
Interactive Evolution of Images

Jeanine Graf and Wolfgang Banzhaf

Abstract

Systems of selection and variation by recombination and/or mutation can
be used to evolve images for computer graphics and animation. Interactive
evolution can be used to direct the development of favorite designs in
various application areas. Examples of the application of evolutionary
algorithms to two-dimensional (2-D) bitmap images and the methods for
three-dimensional (3-D) voxel images are indicated. We show that artificial
evolution can serve as a useful tool for achieving flexibility and complexity
in image design with only a moderate amount of user-input and detailed
knowledge.

1 INTRODUCTION

Dawkins (Dawkins 1986) demonstrated convincingly the potential of Dar-
winian variation and selection in graphics. He evolved biomorphs 2-D gra-
phic objects, from a collection of genetic parameters with interaction with
the user (Dawkins 1986; Smith 1984). Recently, much research has been
directed into the application of genetic algorithms to image and graphics
problems, such as the segmentation of range images (Meygret, Levine, and
Roth 1992) or pattern identification (Hill and Taylor 1992). Sims (Sims 1991)
used genetic algorithms for interactive generation of color art; Todd and
Latham (Todd and Latham 1991) have considered similar ideas to reprodu-
ce computer sculptures through structural geometric techniques. Caldwell
and Johnson (Caldwell and Johnston 1991) have applied the concept of ge-
netic algorithms to search interactively in face space of criminal suspects
with the help of witnesses .

The novel idea offered in this paper is to provide a user with new
technique to evolve 2-D (bitmap) and 3-D (voxel) images that can be applied
universally in any field of interest. We have developed a system which
presents progressively evolving solutions for graphical design problems by
means of interactive processes.

Interactive evolution is a technique from the class of evolutionary algo-
rithms (EAs) which are based upon a simple model of organic evolution.
Most of these algorithms operate on a population of individuals which re-
present search points in the space of the decision variables (either directly, or
by using coding mappings). Evolution proceeds from generation to gene-
ration by exchanging genetic material between individuals (recombination),
i.e. by trying out new combinations of partial solutions, and by random
changes of individuals (mutation). New variations are subjected to selection

based on an evaluation of features of the individuals according to certain
(fitness) criteria.

The best-known representatives of this class of algorithms are evolutio-
nary programming (EP), developed in the U.S. by L.J. Fogel (Fogel, Owens,
and Walsh 1966), evolution strategies (ESs), developed in Germany by I.
Rechenberg (Rechenberg 1973) and H.–P. Schwefel (Schwefel 1981), and
genetic algorithms (GAs), developed in the U.S. by J.H. Holland (Holland
1975).

Evolutionary programming (EP) tries to apply the variation-selection prin-
ciple to ameliorate computer systems. The important and elementary steps
of the search process are (i) a definition of the task and its fitness criteria,
(ii) creation of a first representation, (iii) variation of the statement leading
to offspring representations, (iv) performance qualification of the offspring
representations, (v) reproduction of the best performing representations.
The process is repeated until the task is accomplished (Fogel 1993).

Evolutionary programming uses real-valued object variables and normal-
ly distributed random mutation with expectation zero. The variance of the
distribution evolves during the optimization process. It is calculated se-
parately for each representation as transformation of its own fitness value.
Mutation is the primary operator. Recombination is not used in the standard
EP algorithm. Objective function values are scaled and possibly randomly
altered to obtain the fitness. Selection of new parent representations is done
probabilistically using a competition procedure which guarantees that the
best representation is always retained and the worst always discarded.

The first applications of evolution strategies (ES) came in the field of
experimental optimization and used discrete mutations. When computers
became available, algorithms were devised that operated with continuous-
valued variables.

The ES uses, like EP, mutation as its main search operator. In addition re-
combination operators (e.g. discrete recombination) are applied. Parameters
like the standard deviation of the mutation are added to the representation
(individual) as strategy parameters, which are adapted during the simulation
via heuristics like Rechenberg’s

�����
success rule (Rechenberg 1973). Only

the � best individuals out of the � offsprings or out of the offsprings and
parents are selected to form the next population (Schwefel 1981; Bäck 1994;
Rechenberg 1973).

The genetic algorithm (GA) works on a genotypic level of binary encoded
individuals, a choice that is founded by the argument of maximizing the
number of schemata available with respect to a given code (Goldberg 1989;
Davis 1991). Various selection schemes, such as proportional selection, are
applied with respect to the relative fitness of the individuals. The recombi-
nation (e.g., 1-point crossover) serves as the main search operator. Mutation
(e.g., bit-mutation) is used at a low rate to maintain diversity. Nearly no
knowledge about the properties of the object function is required. In order
to use a GA for optimization, a mapping from the genotype (bitstring) to
phenotype (realised behavior) has to be defined. This could be a very com-
plicated task, because the mapping is absolutely crucial for the performance
of the GA.

In all of these cases, the selection criteria are traditionally fixed and are
held constant from the start of the simulation, therefore these criteria must

be detailed explicitly beforehand. This constitutes a significant problem in
many realistic applications (apart from optimization), because an explicit
fitness function may not be available in closed form. Recently, various work-
arounds have been tried, one of the most prominent being co-evolution.
In this method, rather than using one population to search for the best
solution, two or more antagonistic populations are run which compete
against each other. The realized fitness in this case is in part determined
by the relationship of one population to the other, and does not have to be
defined explicitly beforehand (Hillis 1990).

This paper makes use of an alternative method to generate fitness by
involving the user into the selection process of artificial evolution. Our
work in computer graphics, a natural domain for humans, easily engages
the user by relying on human visual capacity.

2 INTERACTIVE EVOLUTION

In interactive evolution, the user selects one or more favourite model(s) which
survive(s) and reproduce(s) (with variation) to constitute a new generation.
These techniques can be applied to the production of computer graphics,
animation, creating forms, textures, and motions (Glassner 1990; Arvo 1991;
Foley 1992). Potential applications of interactive evolution include product
design, e.g., cars, engineering of components, and architectural design.

Phenotypes and Genotypes

We shall need to discern between genotypes and phenotypes in interac-
tive evolution, both terms are also basic concepts for biological evolution.
The biological genotype is the information that codes the development of an
individual. Genotypes most often consist of DNA sequences. In interactive
evolution, genotypes are represented as numerical data and real values, col-
lections of procedural parameters, symbolic expressions or compound data
structures (e.g., trees). The phenotype is the realised behavior of the indivi-
dual itself, i.e., the product of an interpretation of the underlying genotypic
representation. In our case, the phenotype is the resulting graphical image.

The relation between genotypes and phenotypes in nature is determined
by the genotype-phenotype mapping. This transformation is very compli-
cated and draws heavily from the individual’s current environment. In
principle, a similar mapping can be introduced in artificial evolution (Banz-
haf 1994). In this way, a part of the complexity of the developing solution
might be rendered by the environment.

Fitness and Selection

The term fitness in interactive evolution is the capability of an individu-
al or model to survive into the next generation, and therefore is tied directly
to selection. Usually, fitness is not defined explicitly but is instead a relative
measure of success following from the selection activity of a human user.
Here, it is even based on non-quantifiable measures like visual preference
or personal taste.

Hybrid systems, however, are reasonable as well. Certain predefined

criteria (for example: drag coefficient (���) or air resistance of an airpla-
ne model) help to sort candidates for survival from the set of all variants,
among which a human user finally selects the next generation.

Variation

In interactive evolution, one of the main benefits is the automatic gene-
ration of variants. Variation is accomplished by defining problem-specific
mutation and recombination operators that constantly propose new vari-
ants to the presently existing population of graphic models on the screen. A
certain amount of knowledge has to be invested in order to find appropriate
operators for an application domain. In the next section we shall provide
appropriate operators for manipulation of bitmap images and voxel gra-
phics.

Figure 1: Generation of variants by recombination and mutation of graphical mo-
dels. A*A and B*B are the unchanged parents, B*A and A*B are generated by
recombination, and A’ and B’ are generated by mutation

3 EVOLVING 2-D IMAGES

In our approach we try to evolve two-dimensional images specified either
directly as bitmaps or as parameterized geometric models, such as those
provided by vector graphics. Figure 1 gives a sketch of the variants that
may arise from the graphical parent objects. Whereas the latter is more
or less straight-forward in EAs, once the parameters have been fixed, the
former is a challenging task. To our knowledge no effort has been made to
apply evolutionary algorithms to the evolution of bitmap images directly.

Application to 2-D Images

Bitmaps and other forms of direct encoding of images have found an excel-
lent niche in computer graphics, video composition and image rendering
(Foley 1992; Kirik 1992). Any 2-D shape can be represented as a sequence of

points or vertices, with each vertex consisting of an ordered pair of numbers���������
, its coordinates. The array of pixel values of a 2-D image, however,

have nothing to do with the structure being represented in the image. This
constitutes the challenge to finding appropriate operators for the genera-
tion of new variants of an existing image, because structural or functional
conservation of the image content is of utmost importance in application.

We solve the problem for realizing evolutionary operations by using
warping and morphing to create variations.

Warping is a method which, by using tiepoints in two images “A” and
“B”, allows for the creation of intermediate images (Woldberg 1990; Ru-
precht 1994). Basically, these intermediate images are interpolations along
an abstract axis from image “A” and image “B”. The tiepoints are cons-
traints of the interpolation because corresponding tiepoints in “A” have to
be transformed into those of “B”.

Morphing is an application of digital image warping. It involves dis-
tributing tiepoints over two images in such a way as to conserve essential
structures in interpolated (intermediate) images. In this way an arbitrary
initial image can evolve via intermediate steps of interpolation into a final
image without leaving visual irritations.

It is interesting to note that even without any concept of structure in
image warping and morphing, visually appealing images are generated.
Structure has been substituted by tiepoints that extend their influence into
the surrounding image by the help of interpolation algorithms.

We adopt this novel approach for the artificial evolution of images. By
specifying tiepoints, sufficient control can be exerted about structure in 2-D
images as to provide useful variants to the images being varied. Whereas
in conventional computer graphics morphing is used for the purpose of
transforming images in a dynamic animation series, we use the generated
intermediate images as variants of the original images in the process of
evolution.

Let us look more closely at the operations usually implemented in EAs:
Mutation is commonly considered to be a local operation that does not

radically change the resulting phenotype. In order to provide this feature
in bitmap image evolution, we propose to use a very small number of
tiepoints. A one-point mutation would select one tiepoint in an image. The
corresponding tiepoint in a second image would then be used as a source
for novelty, by providing information into which direction to evolve the
original image. Structure is conserved because tiepoints in both images
correspond to each other. A parameter would then be used to quantify the
degree of substitution in the image.

Note that the second image, from which novelty is gained, is not ne-
cessarily in the present generation of the evolutionary process. Instead, a
generation 0 of images, equipped with a number of tiepoints is used for
mutation. By selecting one tiepoint in an image of generation n that corre-
sponds to a tiepoint in an image of generation 0 and constraining the effect
to a local neighborhood, we provide a path for morphing between the two
images. The generation 0 images in a way help to form equivalence classes
between structures expressed as tiepoints. Some domain knowledge must
be used in the process of tiepoint selection for generation 0.

Figure 2: This figure shows an example recombination of two bitmap images through
image interpolation. The percentage represents the proportion of inheritance from
the parent images

Recombination is implemented as a more global operation by which
two images exchange information. We propose to use as many tiepoints as
necessary to conserve the underlying structure in two images “A” and “B”.
A recombination would then be quantified in the image space between “A”
and “B” by a certain parameter indicating the degree of “intermediateness”
of a variant. Figure 2 demonstrates the method of recombination. Different
variants between the two original cars are shown. Note that recombination
always operates within the present generation.

Figure 3 and 4 demonstrates the mutation process by using 2-D images
of cars. A local variation takes place by substituting one sort of wheel by
another (Figure 3).

Figure 3: Local mutation by substituting one wheel by another.

Figure 4: Whole mutation of a car by slightly random warping.

An arbitrary warping of an image at different locations, without using
the proper equivalence class of image structures is shown in a contrasting
image in Figure 4. It gives the impression of a damaged car. That is the case
because arbitrary operations have been applied without being constrained
by an otherwise existing path of variation between structures.

First generation

Third generation

Fifth generation

Figure 5: This example shows the evolution of nine models. After five generations
some models are found which are closer to the users taste and to his target model.

Structurally, the content of an image is usually composed of components.
In our example, a car is composed of a body, wheels, seats, chassis, engine,
windows and doors. The same method that was applied before to the
entire image representing the whole structure can also be applied to its
components. By using many tiepoints in a component such as, say a wheel,
influence can be exerted to any necessary degree about the details of the
evolving structure.

Before presenting the entire interactive evolution system, we now turn
to other representations of images.

Application to 2-D structural descriptions of images

Procedural models of images can be characterized by certain parameters
that must be interpreted in the appropriate context. The parameters consti-
tute the genotype of an image. Its interpretation is the genotype-phenotype
mapping and the resulting image is the phenotype.

Because the number of structural elements usually varies from image to
image, it is necessary to allow for variable-length genotypes.

Variation takes place on the level of parameters that are subjected to nor-
mally distributed random mutations as well as to intermediate or discrete
recombination operations.

The resulting images are subjected to the same selection procedures as
are those of the bitmap manipulation procedures discussed before.

4 EVOLVING 3-D IMAGES

For various applications in computer graphics it is often useful to represent
objects in a 3-D grid of cubes or voxels (volume elements) according to their
position in space (Young and Pew 1992).

Figure 6: 3-D mutation

From objects in 3-D space an image can be constructed using establis-
hed methods of computer graphics (Watt 1993). Alternatively, procedural
models of 3-D objects can be combined into an image.

The generalisation of the above methods into the realm of 3-D graphics
is straight-forward. Tiepoints in 3-D voxel graphics influence 3-D areas
instead of 2-D areas in pixel graphics. Apart from that, any other compo-
nent of the mechanism remains in place, especially interpolation and the
generation of local and global variation to an original parent generation of
images.

The same applies to procedural models that are generated by applying
a genotype-phenotype mapping starting from a collection of appropriate
parameters. Figure 5 and 6 show two examples of 3-D mutations that can
be used.

Figure 7: Mutation through deformation [26]. A set of transformations that deform
the object. Linear transformation rotate, translate or scale the object.

5 JARDIN – A SYSTEM FOR INTERACTIVE EVOLUTION

Jardin is a digital image warping and morphing program, that allows the
evolution of images, and runs under the X Window System (Cutler, Gilly,
and O‘Reilly 1993; Gaskin 1992; Young and Pew 1992). Jardin loads and
saves image populations. It provides facilities to store tiepoints in images,
to warp images and to apply the evolutionary process. Tiepoints are inhe-
rited from generation to generation, with generation “0” provided by the
user. With a very small population, between 2 and 20 graphical models per
generation and over a short time, a human user can select new generations
of images. This process will be repeated until a favourite individual in the
population has been generated.

6 SUMMARY AND CONCLUSIONS

We demonstrate how interactive evolution can be applied to 2-D bitmap
images and a generalization to 3-D representation is outlined. The main idea
is to combine the concepts from interactive evolutionary algorithms with
the concepts of warping and morphing from computer graphics. Structure
within images is substituted by a collection of tiepoints. By providing a
first generation of images, where a structure in the images can manually be
defined by the user. Evolution then proceeds along the paths constrained by
the set of these tiepoints in all of the images. The original generation is kept
as a source for mutations, which allows for new models to be created. In
contrast recombination always works on images of the present generation.

In our version of interactive evolution, the user selects his favourite indi-
vidual which then is reproduced to constitute the next generation. These
techniques can be applied to the production of computer graphics and in-
clude e.g., product visualisation of cars, planes, engineering components
and construction projects. Our interactive evolution system has the poten-
tial for a large number of other application areas like: interactive plotting
in business, electronic publishing, computer aided design, drafting and
manufacturing, simulation and animation for scientific visualisation, enter-
tainment, architecture, etc. Our interactive simulations have shown that
interesting results can be achieved even with low population sizes and few
generations. This makes the system applicable to quick design and proto-
typing, in a large variety of application areas.

Acknowledgements

Funding from the German Bundesministerium für Forschung und Techno-
logie (BMFT) under project EVOALG is gratefully acknowledged. Thanks to
Detlef Ruprecht for help and morphing graphics software support. Thanks
to Thomas Bäck for discussions. And special thanks to David Fogel for his
helpful comments and suggestions.

References

Arvo, J. (1991). Graphics Gems. California: Academic Press.

Bäck, T. (1994, February). Evolutionary Algorithms in Theory and Practice.
Doctoral dissertation, University of Dortmund.

Banzhaf, W. (1994). The genotype - phenotype mapping - a case study in
genetic programming. In Y. Davidor, H. P. Schwefel, and R. Männer (Eds.),
Proc. PPSN-94 Jerusalem, Springer Berlin.

Caldwell, C. and V. Johnston (1991). Tracking a criminal suspect through
face-space with a genetic algorithm.

Cutler, E., D. Gilly, and T. O‘Reilly (1993, sep). The X Window System in a
Nutshell. The Definitive Guides to the X Window System. Sebastopol, CA:
O‘Reilly & Associates, Inc.

Davis, L. (1991). Handbook of Genetic Algorithms. New York: Van Nostrand
Reinold.

Dawkins, R. (1986). The Blind Watchmaker. Longman, Harlow.

Fogel, D. (1993). On the philosophical differences between evolutionary
algorithms and genetic algorithms. In D. Fogel and W. Atmar (Eds.),
Proceedings of the Second Annual Conference on Evolutionary Programming,
Evol. Prog. Soc., La Jolla, CA, pp. 23–29.

Fogel, L. J., A. J. Owens, and M. J. Walsh (1966). Artificial Intelligence through
Simulated Evolution. New York: Wiley.

Foley, T. A. (1992). Computer Graphics Principles and Practice. Addison-
Wesley.

Gaskin, T. (1992). DGXWS - PEXlib Programming Manual 3D Programming
in X. Sebastopol, CA: O‘Reilly & Associates.

Glassner, A. (1990). Graphics Gems. California: Academic Press.

Goldberg, D. E. (1989). Genetic Algorithms in search, optimization and machine
learning. Addison-Wesley.

Hill, A. and C. Taylor (1992, June). Model based image interpretation using
genetic algorithms. In Image and Vision Computing, vol.10, pp. 295–300.

Hillis, W. D. (1990). Co-evolving parasites improve simulated evolution as
an optimization procedure. In Physica D42, pp. 228–234.

Holland, J. (1975). Adaption in Natural and Artificial Systems. The University
of Michigan Press: Ann Arbor.

Kirik, D. (1992). Graphics Gems III. California: Academic Press.

Meygret, A., D. Levine, and G. Roth (1992). Robust primitive extraction in
a range image. In Conf. on Pattern Recognition, Vol. III, pp. 193–196.

Rechenberg, I. (1973). Evolutionsstrategie: Optimierung technischer Systeme
nach Prinzipien der biologischen Evolution. Stuttgart: Frommann–Holzboog.

Ruprecht, D. (1994, May). Geometrische Deformationen als Werkzeug in der
graphischen Datenverarbeitung. Doctoral dissertation, University of Dort-
mund.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. Chiche-
ster: Wiley.

Sims, K. (1991, Jul). Artificial evolution for computer graphics. In Computer
Graphics, Vol.25, pp. 319–328.

Smith, J. (1984, July). Plants, fractals, and formal languages. In Computer
Graphics, Vol.18, No.3, pp. 1–10.

Todd, S. and W. Latham (1991). Mutator, a Subjective Human Interface for
Evolution of Computer Sculptures. IBM United Kingdom Scientific Center
Report.

Watt, A. (1993). 3D Computer Graphics (second ed.). Reading, Massachu-
setts: Addison-Wesley.

Woldberg, G. (1990). Digital Image Warping. IEEE Computer Society Press.

Young, D. and J. Pew (1992). The X Window System Programming & Appli-
cations with Xt. Englewood Cliffs, NJ: Prentice Hall.

