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Abstract
We describe the genetic programming system GGP operating on graphs and introduce
the notion of graph isomorphisms to explain how they influence the dynamics of GP.
It is shown empirically how fitness databases can improve the performance of GP and
how mapping graphs to a canonical form can increase these improvements by saving
considerable evaluation time.

Keywords
graph representation, genetic programming, graph isomorphism, neutrality, fitness
database

1 Introduction

In genetic programming (GP, Koza, 1994; Banzhaf et al., 1998), the elements of the
search space are computer programs. These programs are expressions of a predefined
formal language. The genotype of an individual traditionally corresponds to the parse
tree of the expression it represents. In other GP systems, genotypes may not only en-
code trees, but more general graph structures.

If a search space consists of trees or general graphs, graph isomorphisms influ-
ence the dynamics of the optimization algorithm, because isomorphic graphs (under
some restrictions) encode functionally equivalent solutions. In terms of evolutionary
computation, isomorphisms induce neutral encodings, that is, non-injective genotype-
phenotype mappings. The effects of graph isomorphisms on search were investigated
in the context of optimization of Bayesian networks (graphical models), where it was
argued that it is often more appropriate to search among classes of equivalent—i.e.,
isomorphic—networks than among individual network topologies (Chickering, 2002).
In the domain of architecture optimization of neural networks, it was shown that graph
isomorphisms can lead to a biased representation of phenotypes (Stagge and Igel, 2000,
2001) and can considerably influence search performance (Igel and Stagge, 2002a). It
was further demonstrated that a database which stores fitness evaluations to speed up
optimization can save a significant amount of evaluations if considered together with
isomorphisms (Igel and Stagge, 2002b).
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Here, we present a GP system called GGP introduced by Niehaus and Banzhaf
(2001) that operates on graphs. We investigate the potential of accelerating GP with the
help of a fitness database that takes isomorphisms into account. Our general consid-
erations are independent of the GP implementation, yet are supported here by experi-
ments with GGP.

The article is organized as follows. In Section 2, we describe the GGP algorithm
and introduce the concept of dynamic demes. In Section 3, GGP is applied to three
common GP benchmark problems, usually tackled by tree-representations. The same
benchmark problems are later used to study the effects of graph isomorphisms. Opti-
mization results are compared to those of other GP systems to verify that using GGP
for these tasks is appropriate. In particular, we study the use of dynamic demes. Then,
in section 4, we present some results from graph theory that help to analyze and han-
dle phenomena caused by isomorphisms in evolutionary algorithms. Section 5 applies
those methods within the context of GGP to demonstrate the effects of isomorphism
in practice: A canonical graph indexed fitness database is used for reducing the num-
ber of fitness evaluations. In this context the relation of isomorphisms and phenotypic
neutrality in GP is established and discussed.

2 Graph-based Genetic Programming

In the following, we sketch the graph-based GP system GGP. There are several reasons
for using GGP in this investigation. First, because our theoretical concepts should not
be limited to trees, we want to study them in the context of a “general” graph-based GP
system. Second, we want to introduce our graph-based algorithm as an alternative GP
system. Third, we want to demonstrate a key advantage of GGP, namely that graphs
are represented “directly”, i.e., without a complex mapping from genotype space to
graph search space. This makes the results much more accessible in the representation
discussed here.

2.1 Outline of GGP

The idea to automatically design automata, whose structures are ultimately graphs,
dates back to the middle of the last century (Turing, 1950; Fogel, Owens, and Walsh,
1966). In many GP systems the genotypes are trees that represent expressions of a
formal language, originally LISP functions (Cramer, 1985; Koza, 1992). Recent GP im-
plementations consider other data structures, among them graphs with graph-encoding
and graph-based approaches distinguishable. Graph-encoding GP arose from the need
to evolve graph structures (e.g., electric circuits). Although the phenotypes are graphs,
the genotypes in graph-encoding GP systems may still be trees as in the work of Koza
et al. (1999). Teller and Veloso (1995) were the first to use general graphs as genotypes
for algorithmic reasons—independent of whether the phenotypes have general graph-
structure or not. We refer to such implementations as graph-based GP systems. Our
GP system GGP, first introduced by Niehaus and Banzhaf (2001), is both graph-based
and graph-encoding. A detailed specification of GGP is beyond the scope of this paper
(please contact the first author for questions regarding GGP), we refer to the descrip-
tions by Niehaus and Banzhaf (2001) and Niehaus (2003). In the following, we describe
the graph encoding used in GGP, variation operators used, and finally the steady-state
reproduction and selection method and the dynamic demes concept.
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2.2 Representation

GGP uses colored (i.e., labeled) directed multigraphs for the internal representation of
candidate solutions. A multigraph is a graph where there can be several edges between
vertices (therefore connections E are described by multisets, denoted by {{. . . }}). Every
node has a label or color (the terms color and label are used synonymously throughout
this article). Each color represents one of the operations given in the problem definition,
such as +, x1, 1, or move. If not stated otherwise, we presume the canonical semantics
of labels in GP expressions. In-degree and out-degree of all vertices with the same color
must be identical. This ensures that functions which require a certain fan-in or fan-out
alway have the correct number of input and output connections. For operations that
could handle a variable number of arguments, distinct functions for each arity have to
be introduced (e.g., +1 and +2 for adding two or three numbers, respectively).

The vertices of a graph in GGP can be divided into three sets Vin, Vinner, and Vout.
The set Vin consists of the input vertices, which represent the input values of the prob-
lem at hand and the starting points for parsing the graph. Similarly, the outputs are
represented by output vertices in Vout. Each vertex in Vin ∪ Vout has its own unique
color. Input vertices have an in-degree of 0 and an out-degree of 1, output vertices vice
versa. We denote a vertex with an in-degree of n and an out-degree of m as an (n, m)-
vertex. The set Vinner is a variable-sized set of inner vertices corresponding to elements
of the function set of the problem. Formally, a feasible GP-graph in the GGP system can
be defined as follows:

Definition 1. A directed multigraph G̃ = (Vin ∪ Vinner ∪ Vout, Ẽ) is called a GP-graph, if and
only if

1. Vin = {i1, . . . , in} and Vout = {o1, . . . , om} are sets of n and m ordered input and output
vertices, respectively;

2. Vinner = {v1, . . . , vl} is a finite set of l inner vertices;

3. Ẽ = {{(a, b) | a ∈ Vin ∪ Vinner ∧ b ∈ Vinner ∪ Vout}} is a multiset of edges;

4. Each input vertex i ∈ Vin is a (0, 1)-vertex;

5. Each output vertex o ∈ Vout is a (1, 0)-vertex;

6. For each v ∈ Vinner there is an order defined on both multisets of edges {{(a, v) | a ∈ Vin ∪
Vinner ∧ (a, v) ∈ Ẽ}} and {{(v, b) | b ∈ Vinner ∪ Vout ∧ (v, b) ∈ Ẽ}};

7. For each v ∈ Vin ∪ Vinner there exists a path connecting v with an element o ∈ Vout;

8. For each v ∈ Vinner ∪ Vout there exists a path from an input vertex i ∈ Vin to v;

9. If the search space consists of acyclic graphs only, the directed multigraph must also be
acyclic.

While Vin ∪ Vout is fixed for all individuals throughout the evolutionary process, Vinner

and Ẽ are subject to adaptation. The edges are a multiset, because a node can get more
than one input from another node. Ordered edges (item 6) are needed because they
allow us to use the vertices as representations for non-commutative functions (e.g., to
distinguish between (− x1 2) and (− 2 x1)). The 7th item ensures that each node in a
GP-graph is connected to an output. Thereby, the occurrence of introns is reduced and
the graphs are kept small to prevent bloat. When cyclic graphs are evolved, item 8 is
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needed to ensure that the genetic program represented by the graph can be evaluated.
It enforces that each inner node gets input from at least one (0, 1)-vertex.

So far, nodes representing different functions cannot be distinguished in a GP-
graph. This is achieved by assigning a coloring to each GP-graph. Let there be k
different types (color classes) of nodes and let π be a function assigning nodes of a
graph to their color class (see Section 4 for a more formal definition), that is, for all
v1, v2 ∈ Vin ∪ Vinner ∪ Vout it holds π(v1) = π(v2) if and only if v1 and v2 have the same
color.

Definition 2. The coloring π of the GP-graph G̃ = (Vin ∪ Vinner ∪ Vout, Ẽ) is feasible if and
only if for all v1, v2 ∈ Vin ∪ Vinner ∪ Vout and v1 6= v2

1. If v1 ∈ Vin ∪ Vout then π(v1) 6= π(v2).

2. If v1 is a (n, m)-vertex and π(v1) = π(v2) then v2 is a (n, m)-vertex.

The first item formalizes the condition that each input or output node has a unique la-
bel (e.g., in order to distinguish between different inputs). The second item enforces the
condition that in-degree and out-degree of all equally colored vertices must be identi-
cal. In the following, we consider only feasible colorings.

2.3 Operators

Special crossover and mutation operators are needed for traversing the search space
of GP-graphs. We only consider operators that generate feasible GP-graphs from GP-
graphs, therefore no repair mechanism is needed. Whenever a new vertex is inserted,
its color is chosen randomly from all possible colors with compatible input and output
degree.

First, we discuss mutations that operate on single, randomly chosen nodes:

Vertex mutation (vmut): The operator selects one vertex v ∈ Vinner and changes its
function (color) to one with the same in- and out-degree. The order of the edges
remains the same.

Vertex deletion (vdel): A (1, 1)-vertex v is chosen, deleted, and the adjacent edges
(u, v) and (v, w) are replaced by a (u, w).

Vertex insertion(vins): An edge (u, w) ∈ E is split and a (1, 1)-vertex v is inserted
resulting in two new edges (u, v) and (v, w).

Vertex movement (vmov): A (1, 1)-vertex connected to vertices u and w is replaced by
an edge (u, w) and inserted differently afterwards such that it is still connected to
either u or w. An example for the vmov variation is given in Figure 1.

It is not possible to simply remove a (n, m)-vertex with n 6= m because this would lead
to infeasible graphs. Thus, we use operators capable of inserting / deleting subgraphs.
We define GP-paths, which are closely related to the ordinary notion of paths in graphs:

Definition 3. A subgraph (V̂ , Ê) of a GP-graph (Vin ∪ Vinner ∪ Vout, Ẽ) is called GP-path, if
and only if

1. V̂ = {v0, v1, . . . vn} ⊂ Vinner and Ê = {e1, . . . , en} ⊂ E;

2. ei = (vi−1, vi) for each edge ei ∈ Ê;

3. The vertices v1, . . . , vn−1 are (1, 1)-vertices, the vertices v0 and vn are not;
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left rightmerge

Figure 1: Example for the vertex movement variation vmov: When vmov is applied to
the middle node with label left, the node is deleted and randomly inserted at one of
the three positions marked by dashed circles.

4. v0 has an out-degree higher than one or is a (0, 1)-vertex, vn has an in-degree higher than
one.

Figure 2 shows a GP-graph with corresponding GP-paths. The following operators are
designed to insert and delete GP-paths:

GP-path deletion (pdel): This operator deletes a GP-path {v0, . . . , vn}. If v0 is a (0, 1)-
vertex, it is directly removed. Otherwise, the (a, b)-vertex v0 is replaced by a
(a, b − 1)-vertex with an appropriate color (a (1, 2)-vertex can additionally be re-
placed just by an edge). The (c, d)-vertex vn is replaced by a (c− 1, d)-vertex with

conforming color. The vertices v1, . . . vn−1 and the set of edges Ê are deleted. The
implementation of the operator ensures that only GP-paths are chosen that can be
removed without violating the constraints in definition 1.

GP-path insertion (pins): This reverses the operation of deleting a GP-path. The newly
inserted GP-path always consists of two vertices. The operator obeys requirement
9 of definition 1.

Cycle creation (cycle): This operator is a variation of GP-path insertion. It ensures that
the new GP-path creates a cycle in the graph. This operator must not be applied
for problems where only acyclic graphs are feasible.

Crossover (xover): The most complex operator creates a GP-graph by combining two
graphs. From both graphs a subgraph is extracted. One of those subgraphs is
inserted into the remaining part of the other GP-graph. The subgraphs must have
the same number of inward directed and outward directed edges (the edges that
connect a vertex outside of the subgraph with one inside and vice versa) so that
edges that connected the subgraph with the remaining part of the GP-graph can
be replaced by new ones. Hence, the new graph obeys requirements 1 to 5 of
the GP-graph definition. Item 6 is fulfilled because the order of the edges of source
graphs is preserved. More difficult to fulfill for crossover are items 7 to 9. Currently
we have no constructive algorithm ensuring these properties. Instead we check
whether the resulting offspring is feasible. If not, crossover is repeated.

2.4 Steady-state Evolutionary Algorithm

The GGP system is basically a steady-state evolutionary algorithm (Whitley, 1989;
Syswerda, 1991) with tournament-selection. The initial population consists of npop ran-
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Yes Yes Yes

merge mergemerge move

food? food?food?

Vin

Vout

Vinner

Figure 2: Example of a GP-graph according to definition 1 representing a solution for
the Artificial-Ant problem (see Section 3). The boxes highlight all GP-paths, see defini-
tion 3.

dom GP-graphs. In every generation, ntour individuals are selected for a tournament.
They are evaluated and ranked according to their fitness. In the experiments in this
study, we use the size of the individuals as second level sorting criterion. If two indi-
viduals have the same fitness, the smaller one is ranked better. This optional feature
induces a bias towards graphs with few nodes. Thereafter, variation operators are ap-
plied to the nwinner best individuals of the tournament and the new resulting individu-
als overwrite the nwinner worst individuals of the tournament. In case of crossover, the
winning individual is recombined with the loosing individual to replace it.

An individual is modified by application of between one and three operators. Em-
pirical studies have shown that there is a strong causality between number of applied
operators and fitness change (Niehaus, 2003). Unfortunately, the fraction of fitness im-
provements decreases very quickly. We found that one to three variation operations
are reasonable to achieve good results. The selection probabilities for each operator
and the number of operators applied to create an offspring are free parameters of the
GP-System. In this study, these parameters are kept constant. An adaptive algorithm
is presented in Niehaus and Banzhaf (2001).

In certain situations some operators may not be applicable at all. Should, for exam-
ple, the maximum size of the graphs be limited an insertion-operator cannot be applied
if the graph already consists of the maximum number of nodes. In such a case, the se-
lection probability for this operator is set to zero.

2.5 Dynamic Demes

The GGP system implements the concept of demes (D’haeseleer and Bluming, 1994).
Instead of fixed deme sizes with a constant migration rate we use our own method
called dynamic demes (Niehaus, 2003): If all individuals in a population are descendants
of the same individual we split the population into two equally sized demes, keep
the better half of the individuals in one and replace all GP-graphs in the second deme
with randomly created ones. Demes are split until they reach a fixed minimum size of
ndeme individuals. Two demes are merged if the fitness values of their best individuals
are on the same level. There is no migration of single individuals between different
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demes. Hence, no individual of an advanced deme can take over another deme that is
exploring a different part of the search space but has not achieved comparable fitness
values yet.

In order to demonstrate the effects of dynamic demes, we perform all experiments
with and without demes in this study.

3 Experimental Evaluation

In this section, the performance of GGP is evaluated on three common GP benchmark
problems and compared to results from the literature. We compare GGP with and
without dynamic demes. These test problems will also be used for evaluating the graph
indexed database in Section 5, hence we need to show that it is indeed reasonable to
use GGP to tackle these problems.

3.1 Test Problems

We use three well known benchmark problems in order to assess the performance of
GGP. We will confine the problem description to GGP parameters used and to the dif-
ferences of approaches that arise from using a graph-based GP system. Detailed de-
scriptions of these problems can be found in the cited literature.

The aim of the Two-Boxes symbolic regression problem is to find a formula for the
difference between the volumes of two boxes (Koza, 1994). The Lawn-Mower bench-
mark is the problem to find an algorithm for mowing a lawn consisting of n×n squares.
The third benchmark is the Artificial-Ant problem on the Santa Fé trail (Koza, 1992), in
which an agent has to find 89 pieces of food on a field of 32× 32 squares.

Function Degree

left (1,1)
right (1,1)
move (1,1)
food? (1,2)
merge (2,1)

(a) Artificial-Ant

Function Degree

left (1,1)
mow (1,1)
loop (1,2)
merge (2,1)

(b) Lawn-Mower

Function Degree

add (2,1)
sub (2,1)
mul (2,1)
div (2,1)
nop (1,1)

branch (1,2)

(c) Two-Boxes

Table 1: Function sets of the benchmark problems. The second column gives the in-
and out-degree of the corresponding functions.

Table 1 shows the function sets used in the benchmark applications. Both Artificial-
Ant and Lawn-Mower problem have one input and one output vertex. The Two-
Boxes problem requires six input vertices (representing width, height, and length of
the boxes) and one output vertex. The loop function for Lawn-Mower is defined as
continue execution with the vertex adjacent to the first outward directed edge as long as there
are movements left. The functions merge, branch, and nop do not change any vari-
ables. The function merge is needed because in-degree and out-degree of all vertices
representing the same function are fixed. For example in Figure 2, the final move pre-
ceding the output cannot get more than a single input as it is a (1, 1)-vertex. To connect
more than one (in this case 4) vertices indirectly with the final move, merge nodes are
needed. In the Lawn-Mower and Artificial-Ant tasks the maximum number of move-
ments per trial is 100 and 400, respectively.
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Problem vmut vdel vins vmov pdel pins cycle xover no op.

Artificial-Ant 12 % 12 % 12 % 12 % 12 % 12 % 12 % 12 % 4 %
Lawn-Mower 12 % 12 % 12 % 12 % 12 % 12 % 12 % 12 % 4 %
Two-Boxes 24 % 2 % 0 0 24 % 24 % 0 24 % 4 %

Table 2: Operator probabilities used in the experiments. The probability of performing
no variation (no op.) is 4 % in all experiments. For Artificial-Ant and Lawn-Mower
the GGP system is allowed to create and modify cyclic graphs while it is restricted to
acyclic graphs in the case of Two-Boxes.

Table 2 shows the operator probabilities used. The nop operation is the only func-
tion associated with a (1, 1)-vertex in the Two-Boxes task and it is only needed by the
random graph generator during the initialization of the population (cf. Niehaus, 2003).
Thus, probabilities of vertex-operators are low. Furthermore, the Two-Boxes bench-
mark is the only problem for which we require acyclic graphs. Hence, the probability
of applying the operator cycle is set to zero and xover is configured not to create
cycles. The remaining parameters are given in Figure 3. Note that going from a tree
to a graph representation has changed the function set only as far as the switch from a
functional to an imperative algorithmic approach are concerned.

Parameter Artificial-Ant Lawn-Mower Two-Boxes

Tournament size ntour 4 4 4
Winner in a tournament nwinner 2 2 2
Max. no. of vertices in V 25 40 20
Population size npop 100 100 100
Experiments 500 500 500
Fitness evaluations neval 2 · 105 2 · 105 2 · 105

Min. deme size ndeme 8 8 8

Table 3: Parameter sets in the experiments.

Results of 500 independent trials per test problem are summarized in Figure 3 and
Table 4. The table shows the number of trials in which an optimal solution was found.
Further, the average number of fitness evaluations to find a solution is given. The
diagram shows the number of trials (out of 500) that found an optimal solution as a
function of the number of fitness evaluations.

3.2 Results

The results demonstrate that none of the benchmarks is difficult for graph GP. Espe-
cially the results for the Artificial-Ant problem are remarkable, see Table 5, since basic
GP algorithms are not much better than random search on this task (Langdon and Poli,
1998). Our own experiments with a tree-based GP system show success rates of only
seven percent (Niehaus, 2003). In recent publications fitness cases are altered from com-
plete paths to chunks of a path resulting in a chance for tree GP to solve the problem
(Kuscu, 1998; Langdon, 1998). Here we propose a GP system capable of reliably solv-
ing the original problem. An analysis of the best final individual of each trial shows
that almost all programs followed the same basic strategy as the solution depicted in
Figure 2. That is, GGP evolved small solutions that systematically look for food in the
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Figure 3: Performance of GGP on the three benchmark problems. The upper plot refers
to GGP using demes, the lower plot to GGP without demes. For each problem 500 trials
were carried out. The curves show the number of trials that found an optimal solution
given the number of fitness evaluations.

neighborhood; it did not learn the pattern of the Santa Fé trail.
The Lawn-Mower benchmark turns out to be especially easy for GGP, see Figure 3

and Table 4. On average, only 1727.9 fitness evaluations were needed to find an opti-
mal solution. In Table 6 we compare these figures to results from the literature. Because
in the cited articles often only the computational effort is published, we also use this
measure although we are aware of its limitations (Luke and Panait, 2002; Christensen
and Oppacher, 2002; Niehaus and Banzhaf, 2003). The results for the Two-Boxes bench-
mark are given in Table 7. When looking at the final best individuals, it turns out that
GGP always found the smallest possible exact solution. As we consider the size of the
individuals as second level sorting criterion, small solutions were preferred in our ex-
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Table 4: Results of GGP after 2 · 105 evaluations with and without demes. The number
of successful trials out of 500 and the average number of evaluations after which an
optimal solution was found are given.

Demes Lawn-Mower Two-Boxes Artificial-Ant

successful trials 500 500 496
avg. evals 1727.9 13510.5 29054.1

No demes Lawn-Mower Two-Boxes Artificial-Ant

successful trials 500 482 453
avg. evals 1743.5 21485.1 37591

Solutions Trials
Method no. fraction

Original Tree GP (Koza, 1992) 35 17.5% 200
Strict Hill Climbing (Langdon and Poli, 1998) 8 16% 50
Evolutionary Programming (Chellapilla, 1997) 47 79.7% 59
Scalar speed (Langdon and Poli, 1998) 9 18% 50
1 food ahead (Langdon and Poli, 1998) 19 38% 50
5 food ahead (Langdon and Poli, 1998) 71 35.5% 200
1-point Crossover, orig. fitness function (Langdon and
Poli, 1998)

8 8% 100

Grammatical Evolution, neval = 105 (O’Neill et al., 2003) 56 56% 100

GGP, without demes 453 90.6% 500
GGP, with demes 496 99.2% 500

Table 5: Results for the Artificial-Ant benchmark. Given are the overall number of trials
and the number (no.) and percentage (fraction) of successful ones.

periments (because if two individuals have the same fitness, the smaller one is ranked
better). This is usually desired, but there might be problems where this strategy could
lead to premature convergence to solutions that are not sufficienty complex.

The performance of GGP profits from the higher diversity introduced by demes.
In experiments without dynamic demes, the success rates for Artificial-Ant and Two-
Boxes drop significantly to 91 % and 96.4 %, respectively (Fisher’s exact test, p < .001).
For the Lawn-Mower benchmark, still 100 % of the trials were successful.

¿From the limited set of toy benchmark problems, one cannot conclude that GGP
is in general superior to standard GP for certain classes of applications (unfortunately,
even the definition of such problem classes is difficult in GP). Still, the results show
that GGP is a competitive alternative to other GP systems and therefore a reasonable
testbed for the experiments below. We think that GGP is particularly well suited for
problems where the solution can be described by a short, iterative algorithm.

4 Graph Isomorphisms

In this section, we review some basic concepts from graph theory for dealing with the
phenomena caused by graph isomorphisms in GP (cf. McKay 1981, 1990).
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Method Effort

tree (Poli, 1997) 100000
stack based (Bruce, 1997) 58000
tree + ADF (Poli, 1997) 11000
tree + culture (Spector and Luke, 1996) 10000
parallel distributed (Poli, 1997) 5000

GGP, without demes 3398
GGP, with demes 3091

Table 6: Computational effort (Koza, 1992) for the Lawn-Mower task.

Method Solutions

Heywood and Zincir-Heywood, 2002 4-36 %
Terrio and Heywood, 2002 4-92 %

GGP, without demes 96.4 %
GGP, with demes 100 %

Table 7: Results for the Two-Boxes benchmark. Success rate ranges are
given, because Heywood and Zincir-Heywood (2002) and Terrio and Hey-
wood (2002) tested several approaches with different parameters.

4.1 Colored Graphs

Let G = (V, E) be a directed graph with vertex set V and edge set E ⊆ V × V . We
define a coloring π with k colors as an ordered collection (V1, V2, . . . , Vk) of k disjoint
subsets of V with

⋃

i Vi = V . We do not require Vi 6= ∅ for any i. The colors are used to
differentiate between between different types of nodes. These subsets are called color
classes and we write π(v) for the color class of a vertex v. For example, in the context
of GGP all nodes having the same function share the same color. The order of the color
classes is significant, but the order of the vertices within each class is not. We use the
coloring to distinguish between vertices with different labels. For example, all vertices
in a graph with the label + are in one color class, all vertices with the label × are in
another.

4.2 Isomorphic Graphs and Canonical Labeling Maps

Given a permutation γ : V → V of the vertex set V , let vγ denote the image of the
vertex v ∈ V under γ. Similar, we define W γ = {wγ |w ∈ W} for W ⊆ V and Gγ as
the graph in which vertices vγ and wγ are adjacent if and only if v and w are adjacent
vertices in G. The image of a coloring π under γ is defined as πγ = (V γ

1 , V γ
2 , . . . , V γ

k ).
A permutation γ of a vertex set with coloring π is called color-preserving if and only
if πγ = π (i.e., each v ∈ V has the same color as vγ). An automorphism of a graph G
is a color-preserving permutation of the vertices that maps G onto itself. We say that
two colored graphs G1 and G2 with colorings π1 and π2 (having the colors in the same
order) are isomorphic if and only if there exists a permutation γ such that Gγ

1 = G2 and
πγ

1 = π2. See figure 4 for an example of two isomorphic GP-graphs.
In the following, we make use of canonical labeling maps: Given a coloring

π = (V1, V2, . . . , Vk) of V = {0, 1, . . . , n}, we define the canonical coloring c(π) as
({0, 1, . . . , |V1| − 1}, {|V1|, . . . , |V1|+ |V2| − 1}, . . . , {n + 1− |Vk|, . . . , n}). That is, c(π) is
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(G1, π1) (G2, π2)

Figure 4: Two isomorphic GP-graphs: (G1, π1) is transformed to (G2, π2) by switching
the vertices 1 and 2 as well as 4 and 5; the corresponding permutation γ is (12)(45) in
cyclic notation. The graphs are not automorph (γ changes the colors of some nodes).

independent of π except that it has the same number of classes with the same sizes in
the same order, see figure 5 for an example. A canonical labeling map is a function C
such that for any graph G and coloring π of V

1. there exists some permutation δ such that C(G, π) = Gδ and πδ = c(π), and

2. for any permutation γ of V we have C(Gγ , πγ) = C(G, π).

Such a mapping always exists for the graph spaces under consideration. Roughly
speaking, a canonical labeling map C maps a colored graph G and all graphs isomor-
phic to G to the same canonical graph that is isomorphic to G. Isomorphism is an
equivalence relation and any C computes a unique representative of the equivalence
class of its argument. Formally, the following equivalence holds (McKay, 1981). Sup-
pose the graphs G1 and G2 are colored using the same number of vertices of each color.
Let π1 and π2 denote the corresponding colorings, with the colors in the same order
in each. Then C(G1, π1) = C(G2, π2) if and only if G1 and G2 are isomorphic, that is,
Gγ

1 = G2 and πγ
1 = π2 for some permutation γ.

4.3 Counting Isomorphic Graphs

Given a graph G, we want to determine how many different graphs—potential geno-
types in GP—exist that are isomorphic to G. Generally, there are |V |! permutations of
the vertices. In some applications, vertices belonging to particular color classes must
not change their color. That is, we do not allow permutations γ where π(v) 6= π(vγ) for
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a vertex v in
⋃

i∈I
Vi for some index set I ⊆ {1, . . . , k}. In this case, there exist

pI(G, π) =
∣

∣

⋃

j /∈I

Vj

∣

∣! ·
∏

i∈I

|Vi|!

permutations (Igel and Stagge, 2002a).
But not all permutations γ of a graph G generate graphs different from G, some

permutations result in exactly the same graph (i.e., Gγ = G and πγ = π). Two permuta-
tions of a graph G result in the same graph if and only if there exists an automorphism
of G that maps one of the permutations onto the other. Let a(G, π) denote the num-
ber of such automorphisms of G. Then the number of graphs that are isomorphic to
G (including G itself) is given by pI(G, π)/a(G, π). To see this, suppose two isomor-
phic graphs G1 and G2 with Gγ1

1 = G2 and πγ1

1 = π2 for a permutation γ1. Let γ2

be an automorphism of G1. Then the concatenation γ1 ◦ γ2 of the two permutations
leads to the same graph as the permutation γ1 and it holds Gγ1

1 = Gγ1◦γ2

1 = G2 and
πγ1

1 = πγ1◦γ2

1 = π2. There exist a(G1, π1) = a(G2, π2) possible choices for γ2. Thus, for
each permutation there exist a(G2, π2) permutations (including the identity mapping)
that lead to the same mapping.

x1

0

+

1

x1

2
G1

x1

0

+

1

2

x2

G2

Figure 5: Example graphs G1, G2 = ({0, 1, 2}, {(1, 0), (1, 2)}) with different colorings
π1 = ({0, 2}, ∅, {1}) and π2 = ({0}, {2}, {1}), respectively. The graphs are not iso-
morphic; there is no permutation γ with πγ

1 = π2. Canonical colorings are c(π1) =
({0, 1}, ∅, {2}) and c(π2) = ({0}, {1}, {2}). For the number of automorphisms, we have
a(G1, π1) = 2 and a(G2, π2) = 1.

For example, consider the graph G2 in figure 5. Then a(G2, π2) = 1,
because the identity is the only color-preserving permutation that maps G2

onto itself, and therefore the number of graphs that are isomorphic to G2 is
3!/1 = 6. These six graphs (G, π) are (({0, 1, 2}, {(1, 0), (1, 2)}), ({0}, {2}, {1})),
(({0, 1, 2}, {(1, 2), (1, 0)}), ({2}, {0}, {1})), (({0, 1, 2}, {(2, 0), (2, 1)}), ({0}, {1}, {2})),
(({0, 1, 2}, {(0, 2), (0, 1)}), ({2}, {1}, {0})), (({0, 1, 2}, {(2, 1), (2, 0)}), ({1}, {0}, {2})),
and (({0, 1, 2}, {(0, 1), (0, 2)}), ({1}, {2}, {0})). The graph G1 has an addi-
tional automorphism, namely the permutation that just switches the ver-
tices 0 and 2 (i.e., (02) in cyclic notation), and therefore a(G1, π1) = 2
and the number of isomorphic graphs is 3!/2 = 3. These graphs are
(({0, 1, 2}, {(1, 0), (1, 2)}), ({0, 2}, ∅, {1})), (({0, 1, 2}, {(2, 0), (2, 1)}), ({0, 1}, ∅, {2})),
and (({0, 1, 2}, {(0, 1), (0, 2)}), ({1, 2}, ∅, {0})).

4.4 Complexity of Graph Canonization

The general graph isomorphism problem and therefore graph canonization (i.e., canon-
ical labeling) is a potential member of the problem class NPI containing the so called
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NP-incomplete problems (Garey and Johnson, 1979). The class NPI is defined as NP ex-
cluding P and all NP-complete problems. But there exist heuristic algorithms that can
handle the canonical labeling for graphs very efficiently. Hence, the time for computing
the canonical graph (and the number of automorphisms) can be neglected compared to
a fitness evaluation on a real-world problem for graphs of sizes much larger than those
in present-day GP systems.

Apart from that, in GP we usually deal with restricted classes of graphs and for
certain classes of graphs the isomorphism and canonization problem can be solved ef-
ficiently (Köbler, 2006). In particular, the graphs in standard tree-based GP systems
are rooted, labeled (colored), ordered trees. For such trees, isomorphisms and canoni-
cal representations can be determined in linear time and log-space (Hopcroft and Tar-
jan, 1974; Lindell, 1992). Buss (1997) could even show that if the trees are represented
by strings then the complexity reduces to NC1. Thus, the overhead of computing the
canonical graph can be neglected in tree GP. However, in tree GP the problem of redun-
dant fitness evaluations due to isomorphisms seems to be less prominent than in GGP
(as shown by preliminary studies).

In this study, we use the nauty software package developed by McKay (1990) for
the general graph isomorphism and canonization problem.

5 Canonical Graph Indexed Databases for Speeding Up GP

In this section, we empirically demonstrate the potential of speeding up Genetic Pro-
gramming by using a fitness database that considers isomorphisms. The GGP system
serves as a testbed. Before we present this application, we discuss the relation between
graph isomorphisms and neutrality (i.e., non-injective genotype-phenotype mappings)
in GP. Albeit not essential to an understanding of the technical aspects of this study,
this section serves as a conceptual framework to our study and establishes links to our
previous work.

5.1 Isomorphisms and Phenotypic Neutrality

In evolutionary computation, we generally define the phenotype of an individual
(more precisely, its partial phenotype, which comprises all traits are of interest, cf. Mah-
ner and Kary, 1997) by the functionality of its genotype. In GP the phenotype of an
individual is the behavior (e.g., the input-output or stimulus-action mapping repre-
sented by the genotype) of the program it represents. As the phenotype reflects the
essential qualities of an individual, the core of an evolutionary algorithm is what phe-
notypes it generates. This is described by the search distribution on the phenotype space

P
(t)
P

, which is defined as the probability that a phenotype p ∈ P is sampled in genera-

tion t. We call P
(t)
P

the exploration distribution. For example, if GP is used for symbolic
regression, our main concern is the search behavior in the space of functions, not in the
space of symbolic expressions.

Let us assume that there exists a function Γ that maps the genotype of an indi-
vidual to its phenotype. If the genotype-phenotype mapping Γ is not injective (i.e.,
multiple genotypes map to the same phenotype), we speak of a neutral encoding. The
role of neutrality in evolutionary processes has been extensively studied in the context
of both natural (e.g., see Kimura, 1968; Conrad, 1990; Schuster, 1996; Huynen, 1996;
van Nimwegen, Crutchfield, and Huynen, 1999; Wilke, 2001; Schuster, 2002) and sim-
ulated evolution (e.g., see Thierens, 1996; Newman and Engelhardt, 1998; Ebner, 1999;
Ebner, Shackleton, and Shipman, 2001; Igel and Stagge, 2002a; Igel and Toussaint, 2003,
and references therein). It has been pointed out that the main benefit of neutrality
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is that it enables the self-adaptation of the search distribution (see Banzhaf, Nordin,
Keller, and Francone, 1998; Toussaint and Igel, 2002; Igel and Toussaint, 2003; Tous-
saint, 2003), which subsumes, for example, the ability to adapt to changing environ-
ments (Ebner, Shackleton, and Shipman, 2001). This strategy adaptation is only possi-
ble if the genotype-phenotype mapping is non-trivial. Informally speaking, a genotype-
phenotype mapping (or the neutrality) is non-trivial if the search distribution of an evo-
lutionary algorithm can change just by replacing a genotype in the parent population
by a genotype with the same phenotype (see the article by Toussaint (2003) for a rigor-
ous mathematical treatment of trivial and non-trivial neutrality). In neutral encodings,
some phenotypes may be more often represented than others, that is, some phenotypes
are frequent, others are rare (e.g., see Schuster, 1996; Igel and Stagge, 2002a). This may
introduce a bias that can be counter-balanced based on methods described by Igel and
Stagge (2002b).

Graph isomorphisms are usually a source of trivial neutrality. Consider a GP prob-
lem where the elements of the function set are all commutative. That is, the order of
the children of a vertex does not influence the behavior of the genetic program. For a
discussion of this restriction see section 5.3. Then two genotypes that represent graphs
that are isomorphic have the same phenotype. The neutrality induced by graph iso-
morphisms does usually not allow for adaptation of the search distribution. Consider
tree GP with standard operators. A mutation operators randomly selects a vertex, the
mutation point, and replaces the subtree rooted in the mutation point by a randomly
generated tree. A crossover operator randomly selects a vertex in each parent tree, the
crossover points, and switches the corresponding subtrees. Assume that the vertices
with the same depth in a tree have the same probability to be chosen as crossover or
mutation point. In this standard scenario, the exploration distribution does not change
if an individual encoding a graph G1 is replaced in the population by an individual that
represents an isomorphic graph Gγ

1 . The probability that a vertex v in G1 is selected as
crossover or mutation point is equal to the probability that vγ in Gγ

1 is selected, and the
corresponding subtrees are phenotypically the same.

In theory, trivial neutrality can always be eliminated without changing the evolu-
tionary dynamics on the phenotype space (Toussaint, 2003). The trivial neutrality aris-
ing from isomorphisms can be removed by transforming the individuals in the initial
population and all offspring to their canonical graphs. Thus only canonically labeled
graphs occur in the population, that is, each equivalence class of isomorphic individ-
uals is uniquely represented. Without changing the variation operators, this is of little
use in practice in standad GP systems (except that one could come up with an effi-
cient compression scheme for the population as the cardinality of the genotype space
is reduced).

5.2 Graph Databases

If the fitness evaluation of an individual is very time consuming (e.g., in the applica-
tions described by Koza et al., 1999) and the fitness function does not vary over the
generations, it is beneficial to store the genotype together with its fitness in a database.
If the same genotype is sampled again, its fitness can be looked up. A graph database
has successfully been used by Friedrich and Moraga (1996) in the context of evolution-
ary optimization of neural networks based on a cellular encoding inspired by Gruau
(1995). The concept of a genotype database may seem inconsistent with the popula-
tion paradigm because the advantage that evolutionary algorithms keep only a fixed
number of solutions in memory is sacrificed. However, in most real-world application
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(e.g., in design optimization) the memory requirements and the overhead of using a
database can be completely neglected, the limiting factor is solely the time needed for
single fitness evaluations.

When the encoding is neutral, it is better to index the database with the phenotype
of the individual (given that the phenotype can be described efficiently), because then
a single fitness evaluation is sufficient for all genotypes sharing the same phenotype.
This leads to the idea to store and look up the canonically labeled graphs in the database
when evolving graph structures. Before the quality of a new individual is determined,
it can be tested whether the corresponding graph or an isomorphic one was evaluated
before by looking up the canonically labeled graph in the database. In that way, more
fitness evaluations can be saved. How many depends on the search method used and
on the search space. Igel and Stagge (2002b) presented an example in the domain of
structure optimization of neural networks, where 21 % evaluations could additionally
be saved by storing the fitness of the canonically labeled graph compared to the use of
a fitness database indexed with genotypes.

A database indexed with the canonical graph does not consider all kinds of neu-
trality in GP, only the trivial neutrality due to isomorphisms, see Section 5.1.

5.3 Encoding of GP-graphs

To use the concepts from section 4 (and the software package nauty by McKay, 1981)

we have to construct an injective function that maps each GP-graph G̃ = (Vin ∪ Vinner ∪

Vout, Ẽ) with coloring π̃ to a standard graph G = (V, E) with coloring π. For our
benchmark problems, a straightforward transformation exists. Basically, we can set

V ← Vin ∪ Vinner ∪ Vout, π ← π̃, and E ← {(u, v) | (u, v) ∈ Ẽ}. Still, multiple edges be-
tween vertices and the ordering of the edges must be considered and therefore changes
of G and π become necessary.

First, we have to handle multiple edges with the same direction between two ver-
tices. Because in all benchmark problems considered here the highest in- or out-degree

is two, this can be done by the rule that e1, e2 ∈ Ẽ ∧ e1 = e2 = (u, v) if and only if
(u, v) ∈ E and (u, v) is the only connection to the (2, m)-vertex v and from the (n, 2)-
vertex u.

Second, we have to care for the ordering of edges in G̃. In GGP all edges ending at
the same vertex are ordered, the same holds for edges leaving a vertex. The order of the
input edges is crucial for non-commutative functions and the ordered outward directed
edges allow for a deterministic choice of the succeeding vertex (e.g., by pointing to a
then and an else branch in an if-then-else statement). Without loss of generality, we only
describe our method for keeping the information about the order of edges for an in-
degree of two. If there are non-commutative functions, we introduce a new color (i.e.,
a new vertex type), which we call the order-indicator color.

If a non-commutative function is represented by a (2, m)-vertex v ∈ Vinner, we
set V ← V ∪ {v′}, with pseudo-vertex v′ receiving the order-indicator color. Let

(u, v), (w, v) ∈ Ẽ be input edges to v, where u is the first (leftmost) input, then the
connections (u, v), (w, v) are replaced by (u, v′), (v′, v), (w, v). That is, the leftmost in-
put is tagged by the pseudo-vertex.

If the GP-graphs are mapped to standard graphs as described above, it can be
shown that isomorphic GP-graphs have the same phenotype.
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Task Method Isomorphic Identical

Artificial-Ant demes, standard 31485.0 (15.74 %) 20939.9 (10.47 %)
Artificial-Ant no demes, standard 38717.9 (19.36 %) 24173.8 (12.09 %)
Artificial-Ant no demes, uniform 38343.8 (19.17 %) 23981.7 (11.99 %)
Lawn-Mower demes, standard 71550.4 (35.78 %) 19260.9 (9.63 %)
Lawn-Mower no demes, standard 71796.3 (35.90 %) 19478.5 (9.74 %)
Lawn-Mower no demes, uniform 71180.0 (35.59 %) 19355.4 (9.68 %)
Two-Boxes demes, standard 41786.8 (20.89 %) 19188.9 (9.59 %)
Two-Boxes no demes, standard 53018.7 (26.51 %) 22688.9 (11.34 %)
Two-Boxes no demes, uniform 52901.5 (26.45 %) 22707.6 (11.35 %)

Table 8: Average number (and percentage) of fitness evaluation saved at the end of each
trial (i.e., after 2 · 105 evaluations) for the three benchmark problems and the three vari-
ants of the GGP algorithm: with demes (demes, standard), without demes using stan-
dard initialization (no demes, standard), and without demes starting from a uniformly
initialized population (no demes, uniform). Given are the number of evaluations that
could be saved using a genotype indexed database (Identical) and a canonical graph
indexed database (Isomorphic).

5.4 Empirical Evaluation

The aim of our experiments was to determine how many fitness calculations in GGP
are redundant due to isomorphic graphs already examined.

5.4.1 Experiments

We used the data from the experiments above, to assess the performance of GGP. In
each trial, we maintained two initially empty databases. In the first database we stored
all GP-graphs encountered during evolution. The second database was indexed by
the canonically labeled graph corresponding to the GP-graphs encoded as described in
section 5. In order to speed up comparison of graphs, we compressed every graph and
saved it in a binary search tree as a triple consisting of the compressed data, the size of
the compressed data, and the number of vertices in the graph.

The number of entries in a databases (i.e., the number of different genotypes or
the number of different canonical graphs) is equal to the number of fitness evaluations
needed if this database would have been used in the EA.

We repeated all experiments without using dynamic demes and different ways
of initializing the population. Every trial without demes was done with two differ-
ent initialization schemes, standard initialization and a uniform initialization with the
complete population consisting of copies of a single, randomly chosen genotype.

5.4.2 Results

The results for the three benchmarks problems are summarized in figure 6. In all sce-
narios, the trivial neutrality induced by isomorphisms is very prominent. There is a
large percentage of fitness evaluations of graphs that are isomorphic, but not identical
to graphs evaluated before.

A considerable amount of fitness evaluations could be saved by using a graph
database. For example, after 2 · 105 evaluations (i.e., after the trials have converged)
the fraction of fitness evaluations that could have been saved by using the database
indexed by the canonical graphs has increased to 35.8 %, 20.9 %, and 15.7 % for the

Evolutionary Computation Volume x, Number x 17



J. Niehaus, C. Igel, and W. Banzhaf

identical

isomorphic

re
d

u
n

d
an

t
ev

al
u

at
io

n
s

fitness evaluations

Lawn-Mower

50000 100000 150000 200000
0
0

20000

40000

60000

80000

identical

isomorphic

re
d

u
n

d
an

t
ev

al
u

at
io

n
s

fitness evaluations

Two-Boxes

50000 100000 150000 200000
0
0

20000

40000

60000

isomorphic

identical

re
d

u
n

d
an

t
ev

al
u

at
io

n
s

fitness evaluations

Artificial-Ant

50000 100000 150000 200000
0
0

20000

40000

Figure 6: Number of redundant evaluations in the three benchmark problems averaged
over 500 trials. The solid lines refer to the number of fitness evaluations that could be
saved because the same genotype was evaluated before. The dashed lines additional
count the cases where the corresponding canonical graph was evaluated previously.
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Lawn-Mower, the Two-Boxes, and the Artificial-Ant benchmark, respectively. Of the
redundant fitness evaluation, 73.1 %, 54.1 %, and 33.5 %, respectively, were only de-
tected because of using the canonical labeling graph concept. That means, considering
the effects of graph isomorphisms has significantly increased the utility of the graph
database.

Dynamic demes increase the diversity in the population by introducing new geno-
types and allow access to unexplored areas of the genotype space. In the control exper-
iments without demes the number of fitness evaluations that can be saved using graph
databases increases, because more similar graphs are visited. The percentage of eval-
uations that can be additionally saved by exploiting isomorphisms stays approximately
the same, that is, the absolute number of evaluations that can additionally be saved
using a canonical graph indexed database considerably increases. The different ways
of initialization, standard and random, lead to almost the same results.

5.5 Factors Influencing the Effects of Isomorphisms

How many additional fitness evaluations are saved by considering graph isomor-
phisms in a fitness database depends on many aspects. The restrictions on the class
of graphs are important. For example, for trees, where the canonization problem can
be solved efficiently (see Section 4.4), the effects of isomorphism seem to be less promi-
nent than in the case of GGP. Of course, function and terminal set play a major role.
The less different symbols, the higher the probability of observing isomorphic, but not
identical graphs. Of course, the more functions out of a function set are commutative,
the higher the probability to encounter isomorphic, not identical graphs. But also the
operators used and the population size matter. Typical operators, such as adding and
deleting nodes, do not produce offspring isomorphic to their parents. If the population
size is small and the search is rather local (where “distance” between individuals is
measured by the probability that one is generated by the variation operators from the
other), considering isomorphism in a fitness database does not save many additional
fitness evaluations. A detailed analysis of all these factors is left to further studies.

6 Conclusions

Graph isomorphisms are a source of trivial neutrality in genetic programming (GP).
We presented ways for dealing with graph isomorphisms, including how to count
the number of isomorphic representations of a graph and how to handle commuta-
tive functions. We stressed the use of canonical labeling maps for search algorithms
operating on graph spaces.

We believe that fitness databases promise to improve the performance of GP, in
particular when applied real-world applications. The overhead of storing and looking
up fitness values in a database can be neglected compared to the time needed for com-
puting the fitness function in many if not most technical and scientific applications of
GP. We empirically showed that the number of fitness evaluations can be significantly
reduced by means of a fitness database. Depending on the GP system and the problem
at hand, considering graph isomorphisms when addressing the database can addition-
ally save evaluations.

The experimental results have been achieved using the GGP algorithm, which has
proven to perform very well on common GP benchmark problems. This shows that
graph-based GP systems can be beneficial even if the problem at hand does not neces-
sarily require a graph encoding.
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