
J. Neves, M. Santos, and J. Machado (Eds.): EPIA 2007, LNAI 4874, pp. 223–234, 2007.
© Springer-Verlag Berlin Heidelberg 2007

A Genetic Programming Approach to the
Generation of Hyper-Heuristics for the

Uncapacitated Examination Timetabling Problem

Nelishia Pillay1 and Wolfgang Banzhaf2

1 School of Computer Science, Univesity of KwaZulu-Natal, Pietermaritzburg Campus,
Pietermaritzburg, KwaZulu-Natal, South Africa

pillayn32@ukzn.ac.za
2 Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL

A1B 3X5, Canada
banzhaf@cs.mun.ca

Abstract. Research in the field of examination timetabling has developed in
two directions. The first looks at applying various methodologies to induce
examination timetables. The second takes an indirect approach to the problem
and examines the generation of heuristics or combinations of heuristics, i.e.
hyper-heuristics, to be used in the construction of examination timetables. The
study presented in this paper focuses on the latter area. This paper presents a
first attempt at using genetic programming for the evolution of hyper-heuristics
for the uncapacitated examination timetabling problem. The system has been
tested on 9 benchmark examination timetabling problems. Clash-free
timetables were found for all 9 nine problems. Furthermore, the performance of
the genetic programming system is comparable to, and in a number of cases has
produced better quality timetables, than other search algorithms used to evolve
hyper-heuristics for this set of problems.

Keywords: hyper-heuristics, genetic programming, examination timetabling.

1 Introduction

Research applying evolutionary algorithms to the domain of examination timetabling
has generally focused on using an evolutionary algorithm to evolve a timetable that
meets the hard constraints and minimizes the soft constraints of a specific
examination timetabling problem. Ross et al. [15] and Burke et al. [5] suggest that
evolutionary algorithms would be more effective at inducing hyper-heuristics that can
be used to construct the timetable rather than evolving the actual timetable. The main
contribution of this paper is an evaluation of genetic programming as a means of
evolving hyper-heuristics for the uncapacitated examination timetabling problem
(ETP). This study takes a similar approach to that employed by Cowling et al. [10],
in that the hyper-heuristics evolved by the GP system are in the form of a sequence of
low-level heuristics. In the study presented in this paper each heuristic sequence is
composed of one or more of the following low-level heuristics: largest degree, largest

224 N. Pillay and W. Banzhaf

weighted degree, largest enrollment, saturation degree and highest cost. During the
timetable construction process, each heuristic is used to schedule n examinations,
where n is the total number of examinations divided by the number of heuristics in the
sequence. The GP system was used to generate hyper-heuristics for 9 benchmark
problems. The system produced feasible timetables for all 9 problems. Furthermore,
the quality of the timetables produced by the system was comparative to, and in a
number cases better than, those induced by other hyper-heuristic systems.

The following section provides an overview of the examination timetabling
problem and previous work investigating the generation of hyper-heuristics for the
uncapacitated examination timetabling problem. Section 3 proposes a GP system for
the induction of hyper-heuristics for the uncapacitated ETP. The overall methodology
employed in the study is presented in section 4 and the performance of the GP-based
hyper-heuristic system on the 9 benchmarks is discussed in section 5. Section 6
summarizes the findings of the study and describes future extensions of the project.

2 The Uncapacitated Examination Timetabling Problem (ETP)
and Hyper-Heuristics

This section provides an overview of the uncapacitated examination timetabling
problem and previous work investigating the generation of hyper-heuristics for this
domain.

2.1 The Uncapacitated Examination Timetabling Problem (ETP)

The ETP requires n examinations to be scheduled in m timeslots so as to satisfy the
hard constraints of the problem and minimize the soft constraints violated [14]. The
hard constraints of a problem must be met in order for the timetable to be feasible.
The following are examples of hard constraints:

• There must be no clashes, i.e. two students cannot be scheduled to write two or
more examinations during the same period.

• Room capacities for each sitting must not be exceeded.

Soft constraints are often contradictory and we aim to minimize the number of soft
constraints violated. For example:

• Examinations are well-spaced for each group of students.
• Scheduling examinations with large enrollments earlier in the examination

period.

The hard and soft constraints usually differ for each institution. The uncapacitated
version of the problem does not require room capacities to be catered for. The
following section describes previous studies researching the induction of hyper-
heuristics for the uncapacitated ETP.

 A Genetic Programming Approach to the Generation of Hyper-heuristics 225

2.2 Hyper-Heuristics and the ETP

Hyper-heuristics are heuristics that are used to choose one or more low-level
heuristics for a particular problem ([5], [15] and [16]). These selections do not rely on
domain knowledge and hence provide a more general solution to the ETP. The first
attempt at using evolutionary algorithms to evolve instructions for constructing an
examination timetable rather than inducing the actual timetable was the study
conducted by Terashima-Marin et al. [17] to generate solutions to the capacitated
ETP. Each element of the population is a combination of one of three timetable
construction strategies, condition/s indicating when to change strategy as well as
heuristics for deciding which examination to allocate next and which timeslot to
assign an examination to. This section provides an overview of previous work
investigating the generation of hyper-heuristics for the uncapacitated examination
timetabling problem. The studies described are those that are most relevant to that
presented in the paper, i.e. the methodologies employed generate combinations of
low-level heuristics and have been tested on the same set of benchmarks.

Asmuni et al. [2] have used a fuzzy expert system to induce hyper-heuristics for
the uncapacitated ETP. The hyper-heuristic is in the form of a fuzzy weight
combining two of the following low-level heuristics: largest degree, largest
enrollment and largest saturation degree. An exhaustive search is used to fine tune the
fuzzy terms. The examinations are sorted in descending order according to their fuzzy
weight and scheduled in this order. Each examination is allocated to the minimum
penalty slot. In the case of clashes examinations are de-allocated and re-scheduled so
as to remove the clash.

Qu et al. [13] use a variable neighborhood search (VNS) to search the space of
hyper-heuristics for the uncapacitated ETP. The hyper-heuristic output by the VNS is
used to construct the timetable. Each hyper-heuristic is a sequence of two or more
low-level heuristics (color degree, largest degree, largest enrollment, largest weighted
degree, saturation degree and random ordering). Each low-level heuristic in the
sequence is used to decide which examination should be scheduled next. A heuristic
maybe used to schedule one or more examinations. In each case the examination is
allocated to the minimum penalty slot. During the search process the VNS uses one of
two neighborhood sets, namely, VNS1 and VNS2. VNS1 randomly changes 2 to 5
heuristics in a sequence, whereas VNS2 randomly changes 2 to 5 heuristics in a
subsequence.

Kendall et al. [11] and Burke et al. [7] have implemented Tabu searches to
generate hyper-heuristics for the uncapacitated ETP. In the study conducted by
Kendall et al. the process begins by creating an initial solution by allocating
examinations according to the largest degree or saturation degree heuristics. This
initial solution may not be complete in that all examinations may not be scheduled.
The neighborhood of the initial solution is than examined so as to improve the
timetable. The Tabu search is used to determine which low-level heuristic to apply
next. One of four types of low-level heuristics can be applied, namely, heuristics to
select and schedule an exam; heuristics to move an exam; a heuristic to swap exams
and a heuristic to remove an exam. The Tabu inactive heuristic that produces the best

226 N. Pillay and W. Banzhaf

improvement is applied next. The refinement process continues until either a time
limit has been exceeded or there are no more improvements.

The Tabu search employed by Burke et al. [7] is used to search the hyper-heuristic
search space in order to identify a heuristic sequence that produces the best quality
timetable. Each list is comprised of two or more of the following low level heuristics:
least saturation degree, largest colour degree, largest degree, largest weighted degree,
largest enrollment and random ordering. Each heuristic in the list is used to schedule
two examinations. The initial heuristic list for all experiments is composed of only
the saturation degree heuristic.

The following section presents a GP system for the generation of hyper-heuristics.
Section 5 compares the performance of the GP-based hyper-heuristic system and the
hyper-heuristic systems described in this section on a set of 9 benchmark problems.

3 Evolving Hyper-Heuristics

This section describes the GP system that has been implemented to evolve hyper-
heuristics for the uncapacitated ETP. Genetic programming systems generally
produce a program which when executed provides a solution to the problem at hand
([3] and [12]). In this study the program is a sequence of low-level heuristics which
specify the order in which examinations should be scheduled when constructing an
examination timetable. The GP system uses the generational control model and a run
is terminated once the maximum number of generations has been reached. The hyper-
heuristic that has produced the timetable with lowest hard constraint and soft
constraint costs during the run is returned as the solution.

3.1 Representation and Initial Population Generation

Each element of the population is a string of variable length composed of characters
representing one of the following low-level heuristics:

• Largest degree (l) – The examination with the largest number of conflicts is
scheduled first.

• Largest enrollment (e) – The examination with the largest student enrollment is
scheduled first.

• Largest weighted degree (w) – The examination with the largest number of
students involved in clashes is scheduled first.

• Saturation degree (s) – The examination with the least number of feasible (i.e.
will not result in a clash) timeslot options is scheduled first.

• Highest cost (h) - The examination with the highest proximity cost is scheduled
first. The pseudo-code of the function for calculating the proximity cost is
listed in Figure 1 and the weight function used in calculating the proximity cost
is defined in Figure 2.

An example of a hyper-heuristic is hsseel. The hyper-heuristic strings are randomly
created during initial population generation. A limit is set on the maximum length of
each hyper-heuristic.

 A Genetic Programming Approach to the Generation of Hyper-heuristics 227

function calc_cost(exam e, period p, total number of students n)
begin

cost = 0
for each exam ej other than e

begin
if(ej has students in common with e and ej has already been scheduled)
begin

dist = the absolute value of the distance between p and the period ej
 has been allocated to
ecost = weight(dist) * the number of students common to both exams
cost = cost + ecost

endif
endfor

return cost/n
end

Fig. 1. Pseudo-code for the proximity cost

Figure 2. Weight function

3.2 Evaluation and Selection

Each element of the population is evaluated by using the hyper-heuristic to construct a
timetable. Each low-level heuristic in the hyper-heuristic is used to schedule n
examinations, where n is the total number of examinations divided by the length of
the hyper-heuristic. Each examination is allocated to the minimum penalty slot, i.e.
the slot that does not cause a clash and results in the lowest proximity cost. The raw
fitness of a hyper-heuristic is calculated by applying equation (1) to the timetable
constructed using the hyper-heuristic:

(number_of_clashes+1)*proximity_cost (1)

The proximity cost is a measure of how well the examinations are spaced and is
calculated using equation (2) in section 4. Tournament selection is used to choose the
parents of the next generation.

function weight (dist d)
begin

case of d
1: return 16
2: return 8
3: return 4
4: return 2
5: return 1
default : return 0

endcase
end

Fig. 2. Weight function

228 N. Pillay and W. Banzhaf

3.3 Genetic Operators

The mutation and crossover operators are used to create the next generation. A limit is
not set on the length of the offspring produced by the genetic operators. The mutation
operator changes a randomly chosen heuristic. This process is illustrated in Figure 3.

Fig. 3. The mutation process

The crossover operator is depicted in Figure 4.

1. Randomly choose crossover points in both the parents

P1: lwesh P2: sshhle

2. Swap the fragments at the crossover points to create offspring

 O1: lwshhle O2: sesh

3. Return the fitter of the two offspring

Fig. 4. The crossover process

The crossover operator randomly selects crossover points in each of the chosen
parents. Two offspring are created by swapping the fragments at the crossover points.
The fitter of the two offspring is returned as the result of the operation.

4 Experimental Setup

The GP-based hyper-heuristic system was tested on 9 of the Carter benchmarks [9].
These benchmarks are data sets for real-world exam timetabling problems from
various universities and high schools. The characteristics of the data sets used are
listed in Table 1. The density of the conflict matrix is to some extent an indication of
the problem difficulty and is calculated to be the ratio of the number of examinations
involved in clashes and the total number of exams.

The hard constraint for this problem is that no student must be scheduled to write
two or more examinations at the same time, i.e. there must be no clashes. The soft

1. Randomly choose a heuristic to change in the parent hssess

2. Replace the chosen heuristic with a randomly selected heuristic (from h, s, l, e, w)

 wssess

 A Genetic Programming Approach to the Generation of Hyper-heuristics 229

Table 1. Carter benchmarks

Data Set Institution Periods No. of
Exams

No. of
Students

Density
of

Conflict
Matrix

ear-f-83 I Earl Haig Collegiate
Institute, Toronto

24 190 1125 0.27

hec-s-92 I Ecole des Hautes Etudes
Commerciales, Montreal

18 81 2823 0.42

kfu-s-93 King Fahd University of
Petroleum and Minerals,
Dharan

20 461 5349 0.06

lse-f-91 London School of
Economics

18 381 2726 0.06

rye-s-93 Ryerson University,
Toronto

23 486 11483 0.08

sta-f-83 I St Andrew’s Junior High
School, Toronto

13 139 611 0.14

tre-s-92 Trent University,
Peterborough, Ontario

23 261 4360 0.18

ute-s-92 Faculty of Engineering,
University of Toronto

10 184 2749 0.08

yor-f-83 I York Mills Collegiate
Institute, Toronto

21 181 941 0.29

constraint requires the examinations to be well-spaced. The soft constraint cost is
referred to as the proximity cost and is calculated using the following equation:

S

Neew ijji∑ − |)(|
 (2)

where:

1) |ei – ej| is the distance between the periods of each pair of examinations
(ei,ej) with common students.

2) Nij is the number of students common to both examinations.
3) S is the total number of students
4) w(1) = 16, w(2) = 8, w(3) = 4, w(4) = 2 and w(5) = 1, i.e. the smaller the

distance between periods the higher the weight allocated.

Note that this equation calculates the proximity cost of a complete timetable whereas
the pseudo-code in Figure 1 calculates the cost of scheduling a particular examination
in a partially constructed timetable, given the examinations that have already been
allocated to a timeslot at that point. For problems with different hard and soft
constraints the function for calculating the raw fitness will be different from that
defined in section 3.2.

The GP parameter values are listed in Table 2. These values have been obtained
empirically by performing test runs for each of the 9 data sets.

230 N. Pillay and W. Banzhaf

Table 2. GP Parameters

Population size 500
No. of generations 50
Maximum initial length 5
Tournament size 10
Mutation rate 40%
Crossover rate 60%

The system was implemented in Java using JDK1.4.2 and simulations were run on

a Windows XP machine with an Intel Pentium M with 512 MB of RAM.

5 Results and Discussion

Due to the randomness associated with GP and hence the possibility of selection
noise1 ten runs were performed for each data set. The duration of a run ranges from
about 15 minutes for the smaller data sets to about 4 hours for the larger data sets.
The system evolved feasible timetables for all 9 problems. Table 3 lists the average
proximity costs and the best individual and its proximity cost for each of the data sets.
The timetables constructed for each data set using the best hyper-heuristic obtained
can be found at http://saturn.cs.unp.ac.za/~nelishiap/et/hyper_heuristics.htm.

The saturation degree (s) and the highest cost (h) heuristics occur most frequently
in the best hyper-heuristics found for each of the data sets. Figure 5 illustrates the
distribution of calls to low-level heuristics in the best hyper-heuristic found for all
data sets. Note that the saturation degree, highest cost and largest degree heuristics are
invoked in the best hyper-heuristics for almost all the data sets with the highest cost
and saturation degree occurring most frequently. The saturation degree heuristic
appears to speed up the construction of clash-free timetables while the highest cost
heuristic reduces the soft constraint cost.

We compare the performance of the GP system to other methodologies applied to
generating hyper-heuristics for the uncapacitated ETP. Table 4 lists the performance
of the GP system and other methods employed to generate hyper-heuristics (details of

Table 3. Performance of the GP system on the Carter benchmarks

Data Set Average
Proximity Cost

Best Proximity
Cost

Best Hyper-Heuristic

ear-f-83 I 36.94 36.74 hsshsssshslssh
hec-s-92 I 11.64 11.55 hhlssll
kfu-s-93 14.25 14.22 hhslsssssll
lse-f-91 10.97 10.90 hsshshshshhhshhshhshhhllhhhww
rye-s-93 9.39 9.35 hssshshshees
sta-f-83 I 158.35 158.22 hsehshehshhhhshhshwhswl
tre-s-92 8.51 8.48 hssshshshees
ute-s-92 27.61 26.65 hhssshsslessshssslshshsssseslllsswssh
yor-f-83 I 41.82 41.57 ssshh

1 Please note that the reason for performing more than one run is not to show statistical

significance.

 A Genetic Programming Approach to the Generation of Hyper-heuristics 231

Distribution of Calls to Low-Level Heuristics in the
Best Hyper-Heuristics

0

5

10

15

20

25

ear hec kfu lse rye sta tre ute yor

Data Set

F
re

q
u

en
cy

Highest Cost

Saturation Degree

Largest Degree

Largest Enrollment

Largest Weighted
Degree

Fig. 5. Distribution of calls to low-level heuristics

these systems are provided in section 2.2) for the same set of benchmarks. The best
soft constraint cost obtained for each of the data sets is highlighted. These
methodologies are:

• FES – The fuzzy expert system implemented by Asmuni et al. [2].
• VNS – The variable neighborhood search implemented by Qu et al. [13].
• TS1 – The Tabu search applied by Kendall et al. [11]. In this study each

simulation was run for 4 hours.
• TS2 – The Tabu search implemented by Burke et al. [7].

Note that the methodologies that the GP system is being compared to employ very
different search mechanisms from that used by the system and a direct comparison of
the parameters used is therefore not feasible.

It is evident from Table 4 that the performance of genetic programming is
comparable to the other search methods used to generate hyper-heuristics. The quality

Table 4. The performance of the GP system and other methodologies used to induce hyper-
heuristics for the uncapacitated ETP

Data Set GP FES VNS TS1 TS2
ear-f-83 I 36.74 37.02 37.29 40.18 38.19
hec-s-92 I 11.55 11.78 12.23 11.86 12.72
kfu-s-93 14.22 15.81 15.11 15.84 15.76
lse-f-91 10.90 12.09 12.71 - 13.15
rye-s-93 9.35 10.35 - - -
sta-f-83 I 158.22 160.42 139.3 157.38 141.08
tre-s-92 8.48 8.67 8.67 8.39 8.85
ute-s-92 26.65 27.78 29.68 27.60 31.65
yor-f-83 I 41.57 40.66 43.0 - 40.13

232 N. Pillay and W. Banzhaf

of the timetables constructed using the hyper-heuristics induced by the GP system is
within the range of those produced by other hyper-heuristic systems. Furthermore,
the GP-based hyper-heuristic system has outperformed the other hyper-heuristic
systems on 6 of the benchmarks.

The main aim of the study presented in this paper is to evaluate GP as a means of
generating hyper-heuristics for the uncapaciated ETP. Hence, emphasis is on
producing a general method rather than a method that produces the best results on the
the set of benchmarks. However, for completeness we compare the performance of
the GP-based hyper-heuristic system to that of methodologies that have been cited in
the literature as producing the best results for these benchmarks. Table 5 compares
the performance of the GP system to the following studies:

• The sequential construction and backtracking methodologies employed by
Caramia et al. [8].

• The hybrid case-based reasoning system implemented by Yang et al. [18].
• The Ahuja-Orlin algorithm employed by Abdullah et al. [1].
• The Flex-Deluge algorithm implemented by Burke et al. [6].

Note that the system presented in this paper only performs the construction phase for
timetable induction while the other methods listed in Table 5 also include an
improvement phase aimed at reducing the proximity cost of feasible timetables
produced during the construction phase. Despite this the results produced by the GP
system are still within range of the best results produced for the data sets.

Table 5. A comparison of the results obtained by the GP system and the best results cited for
the benchmarks

Problem GP Caramia
et al., 2001

Yang et al.
2004

Abdullah
et al., 2004

Burke
et, al.
2006

Difference

ear-f-83 I 36.74 29.3 33.71 34.84 32.76 7.44
hec-s-92 I 11.55 9.2 10.83 10.28 10.15 2.35
kfu-s-93 14.22 13.8 13.82 13.46 12.96 1.26
lse-f-91 10.90 9.6 10.35 10.24 9.83 1.30
rye-s-93 9.35 6.8 8.53 8.7 - 2.55
sta-f-83 I 158.22 158.2 151.52 159.28 157.03 6.7
tre-s-92 8.48 9.4 7.92 8.13 7.75 0.73
ute-s-92 26.65 24.4 25.39 24.21 24.82 2.44
yor-f-83 I 41.57 36.2 36.53 36.11 34.84 6.73

6 Conclusion and Future Work

The study presented in this paper is a first attempt at evaluating genetic programming
for the purpose of inducing hyper-heuristics for the uncapacitated ETP. A GP system
was implemented to induce hyper-heuristics for this problem and was tested on 9 of
the Carter benchmarks. This study has revealed the potential of genetic programming
as a means of evolving hyper-heuristics for the uncapacitated ETP. The GP system

 A Genetic Programming Approach to the Generation of Hyper-heuristics 233

generated hyper-heuristics that produced feasible examination timetables with soft
constraint costs within the range of other search methods employed for this purpose.
Furthermore, the GP-based hyper-heuristic system outperformed the other hyper-
heuristic systems on 6 of the 9 problems.

One of the drawbacks of this system is the runtime for larger data sets. For
example, the runtime for the kfu-s-93 set is approximately three and a half hours and
just over four hours for the rye-s-93 data set. Future work will address improving the
runtime of the overall system and testing it on additional benchmarks and problems
with different hard and soft constraints. In this study a limit was not set on the size of
the offspring produced and this did not appear to result in bloating. However, a closer
look needs to be taken into the effect of not using such a limit and the overall effect of
introns and bloat in this domain. Future extensions of this study will also investigate
evolving programs that apply each heuristic more than once, e.g. h4s2, will apply the
highest cost heuristic four times and the saturation degree heuristic twice.

Acknowledgments. The authors would like to thank the reviewers for their helpful
comments and suggestions. This material is based on work financially supported by
the National Research Foundation (NRF) of South Africa.

References

1. Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M.: Investigating Ahuja-Orlin’s Large
Neighbourhood Search for Examination Timetabling. Technical Report NOTTCS-TR-
2004-8, School of CSiT, University of Nottingham, U.K (2004)

2. Asmuni, H., Burke, E.K., Garibaldi, J.M.: Fuzzy Multiple Ordering Criteria for
Examination Timetabling. In: Burke, E.K., Trick, M.A. (eds.) PATAT 2004. LNCS,
vol. 3616, pp. 147–160. Springer, Heidelberg (2005)

3. Banzhaf, W., Nordin, P., Keller, R.E., Francone, F.D.: Genetic Programming - An
Introduction - On the Automatic Evolution of Computer Programs and its Applications.
Morgan Kaufmann Publishers, Inc., San Francisco (1998)

4. Burke, E.K., Petrovic, S.: Recent Research Directions in Automated Timetabling.
European Journal of Operational Research 140(2), 266–280 (2002)

5. Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S.: Hyper-Heuristics:
An Emerging Direction in Modern Research. In: Handbook of Metaheuristics, ch. 16, pp.
457–474. Kluwer Academic Publishers, Dordrecht (2003)

6. Burke, E.K., Bykov, Y.: Solving Exam Timetabling Problems with the Flex-Deluge
Algorithm. In: Burke, E.K., Rudova, H. (eds.) Proceedings of PATAT 2006, pp. 370–372
(2006)

7. Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R.: A Graph-Based Hyper-
Heuristic for Educational Timetabling Problems. European Journal of Operational
Research 176, 177–192 (2007)

8. Caramia, M., Dell’Olmo, P., Italiano, G.: New Algorithms for Examination Timetabling.
In: Näher, S., Wagner, D. (eds.) WAE 2000. LNCS, vol. 1982, pp. 230–241. Springer,
Heidelberg (2001)

9. Carter, M.W., Laporte, G., Lee, S.Y.: Examination Timetabling: Algorithmic Strategies
and Applications. Journal of the Operational Research Society 47(3), 373–383 (1996)

234 N. Pillay and W. Banzhaf

10. Cowling, P., Kendall, G., Han, L.: An Investigation of a Hyperheuristic Genetic Algorithm
Applied to a Trainer Scheduling Problem. In: Proceedings of Congress on Evolutionary
Computation (CEC), Hilton Hawaiian Village Hotel, Honolulu, Hawaii, May 12 -17, 2002,
pp. 1185–1190 (2002) ISBN 0-7803-7284-2

11. Kendall, G., Mohd Hussin, N.: An Investigation of a Tabu Search Based on Hyper-
Heuristics for Examination Timetabling. In: Proceedings of MISTA (Multidisciplinary
International Conference on Scheduling) 2003, Nottingham, UK (2003)

12. Koza, J.R.: Genetic Programming I: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge (1992)

13. Qu, R., Burke, E.K.: A Hybrid Neighbourhood Hyper-Heuristic for Exam Timetabling
Problems. In: Proceedings of MIC 2005: The 6th Metaheuristics International Conference,
Vienna, Austria (2005)

14. Qu, R., Burke, E., McCollum, B., Merlot, L.T.G., Lee, S.Y.: A Survey of Methodologies
and Automated Approaches for Examination Timetabling. Technical Report NOTTCS-
TR-2006-4 (2006), http://www.cs.nott.ac.uk/TR-cgi/TR.cgi

15. Ross, P., Hart, E., Corne, D.: Some Observations about GA-based Exam Timetabling. In:
Burke, E.K., Carter, M. (eds.) PATAT 1997. LNCS, vol. 1408, pp. 115–129. Springer,
Heidelberg (1998)

16. Ross, P.: Hyper-heuristics. In: Burke, E.K., Kendall, G. (eds.) Search Methodologies:
Introductory Tutorials in Optimization and Decision Support Methodologies, ch. 17, pp.
529–556. Kluwer, Dordrecht (2005)

17. Terashima-Marin, H., Ross, P., Valenzuela-Rendon, M.: Evolution of Constraint
Satisfaction Strategies in Examination Timetabling. In: Banzhaf, W., et al. (eds.)
Proceedings of GECCO 1999: Genetic Programming and Evolutionary Computation
Conference, pp. 635–642. Morgan Kaufmann, San Francisco (1999)

18. Yang, Y., Petrovic, S.: A Novel Similarity Measure for Heuristic Selection in Examination
Timetabling. In: Burke, E.K., Trick, M. (eds.) PATAT 2004. LNCS, vol. 3616, pp. 247–
269. Springer, Heidelberg (2005)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

