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Abstract. In recent years different genetic programming (GP) struc-
tures have emerged. Today, the basic forms of representation for genetic
programs are tree, linear and graph structures. In this contribution we
introduce a new kind of GP structure which we call Linear-tree. We de-
scribe the linear-tree-structure, as well as crossover and mutation for this
new GP structure in detail. We compare linear-tree programs with linear
and tree programs by analyzing their structure and results on different
test problems.

1 Introduction of Linear-Tree GP

The representations of programs used in Genetic Programming can be clas-
sified by their underlying structure into three major groups: (1) tree-based
[Koz92,Koz94], (2) linear [Nor94,BNKF98], and (3) graph-based [TV96] rep-
resentations.

This paper introduces a new representation for GP programs. This new repre-
sentation, named linear-tree, has been developed with the goal to give a program
the flexibility to choose different execution paths for different inputs. For tree
or linear based programs the interpreter usually executes the same nodes (func-
tions) for each input. However, a program may contain many decisions and each
decision may call another part of the program code. So the program flow of the
linear-tree-program is more natural than linear or tree GP-programs, similar to
the program flow of hand written programs.

In linear-tree GP each program P is represented as a tree. Each node in the
tree has two parts, a linear program and a branching node (see Figure 1). The
linear program will be executed when the node is reached during the interpreta-
tion of the program. After the linear program of a node is executed, a child node
is selected according to the branching function of this node. If the node has only
one child, this child will be executed. If the node has no child the execution of
the program stops. During the interpretation only the nodes of one path through
the tree, from the root node to a leaf will be executed.

The implementation of linear GP in our system represents a linear program
as a variable length list of C instructions that operate on (indexed) variables or
constants (see [BDKB98]). In linear GP all operations, e.g. a = b + 1.2, implicitly
include an assignment of a variable. After a program has been executed its output
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program node

branching node

possible program flow

Structure of a linear-tree program

Fig. 1. Individual structure of a linear-tree representation.

value(s) are stored in designated variables. The branching function is also a C
instruction that operates on the same variables as the linear program, but this
function only reads these variables. Table 1 contains a collection of all branching
functions. Figure 2 shows an example of a short linear program and a branching
function for one node in a linear-tree.

R0= R1+2 R1=R0*R0 R2=R1%9 R0=R1-R2

if(R0<0) then
  edge 0

 edge 1
else

program node

Structure of a linear-tree node

edge 0

edge 1

branching node

edge to a child

Fig. 2. The structure of a node in a linear-tree GP program (top) and an example
node (bottom).

1.1 Recombination of Linear-Tree Programs

A crossover operation combines the genetic material of two parent programs by
swapping certain program parts. The crossover for a linear-tree program can be
realized in two ways. The first possibility is to perform the crossover like it is done
in tree-based GP by exchanging subtrees (see [Ang97]). Figure 3 illustrates this
tree-based recombination method. In each parent individual the crossover oper-
ator chooses a node randomly and exchanges the two corresponding subtrees.
In our system, the crossover points are directed to inner nodes with a higher
probability than to terminal nodes. We choose an inner node with a probability
of 80 % and a terminal node with 20 % of the crossover operation. This values
are also taken for the tree-based crossover in our tests.
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Table 1. All the branching operators used in the runs described here.

branching operator description of the operator

result < 0 If the result register is less than zero the left child is choosen
else the right child.

result > 0 If the result register is greater than zero the left child is choosen
else the right child.

result == 0 If the result register is equal zero the left child is choosen else
the right child.

register x < result If the result register is less than register x the left child is choosen
else the right child.

register x > result If the result register is greater than register x the left child else
the right child.

register x == result If the result register is equal register x the left child is choosen
else the right child.

The second possibility is to perform linear GP crossover. Figure 4 illustrates
the linear recombination method. A segment of random position and length is
selected in each of the two parents for exchange. If one of the children exceeds
the maximum length, crossover with equally sized segments will be performed.

For linear-tree programs we use both methods but only one at a time. The
following algorithm for the recombination of linear-tree programs is applied for
recombination:

procedure crossover ( ind1, ind2 )
1 p1 = a crossover point of ind1 ;
2 p2 = a crossover point of ind1 ;
3 randProb = random value between 0 and 1.;
4 if (randProb < probxover)
5 depth1 = depth of ind1 after potential crossover;
6 depth2 = depth of ind2 after potential crossover;
7 if (depth1 < depthMax and depth2 < depthMax)
8 perform a tree-based crossover with the given crossover points.;
9 else
10 perform linear crossover between the nodes p1 and p2;
11 endif
12 else
13 perform linear crossover between the nodes p1 and p2;
14 endif
end

In our tests the parameter probxover, which defines the probability whether
the tree-based or linear crossover method is used, was set to the 50 %. We also
tested the crossover operation with a probability of 10 % and 90 % (the results
see Section 3.3).



Linear-Tree GP and Its Comparison with Other GP Structures 305

Child 2Child 1

Parent 1 Parent 2

Tree-crossover

Crossover methodes for linear-tree programs

Fig. 3. Crossover-operation of two
linear-tree programs using the tree-
based crossover method. This crossover
method exchanges two subtrees of the
programs.
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Fig. 4. Crossover-operation of two
linear-tree programs using the linear-
based crossover method. This crossover
method is a two-point crossover, which
exchanges a part of the linear-code be-
tween the nodes.

1.2 Mutation

The difference between crossover and mutation is that mutation operates on a
single program only. After the recombination of the population a program is
chosen with a given probability for mutation. The random mutation operator
selects a subset of nodes randomly and changes either a node of a linear pro-
gram, a branching function, or the number of outgoing edges. This version of the
mutation operator does not generate new linear sequences. The altered program
is then placed back into the population.

2 Test Problems

As test problems we use four different symbolic regression problems, the parity
problem, and a classification problem to determine the effect of the linear-tree
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structure compared to other representation forms in GP. In Section 3 the results
are presented. They show that the new representation performs better than both
the linear and tree representations in most test cases.

2.1 Symbolic Regression

We use four different regression problems to test the linear-tree structure. In
general, symbolic regression problems deal with the approximation of a set of
n numeric input-output relations (x, y) by a symbolic function. The programs
should produce an output as close as possible to y if the input is x. The fitness
of an individual program p is defined here as the sum of the errors between all
given outputs y (here one of the given functions f(x)) and the predicted outputs
p(x):

fitness(p) =
n∑

i=1

|p(xi) − f(xi)|.

The following functions are used as test problems:

– Sine with an input range [0, 2π] and 20 fitness cases, chosen uniformly and
including both endpoints.

– Sine with an input range [0, 4π] and 40 fitness cases, chosen uniformly and
including both endpoints.

– Rastrigin, f(x) = x2 − 5 ∗ cos(2π ∗ x), with an input range [−4, 4] and 40
fitness cases.

– f(x) = 1
2x ∗ sin(2x) with an input range [−4, 4] and 40 fitness cases, the

fitness case f(0) is excluded from the sets of fitness cases.

All variants of GP have been configured with population size of 500 indi-
viduals, a maximum crossover and mutation rate of 100 %, and without adf’s.
This means that in one generation each individual is selected for a crossover and
after the crossover each individual will be mutated by the mutation operator.
All variants use the arithmetic operations (+,−, ∗, /).

2.2 Non-regression Problems

For this paper we use the following two non-regression test problems:

– The 4-parity problem, a Boolean problem.
– The chain problem, a classification problem[BB01] Figure 5 visualises the

two classes of the problem.

The task of the GP program for both problems is to find a relation that
connects a given input x to the correct class, here c ∈ 0, 1, so the fitness cases
are also an input-output tuple (x, c). The quality of the programs depends on
its ability to find a generalised mapping from the input-output pairs (x, c) of
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the n fitness cases. The parity problem is a boolean problem though it can also
interpreted as a classification problem.

All variants of GP have been configured with population size of 500 individ-
uals, a maximum crossover and mutation rate of 100 %, and without adf’s. For
each problem we use different sets of operators; for the chain problem we use
arithmetic operations (+,−, ∗, /, sin, cos), for the 4-parity problem we use the
following Boolean functions (not, or, and, nand, nor).

class one
class two
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Fig. 5. This figure shows the both links of the chain, which represents the two
classes of the problem [BB01]

3 Experimental Results

In this Section we describe the results of using the different GP structures on
the six test problems from Section 2. All plots show the average fitness of the
best individual. The average is calculated over 30 runs with the same parameter
set. In all runs we used tournament selection with a tournament size of two and
a population size of 500.

3.1 Difference between the Representations

Figure 6 and 7 show the development of the fitness values using the different
structures for the sine problem with one and two periods respectively. Both
plots exhibit the same ranking of the different GP structures. In both test cases
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the linear-structure is superior to the tree-structure and the new linear-tree-
structure is superior to both structures. In Figure 7 we can see that the linear-
tree-structure has not reached a stagnation phase even though the tree-structure
has virtually reached a stagnation. The plot of Figure 8 shows the trend of the
fitness values for the function 1

2x
∗ sin(2x). Even for this function we get the

same ranking for the three structures. The fitness differences are not as high as
for the second sine problem, but this function can be approximated more easily
by a polynomial than the sine problem with two periods.

The Rastrigin function is the first and only of our test problems that breaks
the established ranking (see Figure 9). Here, a tree-structure is superior to the
other program structures, but even here the linear-tree-structure shows better
performance than the linear-structure.
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Fig. 6. The curves show the average fit-
ness value of the sine function form 0
to 2π. Each curve is an average over 30
runs. Zero is the best fitness for a indi-
vidual.
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Fig. 7. The curves show the average fit-
ness value of the sine function form 0
to 4π. Each curve is an average over 30
runs. Zero is the best fitness for a indi-
vidual.

For the non-regression problems we obtain results similar to the regression
problems. For both problems GP evolves individuals with linear-tree-structure
which have better fitness values than with the other structures. Figure 10 shows
the evolution of fitness values for the parity-4 problem. Only a few of the runs
with the linear-tree-structure do not reach the optimal solution. The plot in
Figure 11 shows the results for the chain problem (of Figure 5). For this problem
the linear-tree-structure reaches the best results, but for the second time the
tree-structure evolves individuals with a better fitness than the linear-structure.

3.2 Analysis of the Linear-Tree-Structure

After analyzing the individuals with the linear-tree-structure for the parity prob-
lem we saw that most programs did not make use of branching and executing
different code for different inputs. Some individuals have copies of the same
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Fig. 9. The curves show the average
fitness value of the Rastrigin function.
Each curve is an average over 30 runs.

code at each node on the same level in the tree, so that each path through the
linear-tree interprets the same code. Other individuals set the parameters for
the branching functions in such a way that the result is always the same, and so
the path through the individual is always identical. Whether the behavior of the
structure during the evolution is a bloat phenomena [MM95,LP98] or not will
be examined in future work.

Although there is no difference between a linear individual and a linear-tree
individual in this case, evolution creates better individuals with the linear-tree-
structure for this problem than with the other structures. The answer to this
riddle seems to be the existence of building blocks [Hol75]. The structure of
the linear-tree creates natural blocks of code, the nodes of a tree. The chance,
then, for a good block or a sequence of blocks to survive a crossover is higher
than in other structures. During around 50 % of crossover only subtrees will be
exchanged, so building blocks can be passed on to other individuals.

Program analysis for the other problems reveal that in these problems indi-
viduals use the ability to branch through the code. Obviously, for some problems
there is no need to exploit this ability and evolution circumvents the branching
ability.

3.3 The Analysis of the Crossover-Operator

The crossover operator for linear-tree programs has two modes, in which genetic
material can be exchanged (see Section 1.1). The first mode is the exchange
of subtrees and the second mode is the exchange of linear sequences of nodes.
During our tests we have set the probability to choose one of the modes to 50
% (parameter probxover). This means that 50 % of the crossover operations are
linear crossover operations. The question is whether this parameter has a serious
effect on the crossover performance and on evolution. We tested this question
with values of 10 % and 90 % for probxover. We also tried changing the crossover
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operation so that line 10 is not executed in the crossover procedure if the tree-
based crossover was not allowed. This means if no tree-based crossover can take
place no crossover will be performed.

For our first test to analyze the crossover-operator, we use the standard set-
ting of our system, and we find no significant difference and this parameter has no
real effect to the crossover operation. Because of our standard parameter setting
after each crossover a mutation is performed. Therefore we performed a test se-
ries where mutation after the crossover operation was turned off. The results are
shown in Figure 12. The test demonstrates that the gain of linear-based crossover
is greater than that of the tree-based crossover for the linear-tree-programs. This
plot shows also the result for the evolution without crossover, this curve shows
how important mutation is for the evolution. Tree-based crossover makes big
changes in the individual code compared to linear crossover and mutation. Af-
ter a few hundred generations runs with a higher probability for linear-based
crossover or mutation yield better results than runs with a high probability
for tree based crossover. The linear crossover has the ability to make changes
near the root node of the tree easily. Standard tree-based GP finds this very
difficult[MH99] so this could also be a reason why linear crossover leads to bet-
ter results.

4 Summary and Outlook

We tested the performance of linear-tree against other structures of GP pro-
grams. In all test cases the linear-tree-structure performed better than the linear-
structure, and only in one test case the linear-tree-structure did perform worse
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Fig. 12. Average fitness value of the sine function form 0 to 2π for the crossover
operator with different values for the value probxover. For these results we
use crossover without mutation. The curve ‘mutation‘ is the result without a
crossover operator. Each curve is an average over 30 runs.

than the tree-structure. From these tests we can say that the new structure has
shown its advantage.

We have observed that the structure of a GP individual makes a significant
difference in the evolutionary process and the expressiveness of code. Good per-
formance of a structure may be caused by the effect of building blocks [Hol75],
which are the nodes in our linear-tree-structure. In order to clarify whether the
good performance of the linear-tree-structure is a general phenomenon for genetic
programming, more experiments have to be run on a variety of test problems,
but the results achieved so far are strong evidence that the new structure may
lead to better result for a range of problems. In future work we plan to extend
tests to other problems and check different branching methods. We also have to
examine in detail why the new structure leads to better results.
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