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Abstract. Research in the field of examination timetabling has developed in 
two directions. The first looks at applying various methodologies to induce 
examination timetables.  The second takes an indirect approach to the problem 
and examines the generation of heuristics or combinations of heuristics, i.e. 
hyper-heuristics, to be used in the construction of examination timetables.  The 
study presented in this paper focuses on the latter area. This paper presents a 
first attempt at using genetic programming for the evolution of hyper-heuristics 
for the uncapacitated examination timetabling problem.   The system has been 
tested on 9 benchmark examination timetabling problems.  Clash-free 
timetables were found for all 9 nine problems.  Furthermore, the performance of 
the genetic programming system is comparable to, and in a number of cases has 
produced better quality timetables, than other search algorithms used to evolve 
hyper-heuristics for this set of problems.  
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1   Introduction 

Research applying evolutionary algorithms to the domain of examination timetabling 
has generally focused on using an evolutionary algorithm to evolve a timetable that 
meets the hard constraints and minimizes the soft constraints of a specific 
examination timetabling problem. Ross et al. [15] and Burke et al. [5] suggest that 
evolutionary algorithms would be more effective at inducing hyper-heuristics that can 
be used to construct the timetable rather than evolving the actual timetable.  The main 
contribution of this paper is an evaluation of genetic programming as a means of 
evolving hyper-heuristics for the uncapacitated examination timetabling problem 
(ETP).  This study takes a similar approach to that employed by Cowling et al. [10], 
in that the hyper-heuristics evolved by the GP system are in the form of a sequence of 
low-level heuristics.  In the study presented in this paper each heuristic sequence is 
composed of one or more of the following low-level heuristics: largest degree, largest 
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weighted degree, largest enrollment, saturation degree and highest cost. During the 
timetable construction process, each heuristic is used to schedule n examinations, 
where n is the total number of examinations divided by the number of heuristics in the 
sequence.  The GP system was used to generate hyper-heuristics for 9 benchmark 
problems.  The system produced feasible timetables for all 9 problems. Furthermore, 
the quality of the timetables produced by the system was comparative to, and in a 
number cases better than, those induced by other hyper-heuristic systems. 

The following section provides an overview of the examination timetabling 
problem and previous work investigating the generation of hyper-heuristics for the 
uncapacitated examination timetabling problem.  Section 3 proposes a GP system for 
the induction of hyper-heuristics for the uncapacitated ETP.  The overall methodology 
employed in the study is presented in section 4 and the performance of the GP-based 
hyper-heuristic system on the 9 benchmarks is discussed in section 5.  Section 6 
summarizes the findings of the study and describes future extensions of the project. 

2   The Uncapacitated Examination Timetabling Problem (ETP) 
and Hyper-Heuristics 

This section provides an overview of the uncapacitated examination timetabling 
problem and previous work investigating the generation of hyper-heuristics for this 
domain. 

2.1   The Uncapacitated Examination Timetabling Problem (ETP)  

The ETP requires n examinations to be scheduled in m timeslots so as to satisfy the 
hard constraints of the problem and minimize the soft constraints violated [14]. The 
hard constraints of a problem must be met in order for the timetable to be feasible.  
The following are examples of hard constraints:  
 

• There must be no clashes, i.e. two students cannot be scheduled to write two or 
more examinations during the same period.  

• Room capacities for each sitting must not be exceeded.  
 

Soft constraints are often contradictory and we aim to minimize the number of soft 
constraints violated.  For example: 
 

• Examinations are well-spaced for each group of students. 
• Scheduling examinations with large enrollments earlier in the examination 

period. 
 

The hard and soft constraints usually differ for each institution.  The uncapacitated 
version of the problem does not require room capacities to be catered for.  The 
following section describes previous studies researching the induction of hyper-
heuristics for the uncapacitated ETP.  
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2.2   Hyper-Heuristics and the ETP 

Hyper-heuristics are heuristics that are used to choose one or more low-level 
heuristics for a particular problem ([5], [15] and [16]). These selections do not rely on 
domain knowledge and hence provide a more general solution to the ETP. The first 
attempt at using evolutionary algorithms to evolve instructions for constructing an 
examination timetable rather than inducing the actual timetable was the study 
conducted by Terashima-Marin et al. [17] to generate solutions to the capacitated 
ETP. Each element of the population is a combination of one of three timetable 
construction strategies, condition/s indicating when to change strategy as well as 
heuristics for deciding which examination to allocate next and which timeslot to 
assign an examination to. This section provides an overview of previous work 
investigating the generation of hyper-heuristics for the uncapacitated examination 
timetabling problem. The studies described are those that are most relevant to that 
presented in the paper, i.e. the methodologies employed generate combinations of 
low-level heuristics and have been tested on the same set of benchmarks. 

Asmuni et al. [2] have used a fuzzy expert system to induce hyper-heuristics for 
the uncapacitated ETP. The hyper-heuristic is in the form of a fuzzy weight 
combining two of the following low-level heuristics: largest degree, largest 
enrollment and largest saturation degree. An exhaustive search is used to fine tune the 
fuzzy terms. The examinations are sorted in descending order according to their fuzzy 
weight and scheduled in this order. Each examination is allocated to the minimum 
penalty slot. In the case of clashes examinations are de-allocated and re-scheduled so 
as to remove the clash.  

Qu et al. [13] use a variable neighborhood search (VNS) to search the space of 
hyper-heuristics for the uncapacitated ETP.  The hyper-heuristic output by the VNS is 
used to construct the timetable.  Each hyper-heuristic is a sequence of two or more 
low-level heuristics (color degree, largest degree, largest enrollment, largest weighted 
degree, saturation degree and random ordering). Each low-level heuristic in the 
sequence is used to decide which examination should be scheduled next. A heuristic 
maybe used to schedule one or more examinations. In each case the examination is 
allocated to the minimum penalty slot. During the search process the VNS uses one of 
two neighborhood sets, namely, VNS1 and VNS2.  VNS1 randomly changes 2 to 5 
heuristics in a sequence, whereas VNS2 randomly changes 2 to 5 heuristics in a 
subsequence. 

Kendall et al. [11] and Burke et al. [7] have implemented Tabu searches to 
generate hyper-heuristics for the uncapacitated ETP. In the study conducted by 
Kendall et al. the process begins by creating an initial solution by allocating 
examinations according to the largest degree or saturation degree heuristics.  This 
initial solution may not be complete in that all examinations may not be scheduled. 
The neighborhood of the initial solution is than examined so as to improve the 
timetable.  The Tabu search is used to determine which low-level heuristic to apply 
next.  One of four types of low-level heuristics can be applied, namely, heuristics to 
select and schedule an exam; heuristics to move an exam; a heuristic to swap exams 
and a heuristic to remove an exam.  The Tabu inactive heuristic that produces the best 
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improvement is applied next.  The refinement process continues until either a time 
limit has been exceeded or there are no more improvements. 

The Tabu search employed by Burke et al. [7] is used to search the hyper-heuristic 
search space in order to identify a heuristic sequence that produces the best quality 
timetable. Each list is comprised of two or more of the following low level heuristics: 
least saturation degree, largest colour degree, largest degree, largest weighted degree, 
largest enrollment and random ordering.  Each heuristic in the list is used to schedule 
two examinations.  The initial heuristic list for all experiments is composed of only 
the saturation degree heuristic.    

The following section presents a GP system for the generation of hyper-heuristics.  
Section 5 compares the performance of the GP-based hyper-heuristic system and the 
hyper-heuristic systems described in this section on a set of 9 benchmark problems.  

3   Evolving Hyper-Heuristics 

This section describes the GP system that has been implemented to evolve hyper-
heuristics for the uncapacitated ETP.  Genetic programming systems generally 
produce a program which when executed provides a solution to the problem at hand 
([3] and [12]).  In this study the program is a sequence of low-level heuristics which 
specify the order in which examinations should be scheduled when constructing an 
examination timetable.  The GP system uses the generational control model and a run 
is terminated once the maximum number of generations has been reached. The hyper-
heuristic that has produced the timetable with lowest hard constraint and soft 
constraint costs during the run is returned as the solution.  

3.1   Representation and Initial Population Generation 

Each element of the population is a string of variable length composed of characters 
representing one of the following low-level heuristics: 
 

• Largest degree (l) – The examination with the largest number of conflicts is 
scheduled first. 

• Largest enrollment (e) – The examination with the largest student enrollment is 
scheduled first. 

• Largest weighted degree (w) – The examination with the largest number of 
students involved in clashes is scheduled first. 

• Saturation degree (s) – The examination with the least number of feasible (i.e. 
will not result in a clash) timeslot options is scheduled first. 

• Highest cost (h) - The examination with the highest proximity cost is scheduled 
first.  The pseudo-code of the function for calculating the proximity cost is 
listed in Figure 1 and the weight function used in calculating the proximity cost 
is defined in Figure 2.   

 

An example of a hyper-heuristic is hsseel.  The hyper-heuristic strings are randomly 
created during initial population generation.  A limit is set on the maximum length of 
each hyper-heuristic. 
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function calc_cost( exam e, period p, total number of students n)
begin 

cost = 0 
for each exam ej other than e

begin 
if(ej  has students in common with e and ej has already been scheduled) 
begin 

dist = the absolute value of the distance between p and the period ej
          has been allocated to 
ecost = weight(dist) * the number of students common to both exams 
cost = cost + ecost 

endif 
endfor 

return cost/n
end 

 

Fig. 1. Pseudo-code for the proximity cost  

 
 
 
 
 
 
 
 
 
 

Figure 2. Weight function 
 

 

3.2   Evaluation and Selection 

Each element of the population is evaluated by using the hyper-heuristic to construct a 
timetable.  Each low-level heuristic in the hyper-heuristic is used to schedule n 
examinations, where n is the total number of examinations divided by the length of 
the hyper-heuristic. Each examination is allocated to the minimum penalty slot, i.e. 
the slot that does not cause a clash and results in the lowest proximity cost.  The raw 
fitness of a hyper-heuristic is calculated by applying equation (1) to the timetable 
constructed using the hyper-heuristic: 

(number_of_clashes+1)*proximity_cost (1) 

The proximity cost is a measure of how well the examinations are spaced and is 
calculated using equation (2) in section 4.  Tournament selection is used to choose the 
parents of the next generation. 

function weight (dist d) 
begin 

case of d 
1: return 16 
2: return 8 
3: return 4 
4: return 2 
5: return 1 
default : return 0 

endcase 
end 

Fig. 2. Weight function 
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3.3   Genetic Operators 

The mutation and crossover operators are used to create the next generation. A limit is 
not set on the length of the offspring produced by the genetic operators.  The mutation 
operator changes a randomly chosen heuristic.  This process is illustrated in Figure 3. 

 
 
 
 
 
 
 

Fig. 3. The mutation process 

The crossover operator is depicted in Figure 4.   

1. Randomly choose crossover points in both the parents 

P1: lwesh P2: sshhle

2. Swap the fragments at the crossover points to create offspring 

 O1: lwshhle O2: sesh 

3.   Return the fitter of the two offspring 

 

Fig. 4. The crossover process 

The crossover operator randomly selects crossover points in each of the chosen 
parents. Two offspring are created by swapping the fragments at the crossover points.  
The fitter of the two offspring is returned as the result of the operation. 

4   Experimental Setup 

The GP-based hyper-heuristic system was tested on 9 of the Carter benchmarks [9].  
These benchmarks are data sets for real-world exam timetabling problems from 
various universities and high schools. The characteristics of the data sets used are 
listed in Table 1.  The density of the conflict matrix is to some extent an indication of 
the problem difficulty and is calculated to be the ratio of the number of examinations 
involved in clashes and the total number of exams. 

The hard constraint for this problem is that no student must be scheduled to write 
two or more examinations at the same time, i.e. there must be no clashes.  The soft 
 

 

1. Randomly choose a heuristic to change in the parent hssess 
 
2. Replace the chosen heuristic with a randomly selected heuristic (from h, s, l, e, w) 
 
 wssess  
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Table 1. Carter benchmarks 

Data Set Institution Periods No. of 
Exams 

No.  of 
Students 

Density 
of 

Conflict 
Matrix 

ear-f-83 I Earl Haig Collegiate  
Institute, Toronto 

24 190 1125 0.27 

hec-s-92 I Ecole des Hautes Etudes 
Commerciales, Montreal 

18 81 2823 0.42 

kfu-s-93 King Fahd University of 
Petroleum and Minerals, 
Dharan 

20 461 5349 0.06 

lse-f-91 London School of 
Economics 

18 381 2726 0.06 

rye-s-93 Ryerson University,  
Toronto 

23 486 11483 0.08 

sta-f-83 I St Andrew’s Junior High 
School, Toronto 

13 139 611 0.14 

tre-s-92  Trent University,  
Peterborough, Ontario 

23 261 4360 0.18 

ute-s-92 Faculty of Engineering,  
University of Toronto 

10 184 2749 0.08 

yor-f-83 I York Mills Collegiate  
Institute, Toronto 

21 181 941 0.29 

 
constraint requires the examinations to be well-spaced. The soft constraint cost is 
referred to as the proximity cost and is calculated using the following equation: 

S

Neew ijji∑ − |)(|
 (2) 

where: 
 

1) |ei – ej| is the distance between the periods of each pair of examinations 
(ei,ej) with common students. 

2) Nij  is the number of students common to both examinations. 
3) S is the total number of students  
4) w(1) = 16, w(2) = 8, w(3) = 4, w(4) = 2 and w(5) = 1, i.e. the smaller the 

distance between periods the higher the weight allocated.   
 

Note that this equation calculates the proximity cost of a complete timetable whereas 
the pseudo-code in Figure 1 calculates the cost of scheduling a particular examination 
in a partially constructed timetable, given the examinations that have already been 
allocated to a timeslot at that point.  For problems with different hard and soft 
constraints the function for calculating the raw fitness will be different from that 
defined in section 3.2.   

The GP parameter values are listed in Table 2. These values have been obtained 
empirically by performing test runs for each of the 9 data sets.  
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Table 2. GP Parameters 

Population size 500 
No. of generations 50 
Maximum initial length 5 
Tournament size 10 
Mutation rate 40% 
Crossover rate 60% 

 
The system was implemented in Java using JDK1.4.2 and simulations were run on 

a Windows XP machine with an Intel Pentium M with 512 MB of RAM. 

5   Results and Discussion 

Due to the randomness associated with GP and hence the possibility of selection 
noise1 ten runs were performed for each data set.  The duration of a run ranges from 
about 15 minutes for the smaller data sets to about 4 hours for the larger data sets.  
The system evolved feasible timetables for all 9 problems.  Table 3 lists the average 
proximity costs and the best individual and its proximity cost for each of the data sets.  
The timetables constructed for each data set using the best hyper-heuristic obtained 
can be found at http://saturn.cs.unp.ac.za/~nelishiap/et/hyper_heuristics.htm.   

The saturation degree (s) and the highest cost (h) heuristics occur most frequently 
in the best hyper-heuristics found for each of the data sets.  Figure 5 illustrates the 
distribution of calls to low-level heuristics in the best hyper-heuristic found for all 
data sets. Note that the saturation degree, highest cost and largest degree heuristics are 
invoked in the best hyper-heuristics for almost all the data sets with the highest cost 
and saturation degree occurring most frequently.  The saturation degree heuristic 
appears to speed up the construction of clash-free timetables while the highest cost 
heuristic reduces the soft constraint cost. 

We compare the performance of the GP system to other methodologies applied to 
generating hyper-heuristics for the uncapacitated ETP.  Table 4 lists the performance 
of the GP system and other methods employed to generate hyper-heuristics (details of 
 

Table 3. Performance of the GP system on the Carter benchmarks 

Data Set Average 
Proximity Cost 

Best Proximity 
Cost 

Best Hyper-Heuristic 

ear-f-83 I 36.94 36.74 hsshsssshslssh 
hec-s-92 I 11.64 11.55 hhlssll 
kfu-s-93 14.25 14.22 hhslsssssll 
lse-f-91 10.97 10.90 hsshshshshhhshhshhshhhllhhhww 
rye-s-93  9.39 9.35 hssshshshees 
sta-f-83 I 158.35 158.22 hsehshehshhhhshhshwhswl 
tre-s-92 8.51 8.48 hssshshshees 
ute-s-92 27.61 26.65 hhssshsslessshssslshshsssseslllsswssh 
yor-f-83 I 41.82 41.57 ssshh 

                                                           
1 Please note that the reason for performing more than one run is not to show statistical 

significance. 
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Distribution of Calls to Low-Level Heuristics in the 
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Fig. 5. Distribution of calls to low-level heuristics 

these systems are provided in section 2.2) for the same set of benchmarks.  The best 
soft constraint cost obtained for each of the data sets is highlighted.  These 
methodologies are: 

 

• FES – The fuzzy expert system implemented by Asmuni et al. [2]. 
• VNS – The variable neighborhood search implemented by Qu et al. [13]. 
• TS1 – The Tabu search applied by Kendall et al. [11].  In this study each 

simulation was run for 4 hours. 
• TS2 – The Tabu search implemented by Burke et al. [7].     

Note that the methodologies that the GP system is being compared to employ very 
different search mechanisms from that used by the system and a direct comparison of 
the parameters used is therefore not feasible. 

It is evident from Table 4 that the performance of genetic programming is 
comparable to the other search methods used to generate hyper-heuristics. The quality  
 

Table 4. The performance of the GP system and other methodologies used to induce hyper-
heuristics for the uncapacitated ETP 

Data Set GP FES VNS TS1 TS2 
ear-f-83 I 36.74 37.02 37.29 40.18 38.19 
hec-s-92 I 11.55 11.78 12.23 11.86 12.72 
kfu-s-93 14.22 15.81 15.11 15.84 15.76 
lse-f-91 10.90 12.09 12.71 - 13.15 
rye-s-93 9.35 10.35 - - - 
sta-f-83 I 158.22 160.42 139.3 157.38 141.08 
tre-s-92 8.48 8.67 8.67 8.39 8.85 
ute-s-92 26.65 27.78 29.68 27.60 31.65 
yor-f-83 I 41.57 40.66 43.0 - 40.13 
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of the timetables constructed using the hyper-heuristics induced by the GP system is 
within the range of those produced by other hyper-heuristic systems.  Furthermore, 
the GP-based hyper-heuristic system has outperformed the other hyper-heuristic 
systems on 6 of the benchmarks.  

The main aim of the study presented in this paper is to evaluate GP as a means of 
generating hyper-heuristics for the uncapaciated ETP. Hence, emphasis is on 
producing a general method rather than a method that produces the best results on the 
the set of benchmarks.  However, for completeness we compare the performance of 
the GP-based hyper-heuristic system to that of methodologies that have been cited in 
the literature as producing the best results for these benchmarks. Table 5 compares 
the performance of the GP system to the following studies: 

• The sequential construction and backtracking methodologies employed by 
Caramia et al. [8]. 

• The hybrid case-based reasoning system implemented by Yang et al. [18]. 
• The Ahuja-Orlin algorithm employed by Abdullah et al. [1]. 
• The Flex-Deluge algorithm implemented by Burke et al. [6]. 

Note that the system presented in this paper only performs the construction phase for 
timetable induction while the other methods listed in Table 5 also include an 
improvement phase aimed at reducing the proximity cost of feasible timetables 
produced during the construction phase. Despite this the results produced by the GP 
system are still within range of the best results produced for the data sets. 

Table 5. A comparison of the results obtained by the GP system and the best results cited for 
the benchmarks 

Problem GP Caramia 
et al., 2001 

Yang et al. 
2004 

Abdullah 
et  al., 2004 

Burke 
et, al. 
2006 

Difference 

ear-f-83 I 36.74 29.3 33.71 34.84 32.76 7.44 
hec-s-92 I 11.55 9.2 10.83 10.28 10.15 2.35 
kfu-s-93 14.22 13.8 13.82 13.46 12.96 1.26 
lse-f-91 10.90 9.6 10.35 10.24 9.83 1.30 
rye-s-93 9.35 6.8 8.53 8.7 - 2.55 
sta-f-83 I 158.22 158.2 151.52 159.28 157.03 6.7 
tre-s-92 8.48 9.4 7.92 8.13 7.75 0.73 
ute-s-92 26.65 24.4 25.39 24.21 24.82 2.44 
yor-f-83 I 41.57 36.2 36.53 36.11 34.84 6.73 

6   Conclusion and Future Work 

The study presented in this paper is a first attempt at evaluating genetic programming 
for the purpose of inducing hyper-heuristics for the uncapacitated ETP. A GP system 
was implemented to induce hyper-heuristics for this problem and was tested on 9 of 
the Carter benchmarks.  This study has revealed the potential of genetic programming 
as a means of evolving hyper-heuristics for the uncapacitated ETP.  The GP system 
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generated hyper-heuristics that produced feasible examination timetables with soft 
constraint costs within the range of other search methods employed for this purpose.  
Furthermore, the GP-based hyper-heuristic system outperformed the other hyper-
heuristic systems on 6 of the 9 problems.   

One of the drawbacks of this system is the runtime for larger data sets.  For 
example, the runtime for the kfu-s-93 set is approximately three and a half hours and 
just over four hours for the rye-s-93 data set.  Future work will address improving the 
runtime of the overall system and testing it on additional benchmarks and problems 
with different hard and soft constraints.  In this study a limit was not set on the size of 
the offspring produced and this did not appear to result in bloating. However, a closer 
look needs to be taken into the effect of not using such a limit and the overall effect of 
introns and bloat in this domain.  Future extensions of this study will also investigate 
evolving programs that apply each heuristic more than once, e.g. h4s2, will apply the 
highest cost heuristic four times and the saturation degree heuristic twice. 
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