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Abstract. In this work we tried to reduce the number of free parameters
within Genetic Programming without reducing the quality of the results.
We developed three new methods to adapt the probabilities, different
genetic operators are applied with. Using two problems from the areas
of symbolic regression and classification we showed that the results in
these cases were better than randomly chosen parameter sets and could
compete with parameter sets chosen with empirical knowledge.

1 Introduction

One of the characteristics of Genetic Programming (GP) [10,5] is the enormous
number of free parameters of the algorithm. As different problems require dif-
ferent parameter sets GP requires a lot of experience and knowledge on side of
the user.

In this work we are trying to reduce the number of free parameters. Our aim is
to find adaptive methods that result in solutions that are as good as the ones
gained with the traditional algorithm and empirically established parameter sets.
Furthermore the solutions found with our new methods should be better than
those found with the traditional algorithm and randomly chosen parameter sets.

While adaption of parameters is common in other areas like Evolution Strategies
[13,9] and Genetic Algorithms [8,3,4,14] there are only very few attempts with
GP [1,15].

When we later apply GP to a new problem it will be possible to use this algorithm
without preceding parameter studies, which always require a lot of time. At least
it will be possible to get an initial parameter set, which can be used for further
tweaking.

Every new method incorporated into the GP paradigm has to be compared with
the traditional method. Besides that a feature might work well on some problems
and not on others, the methods might need different parameter sets. Therefore,
if one method seems to be better than another one, the reason might be either
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due to an advanced method or it could be due to a difference in quality of the
parameter sets used. Our adaptive methods rule out the second reason.

During a run the algorithm creates new individuals by copying old individuals
and applying genetic operators. As there are several operators one of them has to
be chosen. We examined three different methods to decide which of the operators
is applied in certain situations.

In Section 2 we present the GP-system used including the implemented genetic
operators. Section 3 describes the new adaptive methods and Section 4 includes
our experiments regarding two different problem domains and the corresponding
results. The results are discussed in Section 5.

2 GGP and Genetic Operators

2.1 Graph Representation

We used our own GP-system called GGP, which is capable of solving problems
modelled as acyclic digraphs. Each node of a graph represents one operation
such as ADD or MUL and has a certain number of inputs and outputs, and
sometimes additional parameters. All outputs of each node have to be connected
with exactly one input of another node.

Opposite to other systems we use graphs as internal representation instead of
trees [11] or arrays [12]. This way it is easy to extend the system for using cyclic
graphs without any restrictions.

A problem is modelled within the graph. The node type Input takes the input
values of the problem and propagates them via the outgoing edge to the next
node. The fitness function is part of the graph, too. The fitness value of an
individual represented by a graph is the sum of all values propagated to the
Output nodes of the graph over all scenarios.

The node type GP, referred to as GP-node, stands for a subgraph created by the
GP-system during evolution. The number of incoming and outgoing edges of a
GP-subgraph is variable and depends on the surrounding graph. Traditional im-
plementations of GP would call only this node an individual and the surrounding
graph would be part of the GP program code. The approach GGP uses is far
more flexible:

– The calculation of the fitness value is part of the graph. If the user wishes
to use a method other than, for example, squared differences he just has to
modify the graph and does not have to modify the GP-program.

– One graph can contain more than one GP-node. For traditional GP this
would mean that one individual consists of more than one tree. Problems
dealing with more than one input value could use a tree for each input for
some kind of preprocessing and the results could be combined in another
tree. To achieve this kind of behaviour with a traditional GP-system the
user would have to modify the GP programm code.
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Fig. 1. A graph for symbolic regression

Figure 1 shows a graph used for symbolic-regression problems. For each scenario
the first input takes the value from the function domain and the second input the
value the function is supposed to calculate. The first value is used as input for
the subgraph represented by the GP-node. The result of the calculation within
the GP node is compared to the second input value. The fitness function is the
sum of the squared differences over all scenarios.

In this work we allow only nodes with exactly one outgoing edge within the
GP-subgraph. As the GP-node has only one Output node in our examples the
contents of a GP-node can always be interpreted as a tree comparable to ordinary
GP-systems.

During a run the number of nodes in a GP-subgraph within a GP-node is limited
by a parameter the user has to choose at the beginning. The number of Input
and Output nodes inside a GP-subgraph corresponds to the number of incoming
and outgoing edges of the GP-node.

2.2 Genetic Operators

GGP includes one crossover operator and several mutation operators. Bear in
mind that the operators modify only GP-subgraphs and not trees as in usual
tree based GP. All the modifications result in acyclic graphs with all nodes of
each GP-subgraph properly connected.

As each edge has one start and one ending the sum of all inputs of the nodes
in a GP-subgraph must be the same as the number of outputs from these nodes
making it impossible just to add or remove a node with a different number of
inputs and outputs. Therefore most of the mutation operators modify subgraphs.

Input SUB

Const

OutputSIN

Fig. 2. An example graph

Figure 2 offers an example graph we use to explain the genetic operators de-
scribed next.
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1. We cannot remove the Constant node as it has no input but one output.
The second input of the SUB node would not be connected afterwards. On
the other hand it is possible to remove both the Constant node and the
SUB node and to connect the Input node directly to the Output node. This
mutation is called delete path as it removes the path between two nodes.

2. The opposite to delete path is the mutation operator insert path. As we
are using only trees in this work the operation is reduced to the following:
one edge of a GP-subgraph is split, a node with two inputs and one output is
inserted, and the free input of this node gets connected to a newly inserted
node with no incoming and one outgoing edge.1

3. The operator insert node inserts a node with one input and one output by
splitting one existing edge.

4. As the name implies the operator delete node deletes a node with one input
and one output by connecting the surrounding edges.

5. The operator move node moves a node with one input and one output to
an adjacent position. For example the SIN node in Figure 2 could be moved
to the position between Input and SUB node.

6. Replace node replaces a node with a different node with the same number
of inputs and outputs. The SUB node in Figure 2 could be replaced by an
ADD node.

7. Subgraph crossover: Given two individuals represented by two graphs
with several GP-nodes each, one of the first individual’s GP-subgraphs is
replaced by the contents of the corresponding GP-node of the second indi-
vidual. As our experiments use only models with one GP-node the operator
is equivalent to replicating the first individual and we do not use it at all.

2.3 The Evolutionary Algorithm

GGP uses steady state tournament selection. There are always four individuals
per tournament. The two winners overwrite the two losing individuals. After-
wards the new individuals will be mutated by one of the genetic operators. In
the basic version of the algorithm the probabilities of the genetic operators are
defined once at the beginning of a run. The sum of all probabilities must be
smaller than or equal to one. As this work is about adapting these probabili-
ties the next section will describe different methods to change the probabilities
during runtime.

3 Different Methods of Adaption

We developed three new methods of adapting the probabilities of genetic oper-
ators and compared them to two static methods. Our aim was to find a method
1 When we evolve graphs instead of trees the beginning of the new path can also be

a node with two outputs and one input. The free input and output are inserted into
another edge of the existing GP-subgraph. The operator also checks that the graph
remains acyclic.
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that is significantly better than randomly chosen static probabilities and not sig-
nificantly worse than static probabilities that have empirically proved to result
in good fitness values. We compare our results against the following methods
without adaption:

Random Static Probabilities (RSP): Given n different genetic operators
we compute an n-tuple (p1, ..., pn) with

∑n
i=1 pi = 100 and p1, ..., pn ∈

{0, 1, ..., 100}. Each of the (n+99)!
100!(n−1)!

possible tuples has the same proba-
bility of being chosen. The value of pi represents the percentage of how often
operator i is chosen for mutation.

Empirical Static Probabilities (ESP): During empirical tests some n-tuples
have achieved significant better results than others. One of those was chosen.

Within all of the three following methods we calculate some values pi, which
represent the percentage of how often operator i is chosen for mutation. As the
sum of all percentages might be smaller than 100 we introduce p0 = 100−∑n

i=1 pi

as the percentage for replication.

3.1 Population-Level Dynamic Probabilities (PDP)

The probabilities of the genetic operators are adapted based on the success rates
of the operators.

– Twenty percent of all probabilities are shared equally distributed amongst
all n genetic operators: pall = b20

n c. This rule ensures that none of the prob-
abilities can decrease to zero preventing the selection of the corresponding
operator at a later time when its use is more suitable.

– To keep the next equation simple we introduce the ratio ri = successi
2

usedi
for

each operator i where usedi is the number how often operator i was applied
and successi is the number how often these applications have lead to a fitness
improvement compared to the parent individual.2 3

– For each operator pi is computed using pall and a scaled value of ri: pi =
pall + bri

(100−npall)
scale

c with scale =
∑n

j=1 rj.

The name ’Population-level Dynamic Probabilities’ was chosen in reference to
Angeline’s categorisation of different classes for adaptive parameters. For an
overview of other work on adaptive methods in Evolutionary Computation see
[2].
2 A squared value of success is used because a linear term always results in nearly

equally distributed probabilities amongst the operators due to the unpleasant small
success rate of genetic operators.

3 To circumvent division by zero-errors usedi is initialised with a value of one.
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3.2 Fitness Based Dynamic Probabilities (FBDP)

Initial experiments have shown that different operators have different success
rates depending on the fitness of their parent individual.

For each fitness improvement between a parent individual and the corresponding
child the fitness of the parent and the operator used to achieve the improvement
is stored in an array sorted by fitness values.

The probabilities are computed using the following method where twenty percent
of all probabilities are again shared equally distributed amongst all n genetic
operators: pall = b20

n c.

– A probability of pleft = 100−bnpallc must be distributed among n operators.
– We create a set of pleft (fitness, operator)-tuples from the array containing

all the fitness improvements with the corresponding genetic operators. The
set consists of those pleft pairs whose fitness value is next to the fitness of
the actual parent.

– pi is the sum of pall and the number of tuples in the set that use operator i.
– If there have not been pleft fitness improvements yet pi is calculated as

pi = b100
n c.

This method works only for operators using one parent. With GP systems using
two parents for one genetic operator the fitness of the individual with the higher
impact on the offspring should be chosen to create the set of tuples. If the
impact is uncertain one of the two fitness values of the parents should be chosen
at random.

3.3 Individual-Level Dynamic Probabilities (IDP)

Each individual j has its own parameter set for operator probabilities. For each
genetic operator i there is a variable cntij counting the unsuccessful attempts
to improve fitness with this operator. A counter is reset if an application of the
corresponding operator leads to a fitness improvement. The relation among the
values of all counters of one individual is used to calculate the probabilities of
the genetic operators.

– Again twenty percent of all probabilities are shared equally distributed among
all n genetic operators: pall = b20

n c.
– pi is calculated using equation (1). The more often an operator has failed

the smaller is pi.

pi = pall +

⌊
(max1≤k≤n cntkj + 1 − cntij)(100− n pall)

n(max1≤k≤n cntkj + 1) −∑n
k=1 cntkj )

⌋
(1)
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– After a tournament is finished, a winning individual j is copied to the posi-
tion of a losing individual k, and one of the operators is applied (based on
pi-values of the parent individual). Then the counter of the applied operator
of the parent individual is updated. Afterwards all the counters of the parent
j are propagated to the child individual k using equation (2).

cntik =
1
2

(
cntij +

1
n

n∑
l=1

cntlj

)
(2)

With equation (2) individuals can more easily adapt to new situations during
a run. For example in a situation with one individual having a good fitness
and one preferred operator, this individual might be the ancestor for a chain of
descendants with slightly degrading fitness values. These individuals where all
mutated with the same operator, which now seems to be a bad choice. Because
of to equation (2), the difference between the probability of this operator and
all the others will be reduced after each mutation so that the use of a different
operator gets more probable soon.

For operators using two parents this method has to be extended. One way would
be to propagate the smaller one of both values cntik from both of the parents
but further research is needed on this topic.

4 Experiments and Results

This section studies the performance of the different methods introduced in
Section 3 using a symbolic-regression and a classification problem. In both cases
we used a population size of 100 individuals and a maximum number of 100,000
tournaments. With each problem and each method of adaption we tried four
different values for the upper limit of nodes inside a GP-subgraph (40, 80, 100
and 140). For each of all possible combinations 60 runs were performed. As we
only want to examine the influence of our methods on the solution we did not
use advanced techniques such as ADFs or demes.

4.1 Symbolic Regression

We used GP to find a function f : [0, 2π] → IR that minimises the expression

49∑
i=0

(
f(

6.3
49

i) − sin(
6.3
49

i)
)2

. (3)

In other words we tried to evolve a sinus-function based on a training set of 50
equidistant points between 0 and 6.3. We used the graph shown in Figure 1.
Table 1 lists all node types allowed in a GP-subgraph. The node type Factor
scales the input by the value of its parameter. The output of the node type
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Table 1. Nodes in GP-
subgraph

Type Inputs Outputs Params

ADD 2 1 0

SUB 2 1 0

MUL 2 1 0

DIV 2 1 0

Factor 1 1 1: N(0,4)

Const 0 1 1: N(1,4)

Inputval 0 1 0

Table 2. Average fitness of 60 runs

Nodes RSP ESP PDP FBDP IDP

40 0.055 0.052 0.052 0.046 0.045

80 0.033 0.028 0.031 0.022 0.022

100 0.025 0.019 0.012 0.017 0.02

140 0.029 0.01 0.02 0.023 0.016

Inputval always has the same value as the Input node of the GP-subgraph. The
GP-system uses the operators insert path, delete path, replace node and
delete node as described in Section 2.2.

Table 2 shows the average fitness of 60 runs for each parameter set. All dynamic
methods are in average better than RSP. With the exception of the experiments
with GP-subgraphs with a maximum size of 140 nodes there were always two
dynamic methods better than ESP.
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Fig. 3. Problem: Sinus, GP-
subgraph with 80 nodes
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Fig. 4. Problem: Sinus GP-
subgraph with 140 nodes

Figures 3 and 4 show the results of all runs with a maximum of 80 and 140 nodes
inside the GP-subgraph. Due to the similarity to Figure 3 the figures for 40 and
100 nodes are omitted.

For each GP-subgraph-size we did a Kolmogorov-Smirnov test [7] to find
out whether the distributions of the fitness results for the alternative methods
might differ. As the plots propose this is only true in a very few cases. With
a confidence-level of 95 percent only the results of RSP seem to differ from all
other methods in the 140 nodes case. For all other cases no hypothesis can be
accepted or discarded.
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4.2 Classification

The classification problem we used is shown in Figure 6. The data set consists of
1000 points and was taken from [6]. The corresponding graph is shown in Figure
5. The fitness was the error rate of an individual given in percent.

Input

Input

Input

Output

Input

GP

Fig. 5. Graph for classification
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Fig. 6. The classification problem

Additional to the node types in Table 1 types called SIN, COS and Threshold
were used, where Threshold has one parameter and sets the output to 1 if the
parameter is smaller than the input value or −1 otherwise. Instead of Inputval
we used the node type Inputval2. It uses a parameter to decide which input value
of the GP-subgraph should be propagated to the output of the node.

The results are given in Table 3. Figures 7 and 8 show the results of the individual
runs. The runs with 40 and 140 nodes within the GP-subgraph look similar to
Figure 8 and are omitted.

Table 3. Average fitness of 60 runs

Nodes RSP ESP PDP FBDP IDP

40 0.124 0.079 0.106 0.104 0.094

80 0.11 0.087 0.111 0.102 0.096

100 0.139 0.080 0.123 0.112 0.105

140 0.127 0.102 0.123 0.128 0.105

Table 4. Significant differences

Nodes Methods

40, 80, 100: RSP ↔ ESP

40, 100, 140: RSP ↔ IDP

80, 100: ESP ↔ PDP

100: ESP ↔ FBDP

In both figures we see that the results of the adaptive methods lie between BSP
and ESP. Of all the adaptive methods IDP seems to be most suited for this
problem.

Kolmogorov-Smirnov tests offer some indicators that both ESP and IDP
perform better than RSP. Table 4 lists the methods with different distributions
at a confidence level of 95 percent.



334 Jens Niehaus and Wolfgang Banzhaf

0

0.05

0.1

0.15

0.2

0.25

0.3

0 10 20 30 40 50 60

F
itn

es
s

Run (sorted by fitness)

RSP
ESP
PDP

FBDP
IDP

Fig. 7. Problem: Classification, GP-
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5 Discussion

The results given in Section 4 point out that the new methods seem to fulfil our
aims.

Looking at the average fitness values the adaptive methods seem to be better
than randomly chosen static parameter sets on both problems and even better
than the empirically chosen parameter sets on the symbolic-regression task.

Kolmogorov-Smirnov tests show that our methods seem to be better than the
randomly chosen parameter sets. As the distribution functions in both bench-
marks chosen are not continuous the tests have to be taken with care because
Kolmogorov-Smirnov tends to accept hypotheses for too long.

IDP seems to be the best of the three methods for adapting probabilities, at
least for the benchmarks used. The reason for the differences might be explained
as follows.

– PDP uses the same probabilities for all individuals. Those probabilities are
based on all fitness improvements. Most of the successful mutations improve
only the fitness of an individual relative to its parent but do not result in
a new best fitness for the hole population. So the adaption might lead to
a parameter set useful for improving fitness of average individuals without
improving the fitness of the population.

– FBDP chooses probabilities based on the fitness of the parent. Therefore
mutation of individuals with a good fitness does not interfere with mutation
of those individuals with a worse fitness.
The test results in Tables 2 and 3 show that the performance of FBDP
decreases for large GP-subgraphs. The reason for this might be the following:
On small GP-subgraphs individuals with a similar fitness tend to have a
similar genotype (e.g. graph). As most operators can only be applied to
certain positions in a graph it is quite possible that the mutation performed
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is quite similar to those successful operations responsible for choosing this
operator thus resulting in a fitness improvement. On bigger GP-subgraphs
the chance to do a mutation completely unrelated to those responsible for
choosing the probabilities grows, making a fitness improvement less probable.

– With IDP every individual has its own history of successful and unsuccessful
mutation attempts. If an operator does not work for a certain individual it
will not be used with it that much for later mutations. Other individuals,
which might benefit from this operator, are not affected by this restriction.

6 Conclusion

In this contribution we have successfully applied new methods of parameter
adaption to GP. In further studies we have to increase the number of runs to make
the results statistically more significant, we have to validate the results using
other problems and find methods to adapt other parameters such as population
or GP-subgraph size.
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