
Linear-Graph GP – A New GP Structure

Wolfgang Kantschik1 and Wolfgang Banzhaf1,2

1 Dept. of Computer Science, University of Dortmund, Dortmund, Germany
2 Informatik Centrum Dortmund (ICD), Dortmund, Germany

Abstract. In recent years different genetic programming (GP) struc-
tures have emerged. Today, the basic forms of representation for genetic
programs are tree, linear and graph structures. In this contribution we
introduce a new kind of GP structure which we call linear-graph. This
is a further development to the linear-tree structure that we developed
earlier. We describe the linear-graph structure, as well as crossover and
mutation for this new GP structure in detail. We compare linear-graph
programs with linear and tree programs by analyzing their structure and
results on different test problems.

1 Introduction of Linear-Graph GP

This paper introduces a new representation for GP programs. This new rep-
resentation, named linear-graph, has been developed with the goal of giving a
program the flexibility to choose different execution paths for different inputs.
The hope is to create programs of higher complexity, so that we can evolve pro-
grams that can compete with the complexity and possibilities of hand-written
programs.

Linear-graph is the logical next step after the introduction of linear-tree
structure. We have shown the power of the linear-tree structure in [7], but trees
are not really the structure of a complex hand written program. Graphs come one
step nearer to the control flow of a hand written program, though there is still
a long way until we can evolve programs of the complexity of hand-written. Our
efforts are devoted is to create a GP-structure able to solve tasks, which cannot
be completed with current structures. It is possible for the current structures
like,

– (1) tree-based GP [8,9],
– (2) linear-based GP [10,3], or
– (3) graph-based GP[12,2,11],

to create more complex programs and hence solve more complex problems. How-
ever we think, that this structures need more time and resources to evolve such
programs.

Let us look how the program flow of a hand-coded program could look like.
Many programs contain decisions where another part of the program code will
be called. After different program parts have been executed they flow together
again. If one draws the possible program flows normally it will become a graph.

J.A. Foster et al. (Eds.): EuroGP 2002, LNCS 2278, pp. 83–92, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

84 W. Kantschik and W. Banzhaf

Linear-Graph structure

edge

branching node

linear program

graph node

Fig. 1. Individual structure of a linear-graph representation.

So program flow of a linear-graph program is more natural than linear or tree
GP-programs and similar to program flow of hand written programs.

In linear-graph GP each program P is represented as a graph. Each node in
the graph has two parts, a linear program and a branching node (see Figure 1).
The linear program will be executed when the node is reached during the inter-
pretation of the program. After the linear program of a node is executed, a child
node is selected according to the branching function of this node. If the node
has only one child, this child will be executed. If the node has no child at all
execution of the program stops. During the interpretation only the nodes of one
path through the graph, from the root node to a leaf will be executed.

The implementation of linear substructures in our uses a variable length list
of C instructions that operate on (indexed) variables or constants (see [5]). In
linear GP all operations, e.g. a = b + 1.2, implicitly include an assignment of
a variable. After a program has been executed its output values are stored in
designated variables. The branching function is also a C instruction that operates
on the same variables as the linear program, but this function only reads these
variables. Table 1 contains a collection of all branching functions we used in
our runs. Figure 2 shows an example of a short linear program and a branching
function for one node in a linear-graph.

1.1 Recombination of Linear-Graph Programs

A crossover operation combines the genetic material from two parent programs
by swapping certain program parts. The crossover for a linear-graph program
can be realized in two ways. The first possibility is to perform the crossover
similar to crossover in tree-based GP by exchanging subtrees (see [1]). Here
we would exchange subgraphs instead of subtrees, Figure 3 illustrates the re-
combination method by exchanging a subgraph. In each parent individual the

Linear-Graph GP – A New GP Structure 85

program node

if(R0<0) then
 edge 0
else

 edge 1

R0= R1+2 R1=R0*R0 R2=R1%9 R0=R1-R2

branching node

edge to a childedge 0

edge 1

Structure of a Linear-Graph node

Fig. 2. The structure of a node in a linear-graph GP program (top) and an example
node (bottom).

Table 1. All the branching operators used in the runs described here. The data register
holds the input data of an individual and is only readable. The result register is the
register which is used as output.

branching operator description of the operator
result register < 0 If result register is less than zero the left child is chosen

else the right child.
result register > 0 If result register is greater than zero the left child is cho-

sen else the right child.
result register < operand If result register is less than the value of an operand the

left child is chosen else the right child.
result register > operand If result register is greater than the value of an operand

the left child else the right child.
data register < 0 If data register is less than zero the left child is chosen

else the right child.
data register > 0 If data register is greater than zero the left child is chosen

else the right child.
data register < operand If data register is less than the value of an operand the

left child is chosen else the right child.
data register > operand If data register is greater than the value of an operand

the left child else the right child.

crossover operator chooses a set of contiguous nodes randomly and exchanges
the two subgraphs.

The second possibility is to perform linear crossover. Figure 4 illustrates
the linear recombination method. A segment of random position and length is
selected in each of the two parents for exchange. If one of the children exceeds
the maximum length, crossover with equally sized segments will be performed.
The linear crossover is performed for a given percentage of nodes of the graph,
we performed this crossover for 10% of the graph nodes.

86 W. Kantschik and W. Banzhaf

For linear-graph programs we use both methods but only one at a time. The
following algorithm for the recombination of linear-graph programs is applied:

1. Choose the crossover points p1, p2 in both individuals.
2. Choose with a given probability probgx the graph-based crossover method

(go to step 3), and with the probability 1−probgx the linear-based crossover
method (go to step 4).

3. If the depth of one of the children does not exceed the maximum depth
perform crossover, else go to step 4.

4. Perform linear-based crossover.

In our tests the parameter probgx, which defines the probability whether the
graph-based or linear crossover method is used, was set to the 20 %.

1.2 Mutation

The difference between crossover and mutation is that mutation operates on a
single program only. After applying recombination to the population a program
is chosen with a given probability for mutation. The random mutation operator
selects a subset of nodes randomly and changes either a node of a linear program,
a branching function, or the number of outgoing edges. In other words, the
mutation operator does not generate new linear sequences. The altered program
is then placed back into the population.

2 Test Problems

As test problems we use two symbolic regression problems, a sine wave and the
Rastrigin function and a classification problem the two chains, see below. The
linear-graph structure is compared to a linear GP structure. In Section 3 the
results for the regression and classifications problems are presented.

The fitness measure for the regression problem with program p is defined as
mean squared error between all given outputs y (here one of the given functions
f(x)) and the predicted outputs p(x):

fitness(p) =
∑n

i=1(p(xi)− f(xi))2

n
.

We chose 20 fitness cases for the sine function in the range from [0, 2π] uniformly
and including both endpoints and the Rastrigin function in the range of [−2, 2],
with 40 fitness cases.

For classification we used the chain problem [4], Figure 5 visualizes the two
classes this problem. Fitness measured is the number of misclassifications. The
task of the GP program is to find a relation that connects a given input x to
its correct class, here c ∈ {0, 1}, so fitness cases can be written as input-output
tuples (x, c). The quality of a program depends on its ability to find a generalized
mapping deduced from the input-output pairs (x, c) of n fitness cases.

Linear-Graph GP – A New GP Structure 87

Crossover methodes for Linear-Graph programs
Graph-crossover

Parent 1 Parent 2

Child 1 Child 2

Fig. 3. Crossover-operation of two linear-
graph programs using the graph-based
crossover method. This crossover method
exchanges two subgraphs of the pro-
grams.

Crossover methodes for Linear-Graph programs
Linear-crossover

Parent 1 Parent 2

Child 1 Child 2

Fig. 4. Crossover-operation of two linear-
graph programs using the linear-based
crossover method. This crossover method
is a two-point crossover, which exchanges
a part of the linear-code between the
nodes.

All variants of GP have been configured with population size of 100 individ-
uals, a maximum crossover and mutation rate of 100 %, and without ADF’s.
This means that in one generation each individual is selected for a crossover and
after the crossover each individual will be mutated by the mutation operator.
All variants use the arithmetic operations (+,−, ∗, /). For the chain problem we
use arithmetic operations (sin, cos) additionally. For all test problems we allow
jumps and an if-then-else function.

3 Experimental Results

In this section we describe the performance of the different GP structures with
different population sizes on the three test problems from Section 2. All plots

88 W. Kantschik and W. Banzhaf

class one
class two

-1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 -1.5
-1

-0.5
0

0.5
1

1.5

-0.25
-0.2

-0.15
-0.1

-0.05
0

0.05
0.1

0.15
0.2

0.25

Fig. 5. This figure shows both links of a chain these represent the two classes of the
chain problem [4]

show the average fitness of the best individual in different runs. The average
is calculated over 50 runs with the same parameter set. In all runs we used
tournament selection with a tournament size of 2. We have done two sets of
runs, one with a population size of 10 and one with a population size of 100. In
all runs we compare on the basis of number of nodes evaluated. So the difference
in results cannot be interpreted by the fact that one structure has more or less
resources to develop a good solution.

Figure 6 shows development of fitness values using the linear and linear-
graph structure for the sine problem. We can see that for a population size of
100 individuals the linear-graph structure reaches a better fitness than the linear
structure and the improvement of the fitness value for the linear-graph struc-
ture is faster than for the linear-structure. After 20.000 fitness evaluations the
linear-graph structure reaches a fitness value which the linear structure reaches
after 200.000 fitness evaluations. Even at this point we can see that the new
structure supports the evolutionary process. Another very interesting result is
the behavior of the linear-graph individuals during an evolution with small pop-
ulations. Figure 6 also shows the development of fitness values for a population
size of 10 individuals. With linear structures we observe the expected result, the
performance is inferior to the result with 100 individuals. Even with the same
number of fitness evaluations we can not reach the same result on average. The
error bars also show the large variance in runs with a population size of 10. The
linear-graph structure on the other hand, obtains the same fitness values as with
100 individuals, and error bars shows that these runs have a small variance.

Linear-Graph GP – A New GP Structure 89

0

0.05

0.1

0.15

0.2

0.25

0.3

0 40000 80000 120000 160000 200000

A
ve

ra
ge

 fi
tn

es
s

of
 b

es
t

Number of evaluation

LinGraph 100 Inds
LinGraph 10 Inds

Linear 100 Inds
Linear 10 Inds

Fig. 6. The curves show the average fitness values for the sine regression problem with
data form 0 to 2π. Each curve is an average of 50 runs. Zero is the best fitness for a
individual.

Figure 7 shows the development of fitness values using the linear and linear-
graph structure for the classification problem. The linear-graph structure reaches
a better fitness than the linear structure with a population size of 100 individuals.
Even the fitness development during the first 40.000 fitness evaluations is faster
for the linear-graph structure. About 20.000 fitness evaluations the linear-graph
structure reaches a fitness value which the linear structure reaches after 200.000
fitness evaluations. The behavior of linear-graph individuals during the evolution
with small populations is similar to their behavior for the sine problem. The
result for 10 individuals is not as good as with 100 individuals for the linear-
graph structure, but it still outperforms the linear structure. The interesting
result here is the performance of the linear-structure with a population size of
10 for this problem. We expected a similar result as for the sine problem. The
error bars shows that there was a high variance for the different runs, however
on average runs reach the same fitness as with 100 individuals.

The result for the Rastrigin function is shown in figure 8. The development of
fitness values is similar to the case of the sine problem. Linear-graph structures
outperform the linear structures with both population sizes. This result shows
also the large error bars.The plot also shows that there is almost no difference
between runs with population size of 10 or 100 for the linear-graph structure. The
runs with the linear-graph structures are the only runs for the Rastrigin problem

90 W. Kantschik and W. Banzhaf

50

100

150

200

250

0 40000 80000 120000 160000 200000

A
ve

ra
ge

 fi
tn

es
s

of
 b

es
t

Number of evaluation

Linear 10 Inds
LinGraph 10 Inds

Linear 100 Inds
LinGraph 100 Inds

Fig. 7. The curves show the average fitness value of the chain problem. Each curve
is an average over 50 runs. Zero is the best fitness for a individual. The x axis is the
number of fitness evaluations and the y axis is the number of miss classifications. The
chain problem contain 1000 data points, so that 100 means a classification error of 10
%.

where an individual could reach a fitness smaller than 0.2. For the linear structure
best fitness is 2.9. This shows that behavior of the linear-graph structure is not
only improving average behavior but also improving overall behavior.

4 Summary and Outlook

In conclusion we have observed that linear-graph structures outperform a linear
structure significantly. We have also seen that even with a population size of
10 individuals only evolution reaches fitness values which are better than the
fitness values of linear structures with 100 individuals. This allows GP to evolve
individuals for problems with high cost in fitness evolution.

We have observed that the structure of a GP individual makes a significant
difference in the evolutionary process and the expressiveness of code. Good per-
formance of a structure may be caused by the effect of building blocks [6], which
could be identified with the nodes in our linear-graph structure. In order to
clarify whether this good performance of the linear-graph structure is a general
phenomenon more experiments need to be run on a variety of test problems, but
the results achieved so far are strong evidence that the new structure may lead

Linear-Graph GP – A New GP Structure 91

4

5

6

7

8

9

10

11

12

13

14

0 40000 80000 120000 160000 200000

A
ve

ra
ge

 fi
tn

es
s

of
 b

es
t

Number of evaluation

LinGraph 100 Inds
LinGraph 10 Inds

Linear 100 Inds
Linear 10 Inds

Fig. 8. The curves show the average fitness value of the Rastrigin problem. Each curve
is an average over 50 runs. Zero is the best fitness for a individual.The x axis is the
number of fitness evaluations.

to better result for a range of problems. But the astonishingly result was the
behavior of the linear-graph structure during the evolution with small popula-
tions. A careful analysis is now needed to find out what reasons determine the
improvements in performance of these new GP structures.

Acknowledgement. Support has been provided by the DFG (Deutsche
Forschungsgemeinschaft), under grant Ba 1042/5-2.

References

1. P.J. Angeline. Subtree crossover: Building block engine or macromutation? In
Genetic Programming 1997: Proceedings of the Second Annual Conference, pages
9–17, San Francisco, CA, 1997. Morgan Kaufmann.

2. P.J. Angeline. Multiple interacting programs: A representation for evolving com-
plex behaviors. Cybernetics and Systems (in press), 1998.

3. W. Banzhaf, P. Nordin, R. E. Keller, and F. D. Francone. Genetic Programming
– An Introduction On the Automatic Evolution of Computer Programs and its
Applications. Morgan Kaufmann, San Francisco und dpunkt verlag, Heidelberg,
1998.

4. M. Brameier and W. Banzhaf. Evolving teams of mutiple predictors with Genetic
Programming. Genetic Programming and Evolvable Maschines, 2(4):381–407, 2001.

92 W. Kantschik and W. Banzhaf

5. M. Brameier, P. Dittrich, W. Kantschik, and W. Banzhaf. SYSGP - A C++ library
of different GP variants. Technical Report Internal Report of SFB 531,ISSN 1433-
3325, Fachbereich Informatik, Universität Dortmund, 1998.

6. J. Holland. Adaption in Natural and Artifical Systems. MI: The University of
Michigan Press, 1975.

7. W. Kantschik and W. Banzhaf. Linear-tree GP and its comparison with other
GP structures. In J. F. Miller, M. Tomassini, P. Luca Lanzi, C. Ryan, A. G. B.
Tettamanzi, and W. B. Langdon, editors, Genetic Programming, Proceedings of
EuroGP’2001, volume 2038 of LNCS, pages 302–312, Lake Como, Italy, 18-20 April
2001. Springer-Verlag.

8. J. Koza. Genetic Programming. MIT Press, Cambridge, MA, 1992.
9. J. Koza. Genetic Programming II. MIT Press, Cambridge, MA, 1994.
10. J. P. Nordin. A Compiling Genetic Programming System that Directly Manipulates

the Machine code. MIT Press, Cambridge, 1994.
11. Riccardo Poli. Evolution of graph-like programs with parallel distributed genetic

programming. In Thomas Back, editor, Genetic Algorithms: Proceedings of the
Seventh International Conference, pages 346–353, Michigan State University, East
Lansing, MI, USA, 19-23 July 1997. Morgan Kaufmann.

12. A. Teller and M. Veloso. Pado: A new learning architecture for object recognition.
In Symbolic Visual Learning, pages 81 –116. Oxford University Press, 1996.

	Introduction of Linear-Graph GP
	Recombination of Linear-Graph Programs
	Mutation

	Test Problems
	Experimental Results
	Summary and Outlook

