
Explicit Control of Diversity and Effective
Variation Distance in Linear Genetic

Programming

Markus Brameier and Wolfgang Banzhaf

Department of Computer Science, University of Dortmund,
44221 Dortmund, Germany

brameier,banzhaf@LS11.informatik.uni-dortmund.de

Abstract. We have investigated structural distance metrics for linear
genetic programs. Causal connections between changes of the genotype
and changes of the phenotype form a necessary condition for analyzing
structural differences between genetic programs and for the two objec-
tives of this paper: (i) Distance information between individuals is used
to control structural diversity of population individuals actively by a
two-level tournament selection. (ii) Variation distance is controlled on
the effective code for different genetic operators – including a mutation
operator that works closely with the applied distance metric. Numerous
experiments have been performed for three benchmark problems.

1 Introduction

In contrast to other evolutionary search algorithms, like evolution strategies
(ES), genetic programming (GP) may fulfill the principle of strong causality,
i.e., small variations in genotype space imply small variations in phenotype space
[12], only weakly [14]. Obviously, changing just a small program component may
lead to almost arbitrary changes in program behavior. However, it seems to be
intuitive that the more instructions are modified, the higher is the probability
of a large fitness change.

The edit distance, sometimes referred to as Levenshtein distance, [6] between
varying length character strings has been proposed as a metric for representa-
tions in genetic programming [9,13]. Such a metric not only permits to analyze
genotype diversity within the population but offers a possibility to investigate
the effect (step size) of variation operators. In [7] correlation between edit dis-
tance and fitness change of tree programs has been demonstrated for different
variation operators and test problems.

This work applies the edit distance metric to operate selectively on repre-
sentative substructures of the program representation used in linear GP (LGP).
Correlation between structural and semantic distance as well as distribution of
distances are documented for two different types of variation. One type uses
recombination while the other one is based on (macro) mutations only.

J.A. Foster et al. (Eds.): EuroGP 2002, LNCS 2278, pp. 37–49, 2002.
c© Springer-Verlag Berlin Heidelberg 2002

38 M. Brameier and W. Banzhaf

The major objective of this contribution is to control structural diversity,
i.e., the average program distance, in LGP populations explicitly. Therefore, we
introduce a two-level tournament that selects for fitness on the first level and
for diversity on the second level. In the course of these experiments development
of both diversity and prediction performance are analyzed. We will see that
prediction improves significantly if the diversity level of a population is increased.

The simplest form of diversity control might be to seed randomly created
individuals regularly into the population during runtime. In [9] a more explicit
maintenance of diversity is proposed by creating and seeding individuals that
fill “gaps” of under-represented areas in genotype space. However, experimental
evidence is not given for this rather complicated and computationally expensive
approach. Until now, explicit diversity control is a rarely investigated technique
in genetic programming. Recently, de Jong et al. [8] could improve parsimony
pressure through Pareto-selection of fitness and tree size by adding a (third)
diversity objective. A more implicit control of genetic diversity, by comparison,
offer semi-isolated sub-population, called demes, that are widely used in the area
of evolutionary computation (see e.g. [16]).

The second objective of this paper refers to the structural distance between
a parent program and its offspring, i.e., the variation distance. The change in-
duced by a variation operator on the effective, i.e., fitness-relevant, code may
differ significantly from the amount of absolute change. By monitoring the ef-
fective variation distance, structural step sizes may be controlled more precisely
in relation to the effect on program semantics. We will see that even strong re-
strictions of the maximum allowed mutation distance do not necessarily restrict
freedom of variation.

2 Basics on Linear GP

Programs in tree-based genetic programming (TGP) denote expressions from a
functional programming language like LISP [10]. In linear genetic programming
(LGP) [1], instead, the program representation consists of variable-length se-
quences of instructions from an imperative programming language like machine
code [11] or C [3]. Operations manipulate variables (registers) and constants and
assign the result to a destination register, e.g., ri := rj + 1. Single operations
may be skipped by preceding conditional branches, e.g., if(rj > rk).

The imperative program code is divided into effective and non-effective in-
structions where only the effective code may influence program behavior (see
program example printed in Section 5). The non-effective instructions are re-
ferred to as introns. This separation of instructions results from the linear pro-
gram structure – not from program execution – and can be computed efficiently
during runtime [3].

We distinguish two different variants of linear GP in this work. While the
standard approach applies recombination by crossover to vary program length
the other approach works with mutations exclusively. The linear crossover oper-
ator exchanges two arbitrarily long sub-sequences of instructions between two in-

Explicit Control of Diversity and Effective Variation Distance 39

dividuals. If the operation cannot be executed because one offspring would exceed
the maximum length crossover is performed with equally long sub-sequences.
Macro mutations include deletions or insertions of single (full) instructions here
and represent an alternative growth operator to crossover. Micro mutations
change the smallest program components that comprise a single operator, a
register or a constant.

In [4] we report on effective mutations which guarantee explicitly that the ef-
fective code is altered. This reduces the probability that a mutation stays neutral
in term of a fitness change. If an instruction is inserted its destination register
is chosen in such a way that the instruction is effective at the corresponding
program position.

3 Distance Metrics for LGP Programs

The string edit distance [6] operates on arbitrarily sequences of characters. It
measures the distance between two strings by counting the number of basic
operations – including insertion and exchange of single elements – that are nec-
essary to transform one string into another. The string edit distance is calculated
in time O(n2) [6] with n denotes the maximum number of components that are
compared between two individual programs.

We apply the edit distance metric to measure the structural distance between
the effective part of programs (effective distance) because a difference in effective
code may be more directly related to a difference in program behavior (seman-
tic distance). In contrast to a distance metric regarding the full program code
(absolute distance) this includes some information on program semantics. It is
important to realize that effective distance is not part of the absolute distance.
Actually, two programs may have a small absolute distance while their effective
distance is comparatively large (see Section 5).

Additionally, we regard the sequence of operators (from the effective instruc-
tions) only. The sequence corresponding to the example program in Section 5
is (−,+, /,+, ∗,−,−, /) when starting with the last effective instruction. The
distance of effective operator symbols has proven to be sufficiently precise to
differentiate between program structures provided that the used operator set is
not too small. On the one hand, this is due to the observation that in most
cases the modification of an effective instruction changes the effectivity status
of at least one instruction. The absolute operator sequence, instead, would not
be altered by the exchange of single registers. On the other hand, this metric
has been found to guarantee a sufficient correlation with fitness distance (see
Section 7.1).

In general, a registration of absolutely every structural difference should not
be necessary if we take into account that the correlation between semantic and
structural distance is probabilistic. Obviously, less different genotypes are dis-
tinguished by our selective distance metric that represent the same phenotype
(fitness).

40 M. Brameier and W. Banzhaf

Another important motivation for restricting the number of components com-
pared in programs is that the time of distance calculation reduces significantly.
Depending on the percentage of non-effective instructions there are k times more
elements to compare if one regards the full sequence of operators in programs.
Extending the distance measure to registers and constants of instructions, again,
results in a factor of 4 maximum. In conclusion, computational cost of the edit
distance would increase by a total factor of (4k)2 up to O(16k2 · n2).

By using effective mutations we concentrate variation on effective instruc-
tions. In this way, step sizes become more closely related to the effective distance
metric.

4 Control of Diversity

The effective edit distance between programs is applied for an active control of
genotype diversity, that is the average structural distance between two randomly
selected individuals in population. In order to control this distance we intro-
duce the two-level tournament selection shown in Figure 1. On the first level,
individuals are selected by fitness. On the second level, the two individuals with
maximum distance are chosen among three fitter individuals, i.e., tournament
winners of the first round. While an absolute measure like fitness may be com-
pared between two individuals selection by a relative measure like distance or
diversity necessarily requires a minimum of three individuals. In general, two
out of n individuals are selected that show the largest sum of distances to the
n−1 other individuals. While selection pressure on the first level depends on the
size of fitness tournaments the pressure of diversity selection on the second level
is controlled by the number of these tournaments. Additionally, a probability
parameter controls how often diversity selection takes place.

The number of fitness calculations does not increase with the number of
(first-level) tournaments if fitness of all individuals is saved and is updated only
after variation. Only diversity selection itself becomes more computationally
expensive the more individuals participate in it. Because n selected individuals
require

(
n
2

)
distance calculations an efficient distance metric is important here.

The multi-objective selection method prefers individuals that are fit and di-
verse in relation to others. In the two-level selection process fitness selection keeps
a higher priority than diversity selection. Selecting individuals only by diversity
for a certain probability, instead, does not result in more different directions
among better solutions in the population. Dittrich et al. [5] report on a sponta-
neous formation of groups when selecting the most distant of three individuals
that are represented by single real numbers.

In general, an explicit control of structural diversity increases the average
distance of individuals. Graphically, the population spreads wider over the fitness
landscape. Thus, there is a lower probability that the evolutionary process gets
stuck in a local minimum and more different search directions may be explored
in parallel.

Explicit Control of Diversity and Effective Variation Distance 41

Fitness Selection

Diversity Selection

 (1. Level)

 (2. Level)

Winner

Tournament

Variation

Fig. 1. Two-level tournament selection.

Controlling phenotype diversity by a selection for maximum fitness distance of
individuals has been found less suitable here. Note that program fitness is related
to an absolute optimum. Increasing relative fitness distance necessarily increases
the diversity of fitness values in population which promotes worse solutions.
Moreover, selection by fitness distance has almost no effect on problems that
implicate a rather narrow and discrete fitness distribution.

5 Control of Variation Distance

One property of program representations in GP is that already smallest varia-
tions on the structural level may affect program behavior heavily. In linear GP
these variations especially include the exchange of single registers. Several in-
structions that precede a varied instruction in a program may become effective
or non-effective respectively. In this way, such micro mutations may not only
affect the fitness but the flow of data in linear genetic programs. Even if bigger
variations of program behavior are less likely with smaller structural variation
steps, this effect is rather undesirable.

An implicit control of structural variation distance may be realized by im-
posing respective restrictions on the variation operators [4]. Unfortunately, a
variation operator – even if it is operating on the effective code exclusively –
can only guarantee for the absolute program structure that a certain maximum
step size is not exceeded. Variation steps on the effective code may still be much
bigger though bigger steps appear with a lower probability.

The concern of this contribution is an explicit control of the effective vari-
ation distance. Therefore, the structural distance between parent and offspring
is measured explicitly by using the effective distance metric. The variation of a
parent program is repeated until its effective distance to the offspring falls below
a maximum threshold.

In the following extract of a linear program commented instructions are non-
effective if we assume that the output is held in register r[0] at the end of

42 M. Brameier and W. Banzhaf

execution. The program status on the right represents the result of applying
a micro mutation to instruction number 8 (from the top). The first operand
register r[3] is exchanged by register r[2]. As a consequence, five preceding
(formerly non-effective) instructions become effective which corresponds to an
effective mutation distance of five.

void gp(r) void gp(r)
double r[5]; double r[5];

{ {
... ...

// r[4] = r[2] * r[4]; // r[4] = r[2] * r[4];
r[4] = r[2] / r[0]; r[4] = r[2] / r[0];

// r[0] = r[3] - 1; r[0] = r[3] - 1;
// r[1] = r[2] * r[4]; r[1] = r[2] * r[4];
// r[1] = r[0] + r[1]; r[1] = r[0] + r[1];
// r[0] = r[3] - 5; r[0] = r[3] - 5;
// r[2] = pow(r[1], r[0]); r[2] = pow(r[1], r[0]);

r[2] = r[3] - r[4]; r[2] = r[2] - r[4]; <- mutation point
r[4] = r[2] - 1; r[4] = r[2] - 1;
r[0] = r[4] * r[3]; r[0] = r[4] * r[3];

// r[4] = pow(r[0], 2); // r[4] = pow(r[0], 2);
// r[1] = r[0] / r[3]; // r[1] = r[0] / r[3];

r[3] = r[2] + r[3]; r[3] = r[2] + r[3];
r[4] = r[2] / 7; r[4] = r[2] / 7;

// r[2] = r[2] * r[4]; // r[2] = r[2] * r[4];
r[0] = r[0] + r[4]; r[0] = r[0] + r[4];
r[0] = r[0] - r[3]; r[0] = r[0] - r[3];

} }

An alternative metric to the edit distance between effective operator se-
quences is applicable for controlling step sizes of effective mutations. It simply
calculates how many instructions have changed their effectivity status from the
mutation point to the beginning of a program. This is exactly the Hamming
distance between the status flags which needs calculation time O(n) only (with
n is the maximum program length here). Even if both metrics calculate similar
distances we stick to the edit distance here for consistency reason.

Using an explicit control of the fitness distance between parent and offspring,
instead, requires an additional fitness calculation after each iterated variation
and can become computationally expensive, especially if a larger number of
fitness cases is involved. By comparison, a structural distance like edit distance
has to be re-calculated only once after each iteration while its computational
costs do not directly depend on the number of fitness cases. It is also difficult
to find appropriate maximum thresholds for fitness distance because those are
usually problem-specific. Finally, it is not sensible to restrict positive fitness
changes (fitness improvement) at all.

6 Experimental Setup

All techniques discussed above have been tested with three benchmark problems
including an approximation, a classification, and a Boolean problem. Table 1
summarizes problem attributes and problem-specific parameter adjustments of
our LGP system.

Explicit Control of Diversity and Effective Variation Distance 43

Table 1. Problem-specific parameter settings.

Problem ID sinpoly iris 8-parity
Problem type Approximation Classification Boolean function
Problem function sin(x)× x+ 5 real-world data set even-N-parity (N=8)
Input range [−5, 5] [0, 8) {0, 1}
Output range [0, 7) {0, 1, 2} {0, 1}
Number of inputs 1 4 8
Number of outputs 1 1 1
Number of registers 1+4 4+2 8+0
Number of examples 100 150 256
Fitness function SSE CE SE
Number of generations 500 500 250
Instruction set {+, −, ×, /, xy} {+, −, ×, /, if >, if ≤} {AND, OR, NOT, if}
Set of constants {1, .., 9} {1, .., 9} {0, 1}

The first problem is referred to as sinpoly in the following and denotes an
approximation of the sinus polynomial sin(x)× x+5 by non-trigonomical func-
tions. Besides the input register – that is identical to the output register here
– there are four additional calculation registers used with this problem. This
additional program memory becomes important in linear GP, especially if the
number of inputs is low by problem definition. Program fitness is the sum of
square errors (SSE) between the predicted outputs and the example outputs.

The second problem iris is a popular classification data set that originates
from the UCI Machine Learning Repository [2]. The real-world data contains 3
classes of 50 instances each, where each class refers to a type of iris plant. Fitness
equals the classification error (CE), i.e., the number of wrongly classified inputs.
A program output p(ik) is considered as correct for an input vector ik if the
distance to the desired class identifier ok ∈ {0, 1, 2} is smaller than 0.1, i.e.,
|p(ik)− ok| < 0.1.

Finally, we have tested a parity function of dimension eight (even-8-parity).
This function outputs one if the number of set input bits is even, otherwise the
output is zero. Note that the Boolean branch in the instruction set is essential
for a high number of successful runs with this problem.

Table 2. General parameter settings.

Parameter Setting
Population size 2000
Fitness tournament size 4
Maximum program length 200
Initial program length 2–20
Reproduction 100%
Micro mutation 25%
Macro mutation 75%
Instruction deletion 33%
Instruction insertion 67%

Crossover 75%

44 M. Brameier and W. Banzhaf

More general configurations of our linear GP system are given in Table 2.
Exactly one genetic operator is selected at a time to vary an individual program.
Moreover, either crossover or macro mutations are used as macro (growth) opera-
tor, but not in the same run. Macro mutations include two times more insertions
than deletions here. This explicit growth tendency of the operator guarantees
a sufficient growth of programs. Program length is meassured in number of in-
structions.

7 Results

7.1 Causality

First of all, we demonstrate experimentally that there is a causal connection
between the structural distance and the semantic distance (fitness distance) of
linear genetic programs when applying the edit distance metric on sequences of
effective instruction operators as defined in Section 3.

The effective variation distance is meassured with both crossover and effective
mutations. In both cases, Figure 2 demonstrates a clear positive correlation
between program distance and fitness distance, i.e., shorter variation distances
on code level induce shorter variation distances on fitness level. The respective
distribution of variation distances in Figure 2 confirms this to be true for the vast
majority of occurring distances. While, in general, shorter variation distances
occur more frequently than longer distances, distribution of crossover distances
is wider than the distribution of distances induced by (effective) mutations.

0

10

20

30

40

50

60

70

80

0 5 10 15 20 25 30

F
itn

e
ss

 D
is

ta
n
ce

Program Distance

Crossover
Effective Mutations

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30

F
re

q
u
e
n
cy

 (
x

1
0
0
0
0
0
)

Variation Distance

Crossover
Effective Mutations

Fig. 2. Relation between program distance and fitness distance (left) and distribution
of variation distances (right) for iris problem (similar for sinpoly and 8-parity). Average
figures over 100 runs.

Furthermore, distance distributions show that almost two thirds of all effec-
tive mutations result in distance one. Interestingly, even though macro mutations
that insert or delete full effective instructions are applied in the majority of cases
the effectivity of other (preceding) instructions changes for less than one third
only. Obviously, evolution develops effective program structures which are less

Explicit Control of Diversity and Effective Variation Distance 45

fragile against stronger variation. We found that the effectivity of an instruc-
tion is very often guaranteed by more than one (succeeding) instruction. When
crossover is used the proportion of non-effective instructions in a program acts
as another implicit mechanism that reduces variation strength.

7.2 Structural Diversity Selection

Table 3 shows average error rates obtained with and without selecting for struc-
tural diversity for the three test problems introduced in Section 6. Different se-
lection pressures, i.e., selection probabilities, have been tested with three fitness
tournaments. Higher selection pressures are induced by increasing the number
of tournaments up to four or eight.

Table 3. Second-level selection for structural diversity with different selection pres-
sures. Selection pressure controlled by selection probability and number of fitness tour-
naments (T). Average error over 200 runs. Statistical standard error in parenthesis.
Percental difference from baseline results.

Variation Selection sinpoly iris 8-parity
% #T mean (std) ∆ (%) mean (std) ∆ (%) mean (std) ∆ (%)

Crossover 0 2 3.01 (0.35) 0 2.11 (0.10) 0 58 (3.4) 0
50 3 2.89 (0.34) 4 1.42 (0.08) 33 35 (2.4) 40
100 3 2.77 (0.34) 8 1.17 (0.07) 44 27 (2.2) 53
100 4 1.96 (0.22) 35 1.09 (0.07) 48 19 (1.8) 67
100 8 0.69 (0.06) 77 — — — —

Effective 0 2 0.45 (0.04) 0 0.84 (0.06) 0 15 (1.2) 0
Mutations 50 3 0.43 (0.03) 4 0.63 (0.05) 25 12 (1.0) 20

100 3 0.30 (0.02) 33 0.60 (0.05) 29 10 (1.1) 33
100 4 0.23 (0.02) 49 0.33 (0.04) 61 7 (0.8) 53
100 8 0.17 (0.01) 62 — — — —

It is conspicuous that in all three test cases linear GP works significantly
better by using (effective) macro mutations instead of crossover. In [4] we have
already demonstrated that the linear program representation, in particular, is
much more suitable for being developed by mutations, especially if those are
directed towards effective instructions. Nonetheless, the experiments with linear
crossover show here that diversity selection is not depending on a special type
of variation. Moreover, the application of this technique is demonstrated with a
population-dependent operator. For each problem and both variation operators
performance increases continuously with the influence of diversity selection in
Table 3. The highest selection pressure tested for a problem results in a twofold or
higher improvement of prediction error. To achieve this, problem sinpoly requires
a stronger pressure with crossover than the two discrete problems.

Figure 3 illustrates the development of structural diversity during run for
different selection pressures. The higher the selection pressure is adjusted the
higher is the diversity. Interestingly, the average (effective) program distance
does not drop even if diversity selection is not applied. Instead of a premature

46 M. Brameier and W. Banzhaf

loss of diversity we observe an inherent increase of structural diversity with our
linear GP approach. While diversity increases with crossover until a certain level
and stays rather constant then, increase with effective mutations is more linear.

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450 500

S
tr

u
ct

u
ra

l D
iv

e
rs

ity

Generations

0% (2T)
50% (3T)

100% (3T)
100% (4T)

0

5

10

15

20

25

30

35

40

45

50

0 50 100 150 200 250 300 350 400 450 500

S
tr

u
ct

u
ra

l D
iv

e
rs

ity
Generations

0% (2T)
50% (3T)

100% (3T)
100% (4T)

Fig. 3. Diversity levels after diversity selection with different selection pressures. Se-
lection pressure controlled by selection probability and number of fitness tournaments
(T). Macro variation by crossover (left) or effective mutations (right) for iris problem
(similar for sinpoly and 8-parity). Average figures over 100 runs.

Two major reasons can be found to explain this behavior: First, genetic pro-
gramming is working with a variable-length representation. The longer effective
programs develop during a run the bigger effective distances may become. The
growth of effective code is more restricted with crossover than with effective
mutations because a much higher proportion of non-effective code emerges with
this operator – approximately 50–60% in the experiments conducted here. Nev-
ertheless, by the influence of distance selection the average (effective) program
length has been found to increase only slightly compared to the average program
distance.

Second, both forms of variation, linear crossover and effective mutation,
maintain program diversity over a run already implicitly, i.e., without an explicit
distance control. For linear crossover the reason might lie in its high variation
strength and in the higher amount of non-effective code that contributes to a
preservation of (effective) code diversity, too.

When using mutations exclusively a high degree of innovation is introduced
continuously into the population. This leads to a higher diversity than it occurs
with crossover. The stronger it is selected for diversity, however, the more diver-
sity is gaining ground in crossover runs. Compared to mutations the success of
recombination depends more strongly on the composition of the genetic material
in the population. The more different the recombined solutions are the higher is
the expected innovativity of their offsprings.

7.3 Control of Effective Mutation Distance

As motivated in Section 5 we are interested in controlling the effective distance
between parent and offspring. We restrict ourselves to the mutation-based ap-

Explicit Control of Diversity and Effective Variation Distance 47

proach here. In particular, we want to find out whether solution quality may be
further improved by an explicit reduction of effective mutation distances. There-
fore, a program is mutated repeatedly until its distance to the offspring falls
below a maximum threshold. Each time a mutation is not accepted its effect on
the program is reversed while the choice of the mutation point is free in every
iteration.

The applied effective distance metric regards operators as smallest distance
units (see Section 3). This corresponds to (effective) macro mutations which op-
erate on instruction level (macro level), even if the effective distance may also be
altered by micro mutations that operate below instruction level (micro level). In
order to guarantee a sufficient code growth, macro mutations are applied more
frequently than micro mutations here. As a result, most steps by effective muta-
tions are larger than zero (about 80% in Figure 2) and measuring the distance
between full effective programs does not promise a much higher precision. This
is another reason, besides the arguments given in Section 3, why (effective) oper-
ator sequences represent a sufficient basis for distance calculation between linear
genetic programs.

Table 4. Maximum restriction of effective mutation distance. Average error over 200
runs. Statistical standard error in parenthesis. Percental difference from baseline re-
sults.

Variation Maximum sinpoly iris 8-parity
Distance mean (std) ∆ (%) mean (std) ∆ (%) mean (std) ∆ (%)

Effective — 0.46 (0.06) 0 0.90 (0.06) 0 16 (1.2) 0
Mutations 10 0.35 (0.04) 24 0.72 (0.06) 20 13 (1.2) 19

5 0.33 (0.04) 28 0.74 (0.06) 18 12 (1.2) 25
2 0.28 (0.03) 39 0.68 (0.05) 24 11 (1.1) 31
1 0.26 (0.03) 42 0.54 (0.05) 40 9 (0.9) 44

Table 4 compares average prediction errors for different maximum limits of
mutation distance. The maximum possible distance equals the maximum pro-
gram length and imposes no restrictions. For all three benchmark problems best
results are obtained with the smallest maximum distance (1). This is all the
more interesting if we consider that a restriction of variation distance always
implies a restriction in variation freedom.

As we can see in Table 5 the average number of iterations during run increases
only slightly if the maximum threshold is lowered. Not even one and a half
iterations are necessary, on average, for the smallest distance and the maximum
number of iterations (10 here) has hardly ever been exceeded. Both aspects
together with the results from Table 4 emphasize that freedom of variation is
not restricted significantly and that computational costs of this distance control
are not expensive.

The results found here further correspond to the distribution of mutation dis-
tances in Figure 2 where only about 20–30% of all measured step sizes are larger
than one. Obviously, larger disruptions of effective code as demonstrated with

48 M. Brameier and W. Banzhaf

Table 5. Average number of iterations until a maximum mutation distance is met.

Variation Maximum Iterations
Distance sinpoly iris 8-parity

Effective — 1.00 1.00 1.00
Mutations 10 1.02 1.02 1.02

5 1.06 1.05 1.05
2 1.18 1.12 1.12
1 1.37 1.18 1.20

the example program in Section 5 occur less likely. Effective parts of programs
rather emerge to be quite robust against bigger effective mutations steps.

8 Future Work and Conclusion

A two-level tournament selection may also be used for implementing a com-
plexity control. Compared to a weighted complexity term in the fitness function
(parsimony pressure) [10], fitness selection is less influenced by a complexity
selection on the second level and finding an appropriate weighting of objectives
is not required. Moreover, the separation of linear genetic programs in effective
and non-effective code offers the possibility for a selective complexity selection.
That means it may be selected for smallest effective length or smallest non-
effective length specifically.

We introduced an active control of diversity in form of a two-level selection
process. By increasing the structural distance between programs, performance
improved significantly for three different benchmark problems. Measuring struc-
tural differences specifically between effective subcomponents of linear genetic
programs was found sufficiently precise to demonstrate causality.

We also restricted the mutation distance on level of effective code. This turned
out to be most successful with the smallest maximum step size while the number
of necessary repetitions of a mutation was small. In general, mutation distances
on effective linear programs were found much smaller than it might be expected.

Acknowledgements. This research was supported by the Deutsche
Forschungsgemeinschaft (DFG), collaborative research center SFB 531, project
B2.

References

1. W. Banzhaf, P. Nordin, R. Keller and F. Francone, Genetic Programming – An
Introduction. On the Automatic Evolution of Computer Programs and its Applica-
tion. dpunkt/Morgan Kaufmann, Heidelberg/San Francisco, 1998.

2. C.L. Blake and C.J. Merz, UCI Repository of Machine Learning Databases
[http://www.ics.uci.edu/˜mlearn/MLRepository.html]. University of Califor-
nia, Department of Information and Computer Science.

Explicit Control of Diversity and Effective Variation Distance 49

3. M. Brameier and W. Banzhaf, A Comparison of Linear Genetic Programming and
Neural Networks in Medical Data Mining. IEEE Transactions on Evolutionary
Computation, vol. 5(1), pp. 17–26, 2001.

4. M. Brameier and W. Banzhaf, Effective Linear Program Induction. Collaborative
Research Center SFB 531, Computational Intelligence, Technical Report No. CI-
108/01, University of Dortmund, 2001.

5. P. Dittrich, F. Liljeros, A. Soulier, and W. Banzhaf, Spontaneous Group Formation
in the Seceder Model. Physical Review Letters, vol. 84, pp. 3205–3208, 2000.

6. D. Gusfield, Algorithms on Strings, Trees and Sequences. Cambridge University
Press, 1997.

7. C. Igel and K. Chellapilla, Investigating the Influence of Depth and Degree of
Genotypic Change on Fitness in Genetic Programming. In W. Banzhaf et al. (eds.),
Proceedings of the Genetic and Evolutionary Computation Conference, pp. 1061–
1068, MIT Press, Cambridge, 1999.

8. E.D. de Jong, R.A. Watson, and J.B. Pollack, Reducing Bloat and Promoting Di-
versity using Multi-Objective Methods. In L. Spector et al. (eds.), Proceedings of
the Genetic and Evolutionary Computation Conference, pp. 11–18, MIT Press,
Cambridge, 2001.

9. R. Keller and W. Banzhaf, Explicit Maintenance of Genetic Diversity on
Genospaces, Internal Report, University of Dortmund, 1995.

10. J.R. Koza, Genetic Programming. MIT Press, Cambridge, MA, 1992.
11. P. Nordin, A Compiling Genetic Programming System that Directly Manipulates

the Machine-Code. In K.E. Kinnear (ed.) Advances in Genetic Programming, 311–
331, MIT Press, Cambridge, MA, 1994.

12. I. Rechenberg, Evolutionsstrategie ’94. Frommann-Holzboog, 1994.
13. U.-M. O’Reilly, Using a Distance Metric on Genetic Programs to Understand Ge-

netic Operators. In J.R. Koza (ed.), Late Breaking Papers at the Genetic Program-
ming ’97 Conference, Standford University, 1997.

14. J.P. Rosca and D.H. Ballard, Causality in Genetic Programming. In L.J. Eshel-
mann (ed.), Proceedings of the Sixth International Conference on Genetic Algo-
rithms, pp. 256–263, Morgan Kaufmann, San Francisco, 1995

15. D. Sankoff and J.B. Kruskal (eds.), Time Warps, String Edits, and Macro-
molecules: The Theory and Practice of Sequence Comparison, Addison-Wesley,
1983.

16. R. Tanese, Distributed Genetic Algorithms. In J.D. Schaffer (ed.) Proceedings of
the Third International Conference on Genetic Algorithms, 434–439, Morgan Kauf-
mann, San Mateo, CA, 1989.

	Introduction
	Basics on Linear GP
	Distance Metrics for LGP Programs
	Control of Diversity
	Control of Variation Distance
	Experimental Setup
	Results
	Causality
	Structural Diversity Selection
	Control of Effective Mutation Distance

	Future Work and Conclusion

