - PG 368. Technical report, Depart-
ment of Computer Science, University of Dortmund, Germany, 2001.

[2] W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming
– An Introduction; On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, dpunkt.verlag, 1998.

[3] V. Braitenberg. Vehicles: experiments in synthetic psychology. MIT Press, 1984.
[4] R. A. Brooks. New approaches to robotics. Science, 253:1227 – 1232, 1991.
[5] H. Cruse. Coordination of leg movement in walking animals. In From animals to

animats. Intl. Conf. on Simulation of Adaptive Behavior, pages 105–119, 1991.
[6] P. Dittrich, A. Bürgel, and W. Banzhaf. Learning to control a robot with random

morphology. In Proceedings Evo-Robot-98, P. Husbands and J.-A. Meyer, Eds.,
pages 165–178, 1998.

[7] S. McMillan et al. DynaMechs (Dynamics of Mechanisms): A Multibody Dynamic
Simulation Library. Ohio State University
Internet Access (last access 22.08.2001) via http://dynamechs.sourceforge.net/.

[8] J. J. Grefenstette and A. C. Schultz. An evolutionary approach to learning in
robots. In Machine Learning Workshop on Robot Learning, New Brunswick, NJ,
1994.

[9] M. Komosinski and S. Ulatowski. Framsticks - Artificial Life. In ECML ’98
Demonstration and Poster Papers, Chemnitzer Informatik Berichte, pages 7–9,
1998.

[10] J. R. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
[11] M. A. Lewis, A. H. Fagg, and A. Solidum. Genetic programming approach to

the construction of a neural network control of a walking robot. In Proceedings
of the 1992 IEEE InternationalConference on Robotics and Automation, pages
2618–2623, Nice, France, May 1992.

[12] J.-A. Meyer. Evolutionary approaches to walking and higher-level behaviors in
6-legged animats. In Gomi, editor, Evolutionary Robotics II: From Intelligent
Robots to Artificial Life (ER’98). AAAI Books, 1998.

[13] M. Olmer, W. Banzhaf, and P. Nordin. Evolving real-time behavior modules
for a real robot with genetic programming. In Proceedings of the international
symposium on robotics and manufacturing, Montpellier, France, May 1996.

[14] Karl Sims. Evolving virtual creatures. In Andrew Glassner, editor, Proceedings
of SIGGRAPH ’94 (Orlando, Florida, July 24–29, 1994), Computer Graphics
Proceedings, Annual Conference Series, pages 15–22. ACM SIGGRAPH, ACM
Press, July 1994. ISBN 0-89791-667-0.

[15] G. F. Spencer. Automatic generation of programs for crawling and walking. In
S. Forrest, editor, Proceedings of the 5th International Conference on Genetic
Algorithms, ICGA-93, page 654, University of Illinois at Urbana-Champaign, 17-
21 July 1993. Morgan Kaufmann.

[16] J. Ziegler and W. Banzhaf. Evolution of robot leg movements in a physical simula-
tion. In K. Berns and R. Dillmann, editors, Proceedings of the Fourth International
Conference on Climbing and Walking Robots, CLAWAR, pages 395–402, Bury St
Edmunds, London, UK, 2001. Professional Engineering Publishing.


	Introduction
	The Genetic Programming System
	Dynamic Simulation of Robots
	{The Robots}
	{Experiments and Results}
	Conclusions

