
European Journal of Operational Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
Contents lists available at ScienceDirect

European Journal of Operational Research

journal homepage: www.elsevier .com/locate /e jor
Discrete Optimization

A study of heuristic combinations for hyper-heuristic systems
for the uncapacitated examination timetabling problem

N. Pillay a,*, W. Banzhaf b

a School of Computer Science, University of KwaZulu-Natal, King Edward Road, Pietermaritzburg Campus, Pietermaritzburg, KwaZulu-Natal 3201, South Africa
b Department of Computer Science, Memorial University of Newfoundland, St. John’s, NL, Canada A1B 3X5
a r t i c l e i n f o

Article history:
Received 12 January 2007
Accepted 18 July 2008
Available online xxxx

Keywords:
Timetabling
Heuristics
0377-2217/$ - see front matter � 2008 Elsevier B.V. A
doi:10.1016/j.ejor.2008.07.023

* Corresponding author. Tel.: +27 33 2605644; fax:
E-mail addresses: pillayn32@ukzn.ac.za (N.

(W. Banzhaf).

Please cite this article in press as: Pillay, N
nal of Operational Research (2008), doi:10
a b s t r a c t

Research in the domain of examination timetabling is moving towards developing methods that gener-
alise well over a range of problems. This is achieved by implementing hyper-heuristic systems to find the
best heuristic or heuristic combination to allocate examinations when constructing a timetable for a
problem. Heuristic combinations usually take the form of a list of low-level heuristics that are applied
sequentially. This study proposes an alternative representation for heuristic combinations, namely, a
hierarchical combination of heuristics. Furthermore, the heuristics in each combination are applied
simultaneously rather than sequentially. The study also introduces a new low-level heuristic, namely,
highest cost. A set of heuristic combinations of this format have been tested on the 13 Carter benchmarks.
The quality of the examination timetables induced using these combinations are comparable to, and in
some cases better than, those produced by hyper-heuristic systems combining and applying heuristic
combinations sequentially.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Numerous methodologies including graph-based techniques,
constraint-based methods, local search, ant algorithms and meta-
heuristics such as simulated annealing and genetic algorithms,
have been applied to the examination timetabling problem (Qu
et al., 2008). While previous attempts in this domain have been
aimed at developing techniques that produce the best results for
one or more data sets, currently research is being directed at creat-
ing methods that generalise well so as to promote the movement
of systems out of the research lab and into educational institutions
(McCollum, 2007). This has led to the development of hyper-heu-
ristics systems (Burke et al., 2003; Ross, 2005) which produce heu-
ristics or a combination of heuristics to be used in the generation of
examination timetables.

A combination of heuristics usually takes the form of a list of
low-level heuristics. The study presented in this paper concen-
trates on construction heuristics. In this context each heuristic is
applied in order to choose one or more examinations to schedule
next during timetable construction. The study presented in this pa-
per tests the effect of combining low-level heuristics hierarchically
and applying them simultaneously instead of sequentially. The
low-level heuristics comprising each combination includes the
standard graph heuristics, namely, largest degree, largest enrol-
ll rights reserved.

+27 33 2605648.
Pillay), banzhaf@cs.mun.ca

., Banzhaf, W., A study of heu
.1016/j.ejor.2008.07.023
ment, largest weighted degree and saturation degree, and a new
heuristic, highest cost. A set of four heuristic combinations con-
structed and applied according to this new approach were used
to generate solutions to the 13 Carter benchmark problems. The
quality of the timetables produced by these combinations were
found to be just as good as and in some cases better than the
timetables constructed using heuristic combinations induced by
hyper-heuristic systems representing and applying heuristic com-
binations sequentially. Thus, the main contribution of this study is
a new approach to combining and applying low-level heuristics
that can be employed by hyper-heuristic systems and a new low-
level heuristic, highest cost.

The following section defines the examination timetabling
problem. Section 3 provides an overview of examination timet-
abling research and discusses some of the studies that have made
a contribution to this field. Previous studies employing the use of
heuristic combinations in the sequential construction of solutions
to the examination timetabling problem are summarised in Section
4. Section 5 describes the four heuristic combinations and the over-
all system implemented to generate solutions to the examination
timetabling problem. The methodology employed to evaluate
these four heuristic combinations is presented in Section 6. Section
7 discusses the performance of the four heuristic combinations on
the set of 13 Carter benchmarks. The results obtained by the four
combinations on the Carter benchmark set is compared to that of
other heuristic combinations produced by hyper-heuristic systems,
the results of some of the earlier examination timetabling problem
studies and methods that have obtained the best results in this
ristic combinations for hyper-heuristic systems ..., European Jour-

mailto:pillayn32@ukzn.ac.za
mailto:banzhaf@cs.mun.ca
http://www.sciencedirect.com/science/journal/03772217
http://www.elsevier.com/locate/ejor

2 N. Pillay, W. Banzhaf / European Journal of Operational Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
field. A summary of the findings of this study and future extensions
of this research is presented in Section 8.
2. The examination timetabling problem

The examination timetabling problem involves scheduling a gi-
ven set of exams in a given number of examination sessions so as
not to violate any hard constraints and to minimise the soft con-
straints violated (Qu et al., 2008).

Hard constraints are those constraints that must be met by the
timetable in order for the timetable to be feasible. For example,
there should not be any clashes, i.e. students should not be re-
quired to write two exams at the same time. Soft constraints are
constraints that we would like the timetable to satisfy, but can
be broken if necessary. For example, students’ examinations must
be well spaced over the timetable; examinations with a large num-
ber of students must be scheduled early in the examination time-
table. It is highly unlikely that all the soft constraints will be met
by a timetable as these are usually contradictory. Timetabling sys-
tems attempt to minimise the number of soft constraints violated.
It is evident from the literature (Burke et al., 1996; Burke and Pet-
rovic, 2002; McCollum, 2007; Qu et al., 2008; Schaerf and Di Gasp-
ero, 2006; Ranson and Ahmadh, 2007) that the hard and soft
constraints differ considerably from one examination timetabling
problem to the next and are institution dependant. For example,
some versions of the problem may require the number of examina-
tion sessions used to be minimised; some examinations may have
to be scheduled simultaneously or after other exams; special
requirements of students, such as religious requests, may need to
be catered for.

An examination timetabling problem may be capacitated or
uncapacitated. In the capacitated version of the problem venue
allocation is taken into consideration and the number of students
writing examinations in a particular venue and session must not
exceed the capacity of the venue. This is treated as a hard
constraint.

The research presented in this paper focuses on the uncapaci-
tated examination timetabling problem. The following section pro-
vides an overview of previous studies that have made a
contribution to the domain of uncapacitated examination
timetabling.
3. Previous work

A vast amount of research has been conducted in the domain of
examination timetabling with various methodologies being ap-
plied to the uncapacitated examination timetabling problem in
an attempt to produce better quality timetables. Burke and Petro-
vic (2002), McCollum (2007) and Qu et al. (2008) provide an over-
view of the research in this field. This section describes those
methods cited in the literature as making a contribution to the
field.

Research in this domain was initiated by Carter et al. (1996)
with the EXAMINE system which was used to generate timetables
for real world problems. The EXAMINE system basically employed
a sequential construction method to allocate examinations. The
examinations were firstly ordered according to their difficulty
using one of five low-level heuristics, namely, largest degree, satu-
ration degree, largest weighted degree, largest enrolment and ran-
dom ordering. The examinations were allocated sequentially in
order. In the case of conflicts, i.e. an allocation would result in a
clash, backtracking was performed to reallocate examinations so
as to remove the clash. In some cases this process resulted in some
exams being moved to a waiting list and reallocated at a later
stage. EXAMINE was successfully applied to a set of randomly gen-
Please cite this article in press as: Pillay, N., Banzhaf, W., A study of heu
nal of Operational Research (2008), doi:10.1016/j.ejor.2008.07.023
erated test problems and 13 real world problems. These 13 real
world problems have become known as the Carter benchmarks
and new developments in the field are usually tested on this set
of problems. The saturation degree heuristic was found to produce
the best computational time (i.e. the time taken to find a feasible
solution), while the largest degree followed by the largest enrol-
ment produced the best solution costs (i.e. cost of the soft
constraint).

One of the earlier meta-heuristics methods applied to the
examination timetabling problem was the Tabu search used by
Di Gaspero and Schaerf (2001) to explore a space of graphs with
the nodes representing the examinations and edges joining con-
flicting exams. Node weights specified the number of students
writing the examination and edge weights the number of students
involved in a particular clash. The Tabu search was successfully ap-
plied to 12 of the Carter benchmarks.

The system implemented by Caramia et al. (2008) appears to
have made a major contribution to this domain and has produced
the best quality timetables for a number of the Carter benchmarks.
The system is composed of a greedy scheduler, a penalty decreaser
and a penalty trader. The greedy scheduler allocates examinations
according to their priority value, namely, the number of conflicts,
to a clash-free timeslot that produces the minimum soft constraint
cost. The soft constraint costs are further reduced by the penalty
decreaser and the penalty trader. The penalty trader introduces a
new timeslot for this purpose.

Casey and Thompson (2003) have used the GRASP system to
generate solutions to the Carter benchmarks. This system takes a
two-phased approach to the examination timetabling problem.
The first phase produces a feasible timetable by allocating the
examinations, which are sorted in order according to a low-level
heuristic, to a clash-free slot. In the case that a clash-free timeslot
cannot be found, backtracking is performed to rearrange the sched-
uled examinations so as to remove the clash. During the second
phase simulated annealing is used to optimise the soft constraint
costs.

Merlot et al. (2003) also take a hybrid approach to the examina-
tion timetabling problem. The system uses constraint program-
ming to create an initial solution. This initial solution is refined
by firstly applying simulated annealing and then hill-climbing. At
the end of the hill-climbing phase a greedy heuristic is used to
schedule any unallocated examinations. This system performed
comparably to other methodologies applied to the Carter
benchmarks.

More recent studies in the field include the three variations of
very large-scale neighbourhood search proposed by Meyers and
Orlin (2007) and the evaluation of a genetic algorithm using a lin-
ear linkage encoding representation by Ulker et al. (2007). Of the
later studies those that are most relevant to the research presented
in this paper are the Flex-Deluge algorithm implemented by Burke
and Bykov (2006a), the variable neighbourhood search and genetic
algorithm hybrid system tested by Burke et al. (2006b), the appli-
cation of ant colonisation to the examination timetabling problem
by Eley (2007) and the Ahuja–Orlin large neighbourhood search
employed by Abdullah et al. (2007).

The Flex-Deluge algorithm is a variation of the Great Deluge
algorithm which incorporates a form of hill-climbing. This system
has been successfully applied to the Carter benchmarks and has
outperformed other methodologies on some of the data sets.

Burke et al. (2006b) have implemented a variation of the vari-
able neighbourhood search (VNS) which uses a genetic algorithm
to select the most suitable subset of neighbourhoods, from a set
of 23 such neighbourhoods, for the examination timetabling prob-
lem at hand. The VNS is applied to a feasible timetable which is
constructed by allocating examinations in order, according to the
largest degree heuristic, to a feasible period. The main aim behind
ristic combinations for hyper-heuristic systems ..., European Jour-

N. Pillay, W. Banzhaf / European Journal of Operational Research xxx (2008) xxx–xxx 3

ARTICLE IN PRESS
using the genetic algorithm is to produce a system that can gener-
alise well over a range of examination timetabling problems. This
system was applied to the Carter benchmarks and produced the
best results cited thus far for two of the datasets.

Eley (2007) applies the MMAS (Max–min ant system) ant colo-
nisation algorithm to the uncapacitated examination timetabling
problem. The first phase of the algorithm is comprised of a number
of iterations during which the ants create feasible timetables. Dur-
ing this phase examinations are scheduled according to the lowest
saturation degree. Hill-climbing is then used to further improve
the quality of the best timetable found in phase 1. The results pro-
duced by this system are comparative to other methods applied to
the Carter benchmarks.

Abdullah et al. (2007) employ a variation of the Ahuja–Orlin
algorithm to find solutions to the Carter benchmarks. The algo-
rithm begins by dividing the examinations, according to the satu-
ration degree heuristic, into cells with each cell corresponding to
a timeslot. The cells form input to a cyclic exchange process to pro-
duce a very large-scale neighbourhood. A network flow optimisa-
tion technique, which employs the use of an improvement graph
to identify the most appropriate neighbourhood to move to, is used
to search the very large-scale neighbourhood. The system per-
formed well on the Carter benchmarks although in some cases
the runtime was high.

The studies discussed thus far have focussed on improving the
quality of timetables generated for the Carter benchmarks. A more
recent direction of research in the domain of examination timet-
abling is aimed at developing systems that generalise well over a
range of problems rather than producing the best results for a
few problems. This has led to the development of hyper-heuristic
systems for the examination timetabling problem. Burke et al.
(2003) and Ross (2005) provide an overview of hyper-heuristics
in general. Hyper-heuristic systems automatically produce a prob-
lem-specific heuristic or a combination of low-level heuristics,
which is used to allocate examinations in a particular order. The
heuristics comprising a hyper-heuristic have varied from low-level
heuristics for timetable construction, improvement heuristics or
neighbourhood move operators (Kendall and Hussin, 2005), strate-
gies for heuristic selection and move acceptance (Bilgin et al.,
2007) and hill-climbers (Ersoy et al., 2007). The study presented
in this paper focuses on construction heuristics and hence the dis-
cussion that follows is limited to those studies that use construc-
tive heuristics or a combination of constructive and other types
of heuristics. It is evident from the literature surveyed that hy-
per-heuristic systems employ one of two approaches in deciding
on which constructive heuristic to apply next. The first either iden-
tifies or adapts an existing heuristic to be applied at each stage of
the construction process, while the second approach optimises a
search space of heuristic combinations, i.e. lists of low-level
heuristics.

Studies employing the first approach include Burke et al.
(2006c), Burke and Newall (2004), Yang and Petrovic (2004), Ken-
dall and Hussin (2005) and Ross et al. (2004). In the study con-
ducted by Burke and Newall heuristic values are iteratively
adapted based on their performance. Initially, one of five low-level
heuristics is used to order the examinations. The initial heuristic
value assigned to each examination is modified on the next itera-
tion if either the examination could not be scheduled as a result
of a clash or the soft constraint costs associated with scheduling
the exam exceeds a preset limit. Burke et al. and Yang and Petrovic
use case-based reasoning to determine which heuristic to apply to
order examinations during each stage of the construction process.
A case base of previously solved examination timetabling problems
is maintained. When solving a new examination timetabling prob-
lem a similarity measure is used to decide which heuristic to apply
next. The heuristic is used as is or adapted if necessary. Yang and
Please cite this article in press as: Pillay, N., Banzhaf, W., A study of heu
nal of Operational Research (2008), doi:10.1016/j.ejor.2008.07.023
Petrovic use a Tabu search to explore the space of similarity mea-
sures and the Great Deluge algorithm to search the timetable
space. Instead of a case-based approach Kendall and Hussin use a
Tabu search and Ross et al. apply a steady state genetic algorithm
to decide on which heuristic to apply next. In the study conducted
by Kendall and Hussin hyper-heuristics include both construction
heuristics and neighbourhood heuristics.

The study presented in this paper focuses on the second ap-
proach taken by hyper-heuristic systems, i.e. the generation of
combinations of low-level construction heuristics. The following
section provides an overview of previous studies investigating
the generation of heuristic combinations.

4. Heuristic combinations and the examination
timetabling problem

Hyper-heuristic systems producing combinations of low-level
heuristics employ an optimisation technique to search the space
of heuristic combinations. The search is driven by the cost of the
timetable constructed using each combination. This section pro-
vides an overview of previous work producing heuristic combina-
tions of low-level heuristics.

The idea of optimising a search space of heuristic combinations
to find solutions to the examination timetabling problem was
introduced by Burke et al. (2005) who employed a Tabu search
to explore the space of combinations of the largest degree and sat-
uration degree heuristics. The initial list is composed of only the
saturation degree heuristic. The Tabu search is then applied to this
initial list to generate a heuristic combination that produces the
best quality timetable. At each stage of the process the perfor-
mance of the heuristic combination is evaluated by assessing the
quality of the timetable constructed using the combination. The
timetable is constructed by applying each heuristic in the list
sequentially to schedule three examinations. The system was ap-
plied to a set of randomly generated problems and four of the Car-
ter benchmarks.

Asmuni et al. (2004) implement a fuzzy logic expert system to
combine heuristics. The fuzzy expert system uses a form of exhaus-
tive search to fine tune the fuzzy terms. The fuzzy logic system
produces combinations of two of the following heuristics: largest
degree, saturation degree and largest enrolment. The combination
output by the system is in the form of a fuzzy weight indicating the
difficulty of scheduling the particular examination. Thus, each heu-
ristic in the combination is applied simultaneously as a single va-
lue. A sequential construction method sorts the examinations in
decreasing order based on their fuzzy weight values and the exam-
inations are allocated sequentially in this order. Each exam is allo-
cated to the period which produces the minimum penalty. In the
case of clashes deallocation and reallocation of examinations is
performed. The fuzzy system was tested on 12 of the Carter bench-
marks. The combination of two heuristics was found to produce
better results than using single heuristics to order examinations.
The best results were produced by a combination of the saturation
degree and largest enrolment heuristics. This combination pro-
duced the best results for 11 of the 12 benchmarks. The perfor-
mance of this system was also found to be comparable to that of
other methodologies applied to the Carter benchmarks.

Qu and Burke (2005) apply a hybrid variable neighbourhood
search (VNS) to the heuristic space to identify heuristic lists that
produce high quality examination timetables. Each list is essen-
tially a combination of different low-level heuristics. The low-level
heuristics used are colour degree, largest degree, largest enrol-
ment, largest weighted degree, saturation degree and random
ordering. The VNS uses one of two neighbourhood sets. The first
is obtained by randomly changing two to five heuristics in different
parts of the list (VNS1). The second involves randomly changing
ristic combinations for hyper-heuristic systems ..., European Jour-

4 N. Pillay, W. Banzhaf / European Journal of Operational Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
two to five heuristics in sequence, i.e. a block of heuristics (VNS2).
The heuristic list output by the VNS is used to construct a timetable
by applying each heuristic sequentially to order the examinations
not yet scheduled. The most difficult exam is allocated to the per-
iod with the minimum penalty and the next heuristic in the list is
applied to the remaining examinations and the process is repeated.
The system was tested on 11 of the Carter benchmarks. The results
obtained are comparable to that cited in the literature.

Burke et al. (2007) employ a similar approach to induce se-
quences of low level heuristics. In this study a Tabu search is used
instead of a VNS to search the heuristic space for a heuristic list
that produces the best quality timetable. Each list is comprised
of two or more of the following low-level heuristics: least satura-
tion degree, largest colour degree, largest degree, largest weighted
degree, largest enrolment and random ordering. Each heuristic in
the list is used to schedule two examinations. The initial heuristic
list for all experiments is composed of only the saturation degree
heuristic. The system was applied to 11 of the Carter benchmarks.
Three runs were performed for each problem. The performance of
this system comes close to those producing the best results in this
domain.

The following section describes the heuristic combinations and
the overall system implemented in the study presented in this
paper.

5. Heuristic combinations and overall system

The main aim of the study presented in this paper is to test a
new approach that can be used by hyper-heuristic systems to com-
bine and apply low-level heuristics. This section describes the new
approach and the overall system implemented to test it. Note that
a hyper-heuristic system has not been implemented to generate
heuristic combinations of this format. The heuristic combinations
are tested individually. If this study reveals that the performance
of these combinations created using the new approach show po-
tential, future work will focus on implementing a hyper-heuristic
system employing an optimisation method, such as genetic pro-
gramming, to explore the space of heuristic combinations of this
format.

This study differs from previous work in that the heuristics are
combined hierarchically into heuristic combinations and the heu-
ristics are applied simultaneously. Combinations of the following
low-level heuristics are used in this study:

� Largest degree (LD) – The number of conflicts an examination is
involved in. The exam with the largest number of conflicts is
scheduled first.

� Largest enrolment (LE) – The number of students enrolled for
the course. The examination with the largest student enrolment
is scheduled first.

� Largest weighted degree (LWD) – The examination with the
largest number of conflicting students is scheduled first.

� Saturation degree (SD) – The number of remaining periods that
an exam can be allocated to without causing a clash, i.e. the
number of feasible periods. A smaller value indicates an exami-
nation that is more difficult to schedule.

� Highest cost (HC) – The soft constraint cost of scheduling
an examination given the current state of the timetable. The
cost of scheduling each examination is calculated using the
function in Fig. 1. The weight function used in Fig. 1 is defined
in Fig. 2. The examination with the highest cost is scheduled
first.

The heuristics LD, LE and LWD can be calculated prior to the
construction process and remain static throughout the process.
The values of SD and HC are dependant on the current status of
Please cite this article in press as: Pillay, N., Banzhaf, W., A study of heu
nal of Operational Research (2008), doi:10.1016/j.ejor.2008.07.023
the timetable and have to be recalculated after each exam
allocation.

In this study each combination consists of p primary heuristics
and a secondary heuristic, with p P 2. When ordering examina-
tions the values of all p primary heuristics in the combination
are compared for each examination, i.e. a vector or Pareto compar-
ison is performed. The p heuristics are combined using logical
operators. For example, suppose that SD and HC are chosen as pri-
mary heuristics. A comparison using these heuristics is illustrated
in Fig. 3. One of the primary heuristics is defined as the priority
heuristic. This heuristic is given priority in conflict situations. For
example, in Fig. 3 SD is the priority heuristic. Thus, in the case
where e1.sd < e2.sd and e1.hc < e2.hc, e1 is scheduled first, i.e. SD
is given priority over HC. In this example a secondary heuristic is
not used.

A secondary heuristic is used to break ties during the compari-
son process. If a secondary heuristic is not specified examinations
involved in a tie are scheduled sequentially. Fig. 4 lists an example
of a Pareto comparison for a combination of primary heuristics SD
and HC and secondary heuristic LD. Note that SD is the priority
heuristic in this combination. The use of a secondary heuristic
and a priority heuristic allows for a hierarchical rather than a
sequential comparison.

The main aim of this study is to test this new approach to com-
bining heuristics. If the results obtained are promising future work
will investigate automatically generating the different combina-
tions of primary, secondary and priority heuristics and inducing
the most effective heuristic combination for a particular problem
domain by applying genetic programming to search the space of
heuristic combinations. Preliminary experimentation with the dif-
ferent low-level heuristics have revealed that SD reduces the com-
putational time associated with inducing feasible timetables while
HC helps to minimise the soft constraint cost. Although it may take
longer to compute the SD heuristic compared to other heuristics,
the SD results in a feasible solution being found quicker than the
other graph heuristics.

Thus, it was decided to study the following heuristic combina-
tions to assess the effectiveness of the new approach:

� SD–HC – SD and HC are defined as the primary heuristics, with
SD defined as the priority heuristic. Secondary heuristics are not
used in this case. In the case of a tie, exams are allocated
sequentially.

� SD–HC(LD) – SD and HC are defined as the primary heuristics,
with SD defined as the priority heuristic. LD is used as the sec-
ondary heuristic.

� SD–HC(LWD) – SD and HC are defined as the primary heuristics,
with SD defined as the priority heuristic. LWD is defined as the
secondary heuristic.

� SD–HC (LE) – SD and HC are defined as the primary heuristics,
with SD defined as the priority heuristic. LE is used as the sec-
ondary heuristic.

Each timetable is constructed by firstly applying the heuristic
combination to order the examinations using a Pareto comparison
of the primary heuristics in the combination and secondary heuris-
tic (if defined) to break ties. The overall process is depicted in Fig. 5.

Each examination is allocated to the minimum penalty period,
i.e. a clash-free period that produces the minimum soft constraint
cost. If there is more than one such period, the period is randomly
chosen from the set of minimum cost periods. The algorithm for
determining the best period is illustrated in Fig. 6 with the corre-
sponding cost function defined in Fig. 7. The weight function re-
ferred to in Fig. 7 is the same function defined in Fig. 2. Note
that there are no mechanisms built into the system to ensure that
a feasible timetable is constructed.
ristic combinations for hyper-heuristic systems ..., European Jour-

function calc_hc(exam e)
begin
 hc = 0
 for each exam ej other than e
 begin
 if(ej has students in common with e and ej has already been scheduled)
 begin
 for each period p

begin
dist = the absolute value of the distance between p and the period ej

 has been allocated to
 cost = weight(dist) * the number of students common to both exams
 hc= hc + cost
 endfor
 endfor
 return hc
end

Fig. 1. Pseudo code for calculating the HC heuristic for examination e.

procedure weight (dist d)
begin
 case of d
 1: return 16
 2: return 8
 3: return 4
 4: return 2
 5: return 1
 default : return 0
 endcase
end

Fig. 2. Weight function.

compare(exam e1, exam e2)
begin
 if (e1.sd == e2.sd and e1.hc != e2.hc)
 if (e1.hc > e2.hc)
 schedule e1 first
 else
 schedule e2 first
 else if(e1.hc == e2.hc and e1.sd != e2.sd)
 if(e1.sd > e2.sd)
 schedule e2 first
 else
 schedule e1 first
 else if (e1.sd < e2.sd and e1.hc > e2.hc)
 schedule e1 first
 else if (e1.sd > e2.sd and e1.hc < e2.hc)
 schedule e2 first
 else if (e1.sd < e2.sd and e1.hc < e2.hc)
 schedule e1 first
 else if(e1.sd > e2.sd and e1.hc > e2.hc)
 schedule e2 first
 else
 either examination can be scheduled first
end

Fig. 3. A Pareto comparison for the combination of SD and HC, with SD defined as
the priority heuristic.

compare(exam e1, exam e2)
begin
 if (e1.sd == e2.sd and e1.hc != e2.hc)
 if (e1.hc > e2.hc)
 schedule e1 first
 else
 schedule e2 first
 else if(e1.hc == e2.hc and e1.sd != e2.sd)
 if(e1.sd > e2.sd)
 schedule e2 first
 else
 schedule e1 first
 else if (e1.sd < e2.sd and e1.hc > e2.hc)
 schedule e1 first
 else if (e1.sd > e2.sd and e1.hc < e2.hc)
 schedule e2 first
 else if (e1.sd < e2.sd and e1.hc < e2.hc)
 schedule e1 first
 else if(e1.sd > e2.sd and e1.hc > e2.hc)
 schedule e2 first
 else
 if(e1.ld > e2.ld)
 schedule e1 first
 else if(e1.ld < e2.ld)
 schedule e2 first
 else
 either examination can be scheduled first
end

Fig. 4. A Pareto comparison for the combination with primary heuristics SD and HC,
SD is the priority heuristic and LD the secondary heuristic.

N. Pillay, W. Banzhaf / European Journal of Operational Research xxx (2008) xxx–xxx 5

ARTICLE IN PRESS

Please cite this article in press as: Pillay, N., Banzhaf, W., A study of heu
nal of Operational Research (2008), doi:10.1016/j.ejor.2008.07.023
Once a timetable is constructed it is not optimised to further re-
duce the soft constraint cost. If more than one minimum cost per-
iod exists for a particular examination, the period the examination
is allocated to is randomly chosen from the list of possible candi-
dates. This introduces an element of selection noise into the pro-
cess, i.e. if a different period is chosen this could lead to a better
quality timetable being constructed. To overcome this problem n
distinct timetables are constructed and the timetable with the
ristic combinations for hyper-heuristic systems ..., European Jour-

1. Order the examinations according to the heuristic
combination

2. While there are examinations that have not been
scheduled

a) Allocate the most difficult exam to the
minimum penalty period.

b) Order the remaining examinations according
to the heuristic combination.

EndWhile

Fig. 5. Algorithm for constructing a timetable.

For 1 to n
 Repeat
 Construct a timetable using the algorithm in Figure 5

Until the timetable is different from those already constructed
EndFor
Return the timetable with the lowest proximity cost as a solution

Fig. 8. Algorithm implemented by the overall system.

6 N. Pillay, W. Banzhaf / European Journal of Operational Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
minimum cost is reported as the solution. In this study a value of
1000 was used for n. The overall approach is depicted in Fig. 8.

The following section outlines the methodology employed to
test the performance of the four heuristic combinations.

6. Problem description and experimental setup

The different heuristic combinations were tested on real world
examination timetabling problems, namely, the 13 Carter bench-
marks listed in Table 1. Please note that there are two versions of
some of these benchmarks (Qu et al., 2008) and the ‘‘I” indicates
which version has been used.

The Carter set of benchmarks is generally used to test different
approaches to the uncapacitated examination timetabling problem
(Schaerf and Di Gaspero, 2006). The hard constraint for this set of
benchmarks is that no student must be scheduled to write more
than one examination at the same time, i.e. there must be no
clashes. The soft constraint for this data set requires the examina-
10

1. For each period p
if assigning e to p causes a clas
 the cost assigned to p is the m
else

calculate the cost of schedulin
functions defined in Figure 7

2. Sort the periods in ascending ord
3. Choose the period p with lowest

than one period with the lowest c
chosen from the set of periods w

Fig. 6. Algorithm for finding the be

function calc_cost(exam e, period p, tot
begin
 cost = 0
 for each exam ej other than e
 begin
 if(ej has students in common with e
 begin

dist = the absolute value of the dist
 has been allocated to

 ecost = weight(dist) * the number o
 cost = cost + ecost
 endfor
 return cost/n
end

Fig. 7. Pseudo code for the function used to calcul

Please cite this article in press as: Pillay, N., Banzhaf, W., A study of heu
nal of Operational Research (2008), doi:10.1016/j.ejor.2008.07.023
tions to be well spaced. The proximity cost function in Eq. (1), de-
fined by Carter et al. (1996), is used to assess the quality of a
timetable in terms of how well the examinations are spread. We
aim to minimise the cost of this function for each examination
timetabling problem.
P

wðjei � ejjÞNij

S
; ð1Þ

where:

(1) jei minus ejj is the distance between the periods of each pair
of examinations (ei,ej) with common students.

(2) Nij is the number of students common to both examinations.
3) S is the total number of students.
4) it w(1) = 16, w(2) = 8, w(3) = 4, w(4) = 2 and w(5) = 1, i.e. the

smaller the distance between periods the higher the weight
allocated. Note for n > 5, w(n) = 0.

The system was implemented in Java using JDK 1.4.2 and simu-
lations were run on an Apple iMac with a 2.16 MHz Intel Core 2
Duo processor and 1 GB of memory. Ten runs, each using a differ-
h then
aximum double value

g exam e in period p using the

er according to the calculated cost.
cost for exam e. If there is more
ost, the period p is randomly
ith the lowest cost.

st period p for examination e.

al number of students n)

and ej has already been scheduled)

ance between p and the period ej

f students common to both exams

ate the cost of scheduling exam e in period p.

ristic combinations for hyper-heuristic systems ..., European Jour-

Table 1
Carter benchmarks

Problem Institution Periods No. of
exams

No. of
students

Density of
conflict
matrix

car-f-92 I Carleton University,
Ottawa

32 543 18,419 0.14

car-s-91 I Carleton University,
Ottawa

35 682 16,925 0.13

ear-f-83 I Earl Haig Collegiate
Institute, Toronto

24 190 1125 0.27

hec-s-92 I Ecole des Hautes Etudes
Commerciales, Montreal

18 81 2823 0.42

kfu-s-93 King Fahd University of
Petroleum and Minerals,
Dharan

20 461 5349 0.06

lse-f-91 London School of
Economics

18 381 2726 0.06

pur-s-93 I Purdue University,
Indiana

43 2419 30,029 0.03

rye-s-93 Ryerson University,
Toronto

23 486 11,483 0.08

sta-f-83 I St Andrew’s Junior High
School, Toronto

13 139 611 0.14

tre-s-92 Trent University,
Peterborough, Ontario

23 261 4360 0.18

uta-s-92 I Faculty of Arts and
Sciences, University of
Toronto

35 622 21,266 0.13

ute-s-92 Faculty of Engineering,
University of Toronto

10 184 2749 0.08

yor-f-83 I York Mills Collegiate
Institute, Toronto

21 181 941 0.29

Table 2
Performance of the different heuristic combinations

Problem SD–HC SD–HC(LD) SD–HC(LWD) SD–HC(LE)

car-f-92 I Best: 4.33 Best: 4.28 Best: 4.31 Best: 4.31
Mean: 4.38 Mean: 4.36 Mean: 4.35 Mean: 4.35
Time: 7
minutes

Time: 7
minutes

Time: 7
minutes

Time: 7
minutes

car-s-91 I Best: 5.08 Best: 5.08 Best: 4.97 Best: 4.97
Mean: 5.13 Mean: 5.12 Mean: 5.10 Mean: 5.10
Time: 10
minutes

Time: 10
minutes

Time: 10
minutes

Time: 10
minutes

ear-f-83 I Best: 38.74 Best: 36.86 Best: 36.87 Best: 37.11
Mean: 39.55 Mean: 37.22 Mean: 37.16 Mean: 37.19
Time: 2
minutes

Time: 2
minutes

Time: 2
minutes

Time: 2
minutes

hec-s-92 I Best: 11.85 Best: 12.41 Best: 12.09 Best: 12.09
Mean: 11.85 Mean: 12.41 Mean: 12.09 Mean: 12.09
Time: 11
minutes

Time: 29
minutes

Time: 18
minutes

Time: 16
minutes

kfu-s-93 Best: 15.61 Best: 15.56 Best: 14.62 Best: 14.62
Mean: 15.62 Mean: 15.58 Mean: 14.62 Mean: 14.62
Time: 8
minutes

Time: 6
minutes

Time: 5
minutes

Time: 5
minutes

lse-f-91 Best: 11.14 Best: 11.20 Best: 11.15 Best: 11.14
Mean: 11.14 Mean: 11.22 Mean: 11.18 Mean: 11.15
Time: 2
minutes

Time: 2
minutes

Time: 2
minutes

Time: 2
minutes

pur-s-93 I Best: 4.73 Best: 4.75 Best: 4.74 Best: 4.74
Mean: 4.78 Mean: 4.80 Mean: 4.77 Mean: 4.78
Time: 1 hour
20 minutes

Time: 1 hour
27 minutes

Time: 1 hour
26 minutes

Time: 1 hour
26 minutes

rye-s-93 Best: 9.76 Best: 10.3 Best: 9.65 Best: 9.69
Mean: 9.80 Mean: 10.49 Mean: 9.70 Mean: 9.76
Time: 4
minutes

Time: 5
minutes

Time: 5
minutes

Time: 5
minutes

sta-f-83 I Best: 159.62 Best: 158.34 Best: 158.45 Best: 158.33
Mean: 159.68 Mean: 158.46 Mean: 158.54 Mean: 158.53
Time: 28
seconds

Time: 30
seconds

Time: 33
seconds

Time: 30
seconds

tre-s-92 Best: 8.54 Best: 8.84 Best: 8.5 Best: 8.48
Mean: 8.57 Mean: 8.90 Mean: 8.54 Mean: 8.52
Time: 2
minutes

Time: 2
minutes

Time: 2
minutes

Time: 2
minutes

uta-s-92 I Best: 3.47 Best: 3.4 Best: 3.41 Best: 3.41
Mean: 3.54 Mean: 3.43 Mean: 3.44 Mean: 3.44
Time: 9
minutes

Time: 9
minutes

Time: 9
minutes

Time: 9
minutes

ute-s-92 Best: 29.36 Best: 29.50 Best: 29.07 Best: 28.88
Mean: 29.37 Mean: 29.50 Mean: 29.09 Mean: 28.88
Time: 2
minutes

Time: 2
minutes

Time: 1
minute

Time: 1
minute

yor-f-83 I Best: 41.88 Best: 41.91 Best: 40.74 Best: 40.75
Mean: 41.88 Mean: 41.91 Mean: 41.52 Mean: 41.21
Time: 2 hours
30 minutes

Time: 2 hours
30 minutes

Time: 2
minutes

Time: 2
minutes

N. Pillay, W. Banzhaf / European Journal of Operational Research xxx (2008) xxx–xxx 7

ARTICLE IN PRESS
ent random number generator seed, were performed for each of
the 13 benchmarks. The results obtained are presented in the next
section.

7. Results and discussion

This section discusses the performance of the four heuristic
combinations on the 13 Carter benchmarks. Section 7.1 discusses
the results obtained for each of the heuristic combinations listed
in Section 5. In Section 7.2 the performance of the hierarchical
combinations of heuristics presented in this paper is compared to
other approaches combining heuristics. Section 7.2 also compares
the results obtained to that of some of the initial studies in this do-
main and that of methods cited in the literature as producing the
best quality timetable for at least one of the 13 Carter benchmarks.

7.1. Performance of the different heuristic combinations

Table 2 lists the best cost, the mean cost and the approximate
computational time for each heuristic combination when applied
to the Carter benchmarks. The cost for each timetable is calculated
using the proximity cost function defined in Eq. (1) (Section 6). The
best solutions generated are accessible from http://sat-
urn.cs.unp.ac.za/~nelishiap/et/heuristics.htm. The proximity costs
of each of these solutions are highlighted in Table 2. The mean cost
for a problem is the average of the proximity cost of the best solu-
tion obtained for each of the ten runs performed. The overall sys-
tem did not include mechanisms to ensure that feasible
timetables were produced. However, the heuristic combinations
produced feasible timetables for all the benchmarks. Generally dif-
ferent heuristic combinations were found to perform best on dif-
ferent data sets. The combination of SD and HC as primary
heuristics, with SD as the priority heuristic, and LE as the second-
ary heuristic produced the best overall results, performing just as
good as or better than the other heuristic combinations for 6 of
the 13 Carter benchmarks.
Please cite this article in press as: Pillay, N., Banzhaf, W., A study of heu
nal of Operational Research (2008), doi:10.1016/j.ejor.2008.07.023
The computational time for each heuristic combination is more
or less the same for all problems except the York Mills Collegiate
Institute data set. There is a marked difference between the time
taken by the SD–HC and SD–HC(LD) combinations when compared
to the computational time of the SD–HC(LWD) and SD–HC(LE)
combinations. A more detailed study of the performance of these
heuristic combinations was conducted to account for this
difference.

The first two heuristic combinations require more time as a re-
sult of having to perform additional iterations to find distinct time-
tables whereas the latter combinations find timetables, different
from the timetables already constructed, on the first iteration most
of the time. Thus, the heuristic combinations using LWD or LE as a
secondary heuristic tend to explore more of the search space for
the York Mills data set than the combination without a second-
ary heuristic or the combination that uses LD as a secondary
heuristic.
ristic combinations for hyper-heuristic systems ..., European Jour-

http://saturn.cs.unp.ac.za/~nelishiap/et/heuristics.htm
http://saturn.cs.unp.ac.za/~nelishiap/et/heuristics.htm

Table 3
The best results obtained by the heuristic combinations and hyper-heuristic systems

Problem Heuristic
combinations

Tabu search
(2005)

Fuzzy logic
expert system

VNS Tabu search
(2007)

car-f-92 I 4.28 – 4.56 4.7 4.84
car-s-91 I 4.97 – 5.29 5.4 5.41
ear-f-83 I 36.86 45.60 37.02 37.29 38.19
hec-s-92 I 11.85 – 11.78 12.23 12.72
kfu-s-93 14.62 – 15.81 15.11 15.76
lse-f-91 11.14 – 12.09 12.71 13.15
pur-s-93 I 4.73 – – – –
rye-s-93 9.65 – 10.35 – –
sta-f-83 I 158.33 158.2 160.42 158.8 158.19
tre-s-92 8.48 – 8.67 8.67 8.85
uta-s-92 I 3.4 4.52 3.57 3.54 3.88
ute-s-92 28.88 35.40 27.78 29.68 31.65
yor-f-83 I 40.74 – 40.66 43.0 40.13

Ta
bl

e
4

Th
e

re
su

lt
s

ob
ta

in
ed

by
m

et
ho

ds
ci

te
d

as
m

ak
in

g
a

co
nt

ri
bu

ti
on

to
th

e
fi

el
d

fo
r

th
e

Ca
rt

er
be

nc
hm

ar
ks

Pr
ob

le
m

C
ar

te
r

et
al

.(
19

96
)

D
i

G
as

pe
ro

an
d

Sc
h

ae
rf

(2
00

1)
C

ar
am

ia
et

al
.

(2
00

8)
M

er
lo

t
et

al
.

(2
00

3)
Y

an
g

an
d

Pe
tr

ov
ic

(2
00

4)
B

u
rk

e
an

d
B

yk
ov

(2
00

6a
)

B
u

rk
e

et
al

.
(2

00
6b

)
El

ey
(2

00
7)

A
bd

u
ll

ah
et

al
.

(2
00

7)

ca
r-

f-
92

I
6.

2
5.

2
6.

0
4.

3
3.

93
4.

42
3.

9
4.

8
4.

4
ca

r-
s-

91
I

7.
1

6.
2

6.
6

5.
1

4.
50

3.
74

4.
6

5.
7

5.
2

ea
r-

f-
83

I
36

.4
45

.7
29

.3
35

.1
33

.7
1

32
.7

6
32

.8
36

.8
34

.9
h

ec
-s

-9
2

I
10

.8
12

.4
9.

2
10

.6
10

.8
3

10
.1

5
10

.0
11

.3
10

.3
kf

u
-s

-9
3

14
.0

18
.0

13
.8

13
.5

13
.8

2
12

.9
6

13
.0

15
.0

13
.5

ls
e-

f-
91

10
.5

15
.5

9.
6

10
.5

10
.3

5
9.

83
10

.0
12

.1
10

.2
pu

r-
s-

93
I

3.
9

–
3.

7
–

–
–

–
5.

4
–

ry
e-

s-
93

7.
3

–
6.

8
–

8.
53

–
–

10
.2

8.
7

st
a-

f-
83

I
16

1.
5

16
0.

8
15

8.
2

15
7.

3
15

8.
35

15
7.

03
15

6.
9

15
7.

2
15

9.
2

tr
e-

s-
92

9.
6

10
.0

9.
4

8.
4

7.
92

7.
75

7.
9

8.
8

8.
4

u
ta

-s
-9

2
I

3.
5

4.
2

3.
5

3.
5

3.
14

3.
06

3.
2

3.
8

3.
6

u
te

-s
-9

2
25

.8
27

.8
24

.4
25

.1
25

.3
9

24
.8

2
24

.8
27

.7
26

.0
yo

r-
f-

83
I

41
.7

41
.0

36
.2

37
.4

36
.5

3
34

.8
4

34
.9

39
.6

36
.2

8 N. Pillay, W. Banzhaf / European Journal of Operational Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
The following section compares the performance of the heuris-
tic combinations applied in this study to those induced by other
approaches used to combine heuristics.

7.2. Comparison with previous studies

This section compares the performance of the heuristic combi-
nations used in this study to those produced by hyper-heuristic
systems and applied to the same version of the Carter benchmarks.
These studies include:

� The Tabu search applied by Burke et al. (2005) to the space of
combinations of the largest degree and saturation degree
heuristics.

� The fuzzy logic expert system employed by Asmuni et al. (2004).
� The VNS system used by Qu and Burke (2005) to search the heu-

ristic search space to obtain the heuristic combination that pro-
duces the best quality timetable.

� The Tabu search implemented by Burke et al. (2007).

These studies are described in detail in Section 4. The best prox-
imity cost obtained by these methods and the heuristic combina-
tions used in the study presented in this paper are listed in Table
3. The best costs are highlighted. Note that the four studies that
the heuristic combinations are compared to have employed a
search to find the best heuristic combination, i.e. the space of heu-
ristic combinations has been optimised whereas no optimisation is
performed by the system presented in this paper. It is evident from
Table 3 that the results obtained by the new approach used to com-
bine and apply low-level heuristics, incorporating the use of HC,
are comparable to that produced by hyper-heuristic methods. For
8 of the Carter benchmarks this approach has produced the best
proximity costs when compared to those of heuristic combinations
induced by the hyper-heuristic systems.

Although the study presented in this paper focuses on produc-
ing a methodology that generalises well over a spectrum of prob-
lems rather than a problem specific method that produces good
results for one or more datasets, the performance of this method
is compared to the best results cited in the literature for the Carter
benchmarks to assess the potential of this methodology. The fol-
lowing studies have been cited in the literature as making a contri-
bution to the field and have been applied to the same version of the
Carter benchmarks used in this study:

� The EXAMINE system implemented by Carter et al. (1996).
� The Tabu search applied by Di Gaspero and Schaerf (2001).
� The sequential construction and backtracking methodologies

employed by Caramia et al. (2008).
Please cite this article in press as: Pillay, N., Banzhaf, W., A study of heuristic combinations for hyper-heuristic systems ..., European Jour-
nal of Operational Research (2008), doi:10.1016/j.ejor.2008.07.023

Table 5
A comparison of the results obtained by the heuristic combinations and best result
from Table 4

Problem Heuristic combinations Best result cited Difference

car-f-92 I 4.28 3.9 0.38
car-s-91 I 4.97 3.74 1.23
ear-f-83 I 36.86 29.3 7.56
hec-s-92 I 11.85 9.2 2.65
kfu-s-93 14.62 12.96 1.66
lse-f-91 11.14 9.6 1.54
pur-s-93 I 4.73 3.7 1.03
rye-s-93 9.65 6.8 2.85
sta-f-83 I 158.33 134.9 23.43
tre-s-92 8.48 7.75 0.73
uta-s-92 I 3.4 3.06 0.34
ute-s-92 28.88 24.4 4.48
yor-f-83 I 40.74 34.84 5.9

N. Pillay, W. Banzhaf / European Journal of Operational Research xxx (2008) xxx–xxx 9

ARTICLE IN PRESS
� The hybrid system used by Merlot et al. (2003).
� The hybrid case-based reasoning system implemented by Yang

and Petrovic (2004).
� The Flex-Deluge algorithm implemented by Burke and Bykov

(2006a).
� The ant colonisation approach tested by Eley (2007).
� The variable neighbourhood search and genetic algorithm

hybrid implemented by Burke et al. (2006b).
� The Ahuja–Orlin algorithm employed by Abdullah et al. (2007).

A detailed description of these studies is provided in Section 3.
Table 4 lists the results obtained in each of these studies and Table
5 tabulates the difference in the best results from Table 4 and the
results produced by the heuristic combinations. It is evident from
Tables 4 and 5 that even though the method described in this paper
only performs the construction phase and not an improvement
phase the results produced by this methodology is comparable to
the best results cited in the literature for the Carter benchmarks.
Furthermore, this method has produced better results than some
of the methodologies on a number of the benchmarks and outper-
formed the Tabu search on all of the benchmarks.

The results presented in this section show the effectiveness and
potential of hierarchical heuristic combinations as a general meth-
odology for producing good quality solutions to the uncapacitated
examination timetabling problem. Future work will investigate
automating the process of generating heuristic combinations so
as to explore more of the heuristic search space and hence investi-
gate the performance of more combinations. This will also allow
for the heuristic combinations to be tailored to each problem
domain.

8. Conclusion and future work

Hyper-heuristics systems choosing construction heuristics gen-
erally search a space of heuristics or a combination of low-level
heuristics to produce the best heuristic or combination to allocate
examinations during timetable construction. The study presented
in this paper focuses on heuristic combinations. The main aim of
this study is to test a new approach that can be used by hyper-heu-
ristic systems to combine and apply low-level heuristics. In previ-
ous work heuristic combinations usually consist of a list of low-
level heuristics that are applied sequentially. In this study the
low-level heuristics are combined hierarchically and applied
simultaneously. The study also presents a new low-level heuristic,
namely, highest cost.

Four heuristic combinations, constructed and applied using the
new approach, were tested on the set of 13 Carter benchmarks. In
all cases feasible timetables were generated. The results obtained
Please cite this article in press as: Pillay, N., Banzhaf, W., A study of heu
nal of Operational Research (2008), doi:10.1016/j.ejor.2008.07.023
clearly indicate the potential of combining and applying low-level
heuristics in this manner. The performance of these combinations
have been found to be comparable to heuristic combinations pro-
duced by hyper-heuristic systems in previous studies and in a
number of instances have outperformed the heuristic combina-
tions generated by these systems. Furthermore, the quality of the
timetables generated by this new approach is within range of the
best quality timetables cited in the literature even though the sys-
tem implemented in this study does not include an improvement
phase to further minimise the soft constraint cost. Thus, the main
contributions of this study are a new means of combining and
applying low-level heuristics that can be used by hyper-heuristic
systems, namely, the hierarchical combination of heuristics defin-
ing primary, secondary and priority heuristics and the simulta-
neous application of heuristics using a Pareto comparison as well
as a new low-level heuristic, highest cost. The next step would
be to implement a hyper-heuristic system to generate heuristic
combinations of this form. Such a system would apply an optimi-
sation technique such as Tabu search to explore the space of hier-
archically combined low-level heuristics and identify the best
combination for the problem at hand.

Future work will investigate using genetic programming (Koza,
1992) for this purpose. This process will begin with a randomly
created initial population of hierarchically combined heuristics
with each element consisting of different Pareto comparisons and
primary, secondary, and priority heuristics. Each element of the
population, i.e. heuristic combination, will be a parse tree com-
prised of elements of the function and terminal sets. As is evident
from Figs. 3 and 4 each heuristic combination is comprised of if-
statements, logical operators and the different low-level heuristics.
Thus, the function set will basically consist of if-then–else state-
ments and logical operators while the terminal set will essentially
be the set of low-level heuristics. Primary, secondary and priority
heuristics will be randomly chosen when creating each individual
of the initial population. This population will then be iteratively re-
fined, by applying genetic operators, crossover and mutation, to
the fitter elements of the population, to obtain the best heuristic
combination for the problem at hand. Tournament selection will
be used to choose the parents of each generation.

The fitness of each individual will be the quality of the timeta-
ble constructed using the individual.

Acknowledgements

The authors would like to thank the reviewers for their helpful
comments and suggestions.

References

Abdullah, S., Ahmadi, S., Burke, E.K., Dror, M., 2007. Investigating Ahuja–Orlin’s
large neighbourhood search for examination timetabling. OR Spectrum 29 (2),
351–372.

Asmuni, H., Burke, E.K., Garibaldi, J.M., 2004. Fuzzy multiple ordering criteria for
examination timetabling. In: Burke, E.K., Trick, M. (Eds.), Selected Papers from
the 5th International Conference on the Theory and Practice of Automated
Timetabling (PATAT 2004) – The Theory and Practice of Automated Timetabling
V, Lecture Notes in Computer Science, vol. 3616. Springer, Berlin, pp. 147–160.

Bilgin, B., Ozcan, E., Korkmaz, E.E., 2007. An experimental study on hyper-heuristics
and exam timetabling. In: Burke, E.K., Rudova, H. (Eds.), Practice and Theory of
Automated Timetabling VI: Selected Papers from the 6th International
Conference, PATAT 2006, Lecture Notes in Computer Science, vol. 3867.
Springer, Berlin, pp. 394–412.

Burke, E.K., Elliman, D.G., Ford, P.H., Weare, R.F., 1996. Examination timetabling in
British Universities – a survey. In: Burke, E.K., Ross, P. (Eds.), Selected Papers
from the 1st International Conference on the Practice and Theory of Automated
Timetabling, Lecture Notes in Computer Science, vol. 1153. Springer, pp. 76–92.

Burke, E.K., Petrovic, S., 2002. Recent research directions in automated timetabling.
European Journal of Operational Research 140 (2), 266–280.

Burke, E., Hart, E., Kendall, G., Newall, J., Ross, P., Schulenburg, S., 2003. Hyper-
heuristics: An emerging direction in modern research technology. In: Handbook
of Metaheuristics. Kluwer Academic Publishers, 2003, pp. 457-474 (Chapter 16).
ristic combinations for hyper-heuristic systems ..., European Jour-

10 N. Pillay, W. Banzhaf / European Journal of Operational Research xxx (2008) xxx–xxx

ARTICLE IN PRESS
Burke, E.K., Newall, J.P., 2004. Solving examination timetabling problems
through adaptation of heuristic orderings. Annals of Operations Research 129,
107–134.

Burke, E.K., Dror, M., Petrovic, S., Qu, R., 2005. Hybrid graph heuristics with a hyper-
heuristic approach to exam timetabling problems. In: Golden, B.L., Raghavan, S.,
Wasil, E.A. (Eds.), The Next Wave in Computing, Optimization, and Decision
Technologies – Conference Volume of the 9th Informs Computing Society
Conference. Springer, pp. 79–91.

Burke, E.K., Bykov, Y., 2006a. Solving exam timetabling problems with the Flex-
Deluge algorithm 2006a. In: Burke, E.K., Rudova, H. (Eds.), Proceedings of the
International Conference on the Theory and Practice of Automated Timetabling
(PATAT 2006), pp. 370–372.

Burke, E.K., Eckersley, A., McCollum, B., Petrovic, S., Qu, R., 2006b. Hybrid variable
neighbourhood approaches to university exam timetabling. Technical Report
NOTTCS-TR-2006-2, School of Computer Science and Information Technology,
University of Nottingham, UK.

Burke, E.K., Petrovic, S., Qu, R., 2006c. Case-based heuristic selection for timetabling
problems. Journal of Scheduling 9 (2), 115–132.

Burke, E.K., McCollum, B., Meisels, A., Petrovic, S., Qu, R., 2007. A graph-based hyper-
heuristic for educational timetabling problems. European Journal of Operational
Research 176, 177–192.

Caramia, M., Dell’Olmo, P., Italiano, G., 2008. Novel local-search-based approaches
to university examination timetabling. INFORMS Journal of Computing 20 (1),
86–99.

Carter, M.W., Laporte, G., Lee, S.Y., 1996. Examination timetabling: Algorithmic
strategies and applications. The Journal of the Operational Research Society 47
(3), 373–383.

Casey, S., Thompson, J., 2003. GRASPing the examination scheduling problem. In:
Burke, E.K., De Causmaecker, P. (Eds.), The Practice and Theory of Automated
Timetabling IV: Proceedings of the 4th International Conference on the Practice
and Theory of Automated Timetabling, vol. 2740. Springer, Berlin, pp. 232–246.

Di Gaspero, L., Schaerf, A., 2001. Tabu search techniques for examination
timetabling. In: Selected Papers from the 3rd International Conference on the
Theory and Practice of Automated Timetabling. Lecture Notes in Computer
Science, vol. 2079. Springer, Berlin, pp. 104–117.

Eley, E., 2007. Ant algorithms for the exam timetabling problem. In: Burke, E.K.,
Rudova, H. (Eds.), Practice and Theory of Automated Timetabling VI: Selected
Papers from the 6th International Conference, PATAT 2006, Lecture Notes in
Computer Science, vol. 3867. Springer, Berlin, pp. 364–382.

Ersoy, E., Ozcan, E., Uyar, S., 2007. Memetic algorithms and hill-climbers. In:
Baptiste, P., Kendall, G., Kordon, A.M., Sourd, F. (Eds.), Proceedings of the 3rd
Multidisciplinary International Conference on Scheduling: Theory and
Applications. Paris, France, pp. 159–166.

Kendall, G., Hussin, N.M., 2005. An investigation of a Tabu search based on hyper-
heuristics for examination timetabling. In: Kendall, G., Burke, E.K., Petrovic, S.
(Eds.), Selected Papers form Multidisciplinary Scheduling: Theory and
Applications, pp. 309–328.
Please cite this article in press as: Pillay, N., Banzhaf, W., A study of heu
nal of Operational Research (2008), doi:10.1016/j.ejor.2008.07.023
Koza, J.R., 1992. Genetic Programming I: On the Programming of Computers by
Natural Selection. MIT Press.

McCollum, B., 2007. A perspective on bridging the gap between research and
practice in university timetabling. In: Burke, E.K., Rudova, H. (Eds.), Practice and
Theory of Automated Timetabling VI, Lecture Note in Computer Science, vol.
3867. Springer, pp. 3–23.

Merlot, L.T.G., Boland, N., Hughes, B.D., Stuckey, P.J., 2003. A hybrid timetable for the
examination timetabling problem. In: Burke, E.K., De Causmaecker, P. (Eds.), The
Practice and Theory of Automated Timetabling IV: Proceedings of the 4th
International Conference on the Practice and Theory of Automated Timetabling,
Lecture Notes in Computer Science, vol. 2740. Springer, Berlin, pp. 207–231.

Meyers, C., Orlin, J.B., 2007. Very large-scale neighborhood search techniques in
timetabling problems. In: Burke, E.K., Rudova, H. (Eds.), Practice and Theory of
Automated Timetabling VI: Selected Papers from the 6th International
Conference, PATAT 2006, Lecture Notes in Computer Science, vol. 3867.
Springer, Berlin, pp. 24–39.

Qu, R., Burke, E.K., 2005. Hybrid neighbourhood hyper-heuristics for exam
timetabling problems 2005. In: Proceedings of the MIC2005: The Sixth
Metaheuristics International Conference, Vienna, Austria, August 2005.

Qu, R., Burke, E.K., McCollum, B., Merlot, L.T.G., Lee, S.Y., 2008. A survey of search
methodologies and automated approaches for examination timetabling. Journal
of Scheduling, in press. doi:10.1007/s10951-008-0077-5.

Ranson, D., Ahmadh, S., 2007. An extensible modelling framework for the
examination timetabling problem. In: Burke, E.K., Rudova, H. (Eds.), Practice
and Theory of Automated Timetabling VI: Selected Papers from the 6th
International Conference, PATAT 2006, Lecture Notes in Computer Science,
vol. 3867. Springer, Berlin, pp. 383–393.

Ross, P., Marin-Blazquez, J.G., Hart, E., 2004. Hyper-heuristics applied to class and
exam timetabling. In: Proceedings of the 2004 Congress on Evolutionary
Computation (CEC 2004), pp. 1691–1698.

Ross, P., 2005. Hyper-heuristics. In: Burke, E.K., Kendall, G. (Eds.), Search
Methodologies: Introductory Tutorials in Optimization and Decision Support
Methodologies. Kluwer Academic Publishers, pp. 529–556. Chapter 17.

Schaerf, A., Di Gaspero, L., 2006. Measurability and reproducibility in timetabling
research: State-of-the-art and discussion. In: Burke, E.K., Rudova, H. (Eds.),
Proceedings of the International Conference on the Theory and Practice of
Automated Timetabling (PATAT 2006), pp. 53–62.

Ulker, O., Ozcan, E., Korkmaz, E.E., 2007. Linear linkage in grouping problems:
Applications on graph coloring and timetabling. In: Burke, E.K., Rudova, H.
(Eds.), Practice and Theory of Automated Timetabling VI: Selected Papers from
the 6th International Conference, PATAT 2006, Lecture Notes in Computer
Science, vol. 3867. Springer, Berlin, pp. 347–363.

Yang, Y., Petrovic, S., 2004. A Novel Similarity Measure for Heuristic Selection in
Examination Timetabling. In: Burke, E.K., Trick, M. (Eds.), Selected Papers from
the 5th International Conference on the Theory and Practice of Automated
Timetabling (PATAT 2004) – The Theory and Practice of Automated Timetabling
V, Lecture Notes in Computer Science, vol. 3616. Springer, Berlin, pp. 247–269.
ristic combinations for hyper-heuristic systems ..., European Jour-

http://dx.doi.org/10.1007/s10951-008-0077-5

	A study of heuristic combinations for hyper-heuristic systems for the uncapacitated examination timetabling problem
	Introduction
	The examination timetabling problem
	Previous work
	Heuristic combinations and the examinationtimetabling problem
	Heuristic combinations and overall system
	Problem description and experimental setup
	Results and discussion
	Performance of the different heuristic combinations
	Comparison with previous studies

	Conclusion and future work
	Acknowledgements
	References

