Contract no: 20851A2/2/102

Artificial Intelligence: Genetic Programming

Wolfgang Banzhaf

Dept. of Computer Science, University of Dortmund, Dortmund, Germany

1 Introduction

The term Genetic Programming (GP, for short) describes a research area

within Artificial Intelligence (Al, for short) that deals with the evolution of

computer code. The term evolution refers to an artificial process analogous
to natural evolution of living organisms, but which has been abstracted and
stripped off of most of its intricate details. The resultant algorithms then

yield approximate solutions to problems in machine learning or induce precise

solutions in the form of grammatically correct (language) structures for the

automatic programming of computers.

Genetic Programming is part of the growing set of Evolutionary Algorithms

which apply search principles analogous to those of natural evolution in a vari-
ety of different problem domains, notably parameter optimization. Evolutionary

Programming, Evolutionary Strategies and Genetic Algorithms are three other

branches of the area of Evolutionary Algorithms which mostly find applica-

Int. Encyc. Social and Behavioral Sciences 20 October 2000

2

tions as optimization techniques. The major distinctions between GP and
these other areas of Evolutionary Algorithms are that GP handles active com-
ponents like symbolic expressions or instructions as opposed to simple param-
eters, and that GP is able to develop its own representation of a problem by

allowing variable complexity of its individuals.

All Evolutionary Algorithms follow Darwin’s principle of differential natural selection.

This principle states that the following preconditions must be fullfilled for evo-

lution to occur via (natural) selection:

e There are entities called individuals which form a population. These entities
can reproduce or can be reproduced.

e There is heredity in reproduction, that is to say that individuals produce
similar offspring.

e In the course of reproduction there is variety which affects the likelihood of
survival and therefore of reproducibility of individuals.

e There are finite resources which cause the individuals to compete. Due to
overreproduction of individuals not all can survive the struggle for existence.
Differential natural selection exerts a continuous pressure towards improved

individuals.

2 The Mechanisms behind GP

GP works with a population of programs that are executed or interpreted in
order to judge their behavior. Usually, a scoring operation called fitness mea-
surement is applied to the outcome of the behavior. For instance, the deviation
between the quantitative output of a program and its target value (defined
through an error function) could be used to judge the behaviour of the pro-
gram. This is straight-forward if the function of the target program can be
clearly defined. Results may also be defined as side-effects of a program, such
as consequences of the physical behavior of a robot controlled by a genetically
developed program. Sometimes, an explicit fitness measure is missing, for in-
stance in a game situation, and the results of the game (winning or loosing)
are taken to be sufficient scoring for the program’s strategy. The general ap-
proach is to apply a variety of programs to the same problem and to compare

their performance relative to each other.

The outcome of fitness measurement are used to select programs. There are a
number of different methods for selection, both determinstic and stochastic.
Selection determines (i) which programs are allowed to survive (overproduc-
tion selection), and (ii) which programs are allowed to reproduce (mating
selection). Once a set of programs has been selected for further reproduction,

the following operators are applied:

e reproduction

Input

P - . PR . .

Variation Device Loop Selection Device
‘_/

Output

Figure 1

The variation selection loop of GP.

e mutation

® Crossover

Reproduction simply copies an individual, mutation varies the structure of an
individual under control of a random number generator, and crossover mixes
the structure of two (or more) programs to generate one or more new programs.
Additional variation operators are applied in different applications. Most of
these contain problem knowledge in the form of heuristic search recipes which

are adapted to the problem domain.

In this way, fitness advantages of individual programs are exploited in a pop-
ulation to lead to better solutions. A key effort in Genetic Programming is
the definition of the fitness measure. Sometimes the fitness measure has to
be iteratively improved in order for the evolved solutions to actually perform
the function they were intended for. The entire process can be seen in close
analogy to breeding animals. The breeder has to select those individuals from

the population which carry the targeted traits to a higher degree than others.

Researchers [15,3,12] suggested ideas similar to GP already in the early days

of AL, but did not get very far. So it was only after other techniques in Evolu-

2178940928 _ 2178840928
2953183257 Mutation 2953183257
2179465216 _ 2179465216
2177359880 2177353880
16777216 16777216
2176543589 2176543589
2323488798 2323488798
2875642322 Crossover 2170465916
2381907764 -~ 2177359880
16777216

Figure 2
The primary operations of GP, mutation and crossover, are applied here to programs
represented by sequences of instructions. The instructions are coded as integer num-

bers which allows easy manipulation by access to these numbers.

tionary algorithms had been successfully developed that GP emerged. Earlier
work concerned genetic algorithms [6], evolution stralegies [13], and evolution-
ary programming [2]. These methods have been applied successfully to a wide
spectrum of problem domains, especially in optimization. However, it was un-
clear for a long time whether the principles of evolution could be applied to
computer code, with all its dependencies and structural brittleness. Negative
results from early experiments seemed to indicate that evolution of computer
code was not possible. Successes were all in the area of contraint optimization
[10], where methods were made available for dealing with structural brittle-

ness. These methods found their way into programming and gave rise to the

new field of GP [7].

3 Progress and State-of-the-Art

In his seminal work of 1992, Koza established the field of GP by arguing
convincingly that manipulation of symbolic tree structures is possible with
evolutionary algorithms and that the resulting technique would have a wide
variety of applications. In subsequent years, the field experienced both broad-
ening and deepening [1]. Many different representations for GP were studied,
among them other generic data structures such as sequences of instructions
or directed graphs, as well as more exotic data structures such as stacks or
neural networks. Today, different approaches are considered as GP, from the
evolution of parse trees to the evolution of arbitrary structures. The over-
arching principle is to subject structures with variable complexity to forces
of evolution by applying mutation, crossover and fitness-based selection. The

results are not necessarily programs.

An ever present difficulty with GP is that the evolution of structures of vari-
able complexity leads often to large structures with considerable redundancy.
Notably, variable complexity often leads to inefficient and space consuming
code. It was subsequently recognized that the evolutionary forces exerted a
pressure toward more complex solutions, most of which could be removed af-
ter evolution without doing any harm to the evolved solution. By drawing
an analogy from biological evolution of genomes, this phenomenon was called

“intron growth”, or growth of ineffective code. Though the explanation for

7

this phenomenon is not fully understood yet, it was found that at least two
different influences were at work promoting the growth of complexity during
evolution. The most important one has to do with the protection effect of re-
dundant code if subjected to the action of crossover or mutation. Redundant
code was resistant to crossover and mutation and allowed its carrier solution
to survive better, compared to other individuals which did not possess the

redundancy.

Currently, many researchers are working to transfer results from research in
Genetic Algorithms to GP. To achieve results in GP is generally more difficult
since GP works with variable complexity and multiple fitness cases for fitness
scoring. The schema theory of Genetic Algorithms [5,16] has been a primary
target of knowledge transfer. In the meantime, a number of different schema

theorems have been formulated for GP.

When analyzing search spaces of programs it was realized that their size is
many orders of magnitude larger than search spaces of combinatorial optimiza-
tion problems. A typical size for a program search space might be 10199000 a5
opposed to a typical search space for a combinatorial optimization problem
of the order of 10'%°. Although this might be interpreted as discouraging for
search mechanisms, it was also realized that the solution density in program
spaces is, above a certain threshold, constant with changing complexity [9]. In
other words, there are proportionally many more valid solutions in programs

spaces than in the spaces of combinatiorial optimization problems.

4 Applications

The main application areas of GP are (from narrow to wide) [1]:

Computer Science
e Science
e Engineering

e Art and Entertainment.

In Computer Science, the development of algorithms has been a focus of at-
tention. By being able to manipulate symbolic structures, GP is one of the

few heuristic search methods for algorithms. Sorting algorithms, caching algo-

rithms, random number generators and algorithms for automatic paralleliza-
tion of code [11], to name a few, have been studied. The spectrum of applica-
tions in Computer Science spans from the generation of proofs for predicate
calculus to the evolution of machine code for accelerating function evaluation.

The general tendency is to try to automate the design process for algorithms

of different kinds.

Typical applications in Science are to modeling and pattern recognition. Mod-

eling certain processes in Physics and Chemistry with the unconventional help
of evolutionary creativity supports research and understanding of the systems
under study. Pattern recognition is a key ability in molecular biology and other
branches of biology, as well as in Science in general. Here, GP has delivered

first results that are competitive if not better than human-generated results.

9

In Engineering, GP is used in competition or cooperation with other heuristic
methods such as Neural Networks or Fuzzy Systems. The general goal is again
to model processes such as production plants, or to classify results of produc-
tion. Control of man-made apparatus is another area where GP has been used

successfully, with process control and robot control the primary applications.

In Art and Entertainment, GP is used to evolve realistic animation scenes
and appealing visual graphics. It also has been used to extract structural
information from musical composition in order to model the process so that

automatic composition of music pieces becomes possible.

Many of these problems require a huge amount of computational power on the
part of the GP systems. Parallel evolution has hence been a key engineering
aspect of developments in GP. As a paradigm, GP is very well suited for a

natural way of parallelization. With the advent of inexpensive parallel hard-

ware and software [14], a considerable proliferation of results is expected from

GP systems.

5 Methodological Issues and Future Directions

In recent years, some researchers have claimed human-competitive results in

the application of GP to certain problems [8]. These claims are based on a
comparison between the presently-best known human solutions to a problem

and its GP counterpart. Usually, a large amount of computational power had

10

to be invested in order to gain human-competitive results from Genetic Pro-
gramming runs. Due to the ability of the human mind to quickly grasp the
recipes of problem solution an artificial system has applied, the question re-

mains open whether GP solutions will stay better than human solutions.

Theory of GP is presently greatly underdeveloped and will need to progress
quickly in order to catch up with other evolutionary algorithm paradigms.
Most of the obstacles stem from the fact of variable complexity of solutions
evolved in GP. Implementation of GP will benefit in the coming years from
new approaches which include research from developmental biology. Also, it
will be necessary to learn to handle the redundancy forming pressures in the

evolution of code.

Application of GP will continue to broaden. Many applications focus on con-
trolling behavior of real or virtual agents. In this role, Genetic Programming
may contribute considerably to the growing field of social and behavioral
simulations. Genetic Algorithms have already been found beneficial in op-
timizing strategies of social agents [4]. With its ability to adjust the com-
plexity of a strategy to the environment and to allow competition between
agents, GP is well positioned to play an important role in the study and

simulation of societies and their evolution.

11

Bibliography

[1] Banzhaf W, Nordin P, Keller, R and Francone F 1998 Genetic Programming -

An Introduction. Morgan Kaufmann, San Francisco, CA

[2] Fogel L, Owens A and Walsh M 1966 Artificial Intelligence through Simulated

Fvolution. Wiley, New York

[3] Friedberg R M 1958 A Learning Machine: Part I. IBM Journal of Research and

Development. 2: 2-13

[4] Gilbert N and Troitzsch K 1999 Simulation for the Social Scientist. Open

University Press, Buckingham, UK

[5] Goldberg D 1989 Genetic Algorithms in Search, Optimization and Machine

Learning. Addison Wesley, Reading, MA

[6] Holland J 1975 Adaptation in natural and artificial systems. University of

Michigan Press, Ann Arbor, MI

[7] Koza J 1992 Genetic Programming. MIT Press, Cambridge, MA

[8] Koza J, Andre D, Bennett F and Keane M 1999 Genetic Programming III:
Darwinian Invention and Problem Solving. Morgan Kaufmann, San Francisco,

CA

[9] Langdon W 1999 Boolean function fitness spaces. In: Poli R, Nordin P Langdon,

W and Fogarty T (eds.) Proceedings FuroGP’99. Springer, Berlin

12

[10] Michalewicz 7 1996 Genetic Algorithms + Data Structures = FEvolution

Programs. Springer, Berlin

[11] Ryan C 2000 Automatic Re-engineering of Software Using Genetic

Programming. Kluwer Academic, Boston, MA

[12] Samuel A 1963 Some studies in machine learning using the game of checkers.
In: Feigenbaum E and Feldman J (eds.) Computers and Thought. McGraw-Hill,

New York

[13] Schwefel H P 1981 Numerical Optimization of Computer Models. Wiley,

Chichester

[14] Sterling T, Salmon J, Becker D and Savarese D 1999 How to Build a Beowulf:
A Guide to the Implementation and Application of PC Clusters. MIT Press,

Cambridge, MA

[15] Turing A 1950 Computing Machinery and Intelligence. Mind. 59: 433-460

[16] Vose M 1999 The simple Genetic Algorithm: Foundations and Theory. MIT

Press, Cambridge, MA

