
Conformity and Nonconformity in Collective Robotics: A Case Study

Gregory Vorobyev∗, Andrew Vardy, and Wolfgang Banzhaf

Memorial University of Newfoundland, St. John’s, Canada, ∗gvorobyev@mun.ca

Abstract

In this work, we develop a social behavioral model designed
for multi-agent systems for solving the collective sorting task.
Experiments show that under this model agents are capable
of improving their performance significantly and can achieve
better results than conventional swarms of agents lacking
communication and social abilities.

Introduction
In his fascinating book “The Social Animal”, Elliot Aron-
son defines conformity “as a change in a person’s behavior
or opinions as a result of real or imagined pressure from a
person or group of people” (Aronson, 2007). Conformity is
one of the essential and most important aspects of human so-
ciety. Failure to conform to the rules issued by society may
turn out to be not only merely inconvenient, but even dan-
gerous. Driving down the wrong side of the street can be an
example of a nonconformist behavior that will most likely
lead to tragic consequences (Aronson, 2007). Nonconfor-
mity, however, often works to the long-term benefit of the
society as a whole. One example of “useful” nonconformity
could be a scientist attempting to look at a well-known prob-
lem from an entirely new angle, which can be controversial
to the viewpoint generally accepted. Sometimes this could
result in a revolution in science (i.e., consider Einstein’s the-
ory of relativity vs. classical Newtonian mechanics).

In this paper, we develop a simple model of conformity
and nonconformity in an artificial society. This model is not
intented to be a valid counterpart of the relevant phenomena
in the human society. Rather, our aim is to attempt to incor-
porate some degree of social intelligence (specifically, the
ability to choose between conformity and nonconformity in
behavior) in artificial agents and to study whether this addi-
tional “social” part of agent reasoning could be beneficial in
terms of the performance on the task being executed.

As a case study, we use the sorting task in the context of
multi-agent systems, which is formulated as follows: given
a set of objects of different types {x1, x2, ..., xn}, the group
of N agents is to collect them into homogeneous clusters.
Swarm robotics offers distributed algorithms for solving this

problem (Bonabeau et al., 1999; Deneubourg et al., 1991;
Bayindir and Sahin, 2007; Beckers and Holland, 1994; Mel-
huish and Hoddell, 1998; Wang and Zhang, 2004; Verret
et al., 2004; Vorobyev et al., 2012). The distinguishing prop-
erty of the swarm-based approach is that agents operate and
perceive only locally; thus, no global supervision and/or
knowledge is required. While swarm-based algorithms typi-
cally show slower convergence than centrally-controlled ap-
proaches, their advantages are simplicity, flexibility and ro-
bustness (Sahin, 2005). A swarm agent has very limited
sensing capabilities. As it is highlighted in the next sec-
tion, the only input to one popular swarm-based sorting al-
gorithm by (Deneubourg et al., 1991) is f(x), which roughly
estimates the density of objects of type x in the immediate
neighborhood. To obtain f , an agent only needs a sensor
which allows to recognize the type of an object, if there is
any, right in front of the agent. In many contributions in
this field, agents are even not aware of each other; i.e., kin
recognition is not present (Bayindir and Sahin, 2007). Such
“social ignorance” is viewed as beneficial, because it guar-
antees scalability and robustness of the approach.

This work primarily concentrates on extending
Deneubourg et. al.’s sorting algorithm by introducing
additional input information. We refer to this information
as social, because it represents knowledge about the goals
of other agents. Obtaining this new type of information
will require explicit communication, as opposed to implicit
communication, commonly employed by robotic swarms
(e.g., through stigmergy (Beckers and Holland, 1994)).
Since it is generally accepted that communication capabil-
ities in swarm-based systems should be kept as minimal
as possible, we also refer to the group of our “socially
intelligent” agents as a society as opposed to a swarm. This
work offers some evidence that socially aware agents could
perform more effectively and “intelligently” than their
swarm counterparts. The term social intelligence, as well
as artificial social intelligence are probably too broad to
cover in one paper; rather, we concentrate on just one social
phenomenon – conformity and nonconformity. Much like
traditional swarm robotics is inspired by social insects (see,

Bioinspired Robotics

981 ECAL 2013

jfurbush
Typewritten Text
DOI: http://dx.doi.org/10.7551/978-0-262-31709-2-ch146

e.g., (Bonabeau et al., 1999)), we are inspired by arguably
the most successful social beings we know – humans.

Although sharing information between agents as such is
not new in the field of collective and swarm robotics, most
of the contributions that employ this concept tend to focus
on extending individual’s sensory capabilities by accessing
perception, or memory, of others (Verret et al., 2004; Grech
et al., 2012). For example, in the collective clustering task,
agents can share information about the clusters they have
seen, and perform different actions based on that informa-
tion; in some sense, this would be equivalent to having non-
communicating agents with enhanced sensing capabilities
(e.g., increased sight range). In contrast, this paper studies
how agents with limited sensing capabilities make decisions
based purely on the number of other agents that made a sim-
ilar (or different) decision. Conformist agents always tend
to make decisions that are similar to the course of the ma-
jority, whereas nonconformist agents are more independent.
In some sense, our agents resemble zero-intelligent particles
described in (Bentley and Ormerod, 2011).

One important assumption made in this paper, in addi-
tion to the ability of agents to distinguish objects of differ-
ent types and to explicitly communicate with each other, is
that they can remember home locations in the environment
to which they can return if they wish so. This assumption
is, in fact, biologically plausible. For example, honeybees
can travel long distances and return to their hives (Seeley,
2010). We are not concerned with the details of the imple-
mentation of a homing mechanism; rather, we just assume
that our agents can store their home locations in their local
coordinate system. This information will further be subject
to social exchanges.

The next section describes the sorting algorithm followed
by socially intelligent agents. We then present experimental
results, a comparison with Deneubourg et. al.’s “socially
ignorant” agents, and the analysis of different parameters of
the social model.

The model
The proposed “social” algorithm is derived from
Deneubourg et. al.’s model, first introduced in 1991
(Deneubourg et al., 1991) (which from now on is referred
to as “Ant-Like Robots”, or “ALR”, model). The behavior
of ALR agents can be summarized as follows. Each agent
moves randomly. If an agent who is not carrying an object
encounters an object of type x, it decides whether or not to
pick it up. The probability pp(x) of doing so is defined as
follows:

pp(x) =

(
kp

kp + f(x)

)2

(1)

where pp(x) is the probability to pick up the object of type
x, 0 ≤ f(x) ≤ 1 is a function estimating the relative density

of objects of type x in the current neighborhood, and kp is
an arbitrary constant. Each agent has a short-term memory
m of size Nm for storing the information of what kind of
objects (if any) it has encountered in the recent past. f(x) is
calculated based on that memory:

f(x) =
1

Nm

Nm∑

i=1

{
1, if mi ≡ x,

0, otherwise.
(2)

In a similar manner, the probability of depositing the ob-
ject being carried upon encountering an empty cell is defined
as follows:

pd(x) =

(
f(x)

kd + f(x)

)2

(3)

where kd is a constant. Thus, pp(x) decreases with f(x)
from 1 (when f(x) = 0) to 0.25 (when f(x) = kp), and
pd(x) increases with f(x) from 0 (when f(x) = 0) to 0.25
(when f(x) = kd).

Home locations and division of labor
In the model described, agents pick up and put down objects
as they walk randomly in the environment. The performance
of the sorting task, however, can be significantly improved
if each agent has a home location, that is, the location where
the cluster of objects is to be formed. The algorithm can then
be modified as follows. An agent starts looking for an ob-
ject to pick up by roaming randomly. Upon encountering an
object, the agent picks it up with probability pp. The agent
then deterministically returns to its home location. Once the
home location is reached, the agent starts roaming randomly
and tries to put down the object into any empty cell it finds
with the probability pd. When the object is deposited suc-
cessfully, the agent starts looking for another object.

It is obvious that bringing objects of different types to
the same home location will not solve the sorting problem.
Thus, there must be only one type of object associated with
each particular home location and hence with each agent.
To be more general, from now on, we will refer to the object
type as task; e.g., “agent A is executing task x” is equivalent
to “agent A looks for objects of type x and brings them to
its home location”. The question is then how to assign tasks
to agents (that is, how to configure division of labor). One
simple solution (perhaps not optimal, but acceptable in our
case) would be to assign a task to an agent according to the
type of the very first object which that agent encounters at
the beginning of the simulation. Another question is how
to assign initial home locations to agents; in this paper, this
assignment is uniformly random.

As it will be shown further, a group of agents employing
the homing algorithm demonstrates better performance on
average than randomly roaming ALR agents. It is obvious,
however, that the homing approach itself has a significant
drawback: it is not flexible. The assignment of tasks and

Bioinspired Robotics

ECAL 2013 982

home locations to agents is fixed. Therefore, if none of the
agents has been assigned to a task x, then objects of that
type will be unaffected by the sorting process. On the other
hand, if more than one agent have been assigned to task x,
then convergence to a single cluster of type x will never be
achieved (assuming that the home locations of x-agents are
sufficiently far from each other). The situation is even worse
if the number of agents is large, or the distribution of objects
of different types is not uniform.

Conformity and nonconformity
We propose to solve the problem of a fixed assignment of
home locations and tasks by using explicit communication
between agents. If two agents A and B are currently located
within the communication range r of each other, they can
share information about their home locations (denoted as hA

and hB , respectively) and tasks (denoted as xA and xB).
If both of them are working on the same task x, then they

should agree on a single home location to guarantee con-
vergence to a single cluster. In our model, the probability
p(hB ← hA) of that hA will convert to hB is defined as
follows:

p(hB ← hA) = min

[
1,

(|hB |
|hA|+ lh

)2
]

(4)

where 0 ≤ |hX | ≤ 1 is the estimated proportion of other
agents (excluding X) that have their home locations at hX ,
and lh is a constant, which we interpret as home loyalty.
Thus, p(hB ← hA) increases with |hB | and decreases with
|hA|.

|hX | can be estimated as follows. Each agent A has a
memory M containing information about other agents met
(agents have unique identifiers associated with them). If a
piece of that memory MB contains information about some
other agent B, then Mh

B will denote hB at the time of the
last conversation between A and B, and Mx

B will denote xB

at the same moment in time. Note that Mh
B at any given

moment is not necessarily equal to the current hB , because
B might have changed its home position since the last time
A and B communicated. Then A can estimate |hX | using
the following formula:

|hX | = 1

|M |

|M |∑

i=1

{
1, if Mh

i ≡ hX ,

0, otherwise.
(5)

Note that Mh
i and hX should be defined with respect to

the same reference frame, for example, with the local coor-
dinate system associated with A. Thus, whenever B informs
A about its home location hB defined with respect to B’s
reference frame, A should transform this vector to A’s co-
ordinate system. We assume that A is able to perform this
operation by using the information about the location of B
with respect to A at the time of communication.

If during a conversation A and B discover that they work
on different tasks, there is a chance that one of them will
convert to the other’s task. The probability of doing so
p(xB ← xA) is defined similar to that of converting to the
other’s home location, namely:

p(xB ← xA) = min

[
1,

(|xB |
|xA|+ lx

)2
]

(6)

where 0 ≤ |xX | ≤ 1 is the estimation of the number of other
agents (excluding X) working on the same task as X , and lx
is a constant interpreted as task loyalty. Thus, p(xB ← xA)
increases with |xB | and decreases with |xA|. For obvious
reasons, upon switching to B’s task, agent A will also have
to deterministically switch to B’s home location.

From Eq. 4 and Eq. 6 one can try to predict the dynamics
of the reassignment of home locations and tasks. First of all,
if there are originally N agents, each assigned to a unique
task and a unique home position, then no conversions will
occur, since |hB | and |xB | in those equations will always be
zero. If, however, more than one agent are assigned to one
task, then they will eventually “recruit” all other agents and
converge to a single homogeneous cluster. If there are sev-
eral groups of size more than 1 assigned to different tasks,
all agents will still end up with the same task and the same
home position as time continues indefinitely. We refer to the
behavior of such agents as conformity, because it resembles
the similar phenomenon in human society. The conformist
behavior in our model can briefly be summarized as follows:
“always follow the majority, both in terms of task and home
location”.

The idea behind conformity is cooperation. Agents
should not pursue their own individual goals, which may in-
terfere with each other; rather, they should work as a team.
In this case, the team is an example of self-organization;
the decision of where and what kind of clusters should be
formed is collective and emergent. As experimental results
show, conformity helps avoid conflicting goals, e.g., differ-
ent home locations of the same object type. Conformity also
helps improve the clustering performance of the objects of a
given type x, because the number of agents involved in the
process of clustering tends to increase up to N .

It is clear, however, that once agents have all converged to
a single task, objects of other types will never become sub-
ject to sorting again. Thus, there must be a probability pn for
a conformist agent to give up its current task and home loca-
tion and to switch its attention to objects of neglected types.
This probability may be fixed. However, we suggest that
it may be more reasonable to calculate it by estimating the
performance u of the agent’s work, e.g., how many useful
actions the agent has accomplished within the last TU steps.
The only actions considered useful are picking up an object
or putting it down. Random roaming in search for objects,
direct routing to the home location, or random roaming in

Bioinspired Robotics

983 ECAL 2013

search for empty cells to deposit an object are not consid-
ered useful actions. We could estimate the performance as
follows:

u = min

(
1,

nu

NU

)
(7)

where nu is the number of useful actions accomplished
within the last TU time steps, and NU is the required maxi-
mum number of useful actions, at which u is saturated at 1.
For example, we may assume that accomplishing NU = 10
useful actions within the last TU = 500 time steps should
be considered ideal performance. Note that large values of
nu with respect to TU will hardly be ever achieved, because
generally agents spend much more time roaming randomly
than picking up or putting down objects.

Having estimated u, we can calculate pn using the follow-
ing equation:

pn =

(
1− u

1− u+ c

)2

(8)

where c is a constant which we refer to as conformity thresh-

old. Thus, pn decreases with u from
(

1

1 + c

)2

(when

u = 0) to 0 (when u = 1).
If agent A has decided to give up its current task xA at

its current home location hA, it starts random walk for a
period of time (in our experiments, this period is equal to
300 iterations). Once 300 iterations have passed, the current
location of A becomes its new home location. The behavior
of A is then completely identical to the behavior of the agent
that has just started the simulation: that is, A starts random
walk, and the first object met defines A’s new task x′

A. A
then starts looking for x′-objects and brings them to h′

A.
Suppose that x′

A ≡ xA and |hA| is relatively large. Then
it is likely that A will sooner or later encounter one of the
agents still working at hA. Since |hA| > |h′

A|, A will
be likely to convert back to hA. This mechanism prevents
agents from starting a new cluster of the same type to which
the group has previously converged to.

Suppose, however, that x′
A �≡ xA, and all agents but A are

working on xA. Then A upon encountering any of its for-
mer colleagues will be likely to convert back to xA (because
|xA| > |x′

A|). To prevent this, we consider A a noncon-
formist. In our model, a nonconformist, i.e., an agent that
has recently given up the task carried out by the majority
and started executing a new task, gains a special “ability”
that allows it not only to keep executing its new task, but
also to recruit other agents.

To distinguish formally A from other agents that are
working within groups, we define a measure of nonconfor-
mity ψ associated with each agent. ψA = 1, as a reflection
of the fact that A does not conform to the majority. For any
agent X that works within a group, ψX = 0. We now update
Eq. 6 taking into consideration nonconformity ψ:

Figure 1: A screenshot from the simulation taken shortly
after a nonconformist appeared. Agents are depicted as
squares, and objects to be sorted are drawn as smaller cir-
cles. There are three types of objects – red, blue, and green
pucks. Yellow squares correspond to unladen agents, and
blue squares denote agents that are carrying pucks. A ma-
genta border around an agent X indicates that ψX > 0. For
each agent, a white line is drawn to show the distance from
its home location. In this experiment, there are 600 pucks
(200 pucks of each color), N = 30, and the grid size is
80× 60.

p(xB ← xA) =

min

[
1,

ψB

ψA + lc

]
, if ψA > 0 or ψB > 0

min

[
1,

(|xB |
|xA|+ lx

)2
]
, if ψA = ψB = 0

(9)
where lc is a constant which can be referred to as loyalty to
crowd.

Thus, any agent A with positive nonconformity will have
a zero probability of joining a conformist B (since ψB = 0).
Conformist B, however, will have a positive probability of

joining nonconformist A: p(xA ← xB) =
ψA

lc
> 0. If both

A and B are conformists, Eq. 9 is reduced to Eq. 6.
The last detail is updating ψ. For conformists, ψ always

remains zero. Once a conformist B has been recruited by
a nonconformist A, it accepts its value of nonconformity:
ψB = ψA. Furthermore, each nonconformist A decreases
its nonconformity as the number of its colleagues increases:

ψ′
A =

0, if ψA = 0

1−min

(
1,

|hA|
NG

)
, otherwise

(10)

where NG is the maximum size of a group that can be re-
cruited by a nonconformist. Upon reaching this limit, A

Bioinspired Robotics

ECAL 2013 984

(a) (b)

Figure 2: (a): Clustering of 3,000 objects of the same type after 1, 10,000, and 250,000 steps; grid 200 × 150. The size of
the environment is 3-4 times larger than r = 50; two stable teams emerge, working at a significant distance from each other.
Nonconformists tend to rejoin one of those teams shortly. (b): Sorting of 900 objects of 3 types (300 objects of each type) after
1, 10,000 and 50,000 steps; grid 80× 60. The relative magnitudes of the grid size and r allow the entire agent population work
as a single team most of the time. First, a cluster of one type of objects is consistently formed. Then nonconformists start to
appear, switching the entire group to new tasks. (Note that pucks being carried by agents are not displayed here.)

Bioinspired Robotics

985 ECAL 2013

ceases its nonconformist status and starts acting like any
other conformist agent. Note that A will not gain noncon-
formity again from its colleagues which may still be non-
conformists (because of using slightly outdated estimations
of |hA|). Therefore, the entire group will eventually lose its
nonconformist status and will become subject to honest con-

formist competition with other groups. If NG >
N

2
, then,

whenever a nonconformist is spawned, it will tend to create
a new majority, switching the entire agent population to a
new task.

As an illustration, Fig. 1 shows how the simulation of the
sorting process looks like roughly one hundred iterations af-
ter a nonconformist appeared. A few important things can be
noted. First, just before a nonconformist emerged, the entire
population had been collecting red pucks to the cluster situ-
ated at the bottom. Since there are very few red pucks left to
be collected (in this example, no isolated pucks are left, but
often this is not the case), the agents have very low estima-
tions of u, resulting in pn large enough to create a noncon-
formist. Next, note that the nonconformist has already re-
cruited many other agents which now have ψ > 0. Accord-
ing to Eq. 9, it is very likely that 4 agents that are still work-
ing on red pucks will shortly join the nonconformists. Inter-
estingly enough, a couple of agents working in the “noncon-
formist” group have already stopped being nonconformists
(ψ has become zero). This is because their |hX | values have
surpassed the NG threshold (see Eq. 10). Agents that are
farther away from the nonconformist home location have
less chance to communicate with their colleagues; thus, their
|hX | increase more slowly, and they still consider them-
selves nonconformists. In 100-200 iterations, the entire pop-
ulation switches to green pucks, and all nonconformists be-
come conformists again. Once almost all green pucks are
collected, we can expect another nonconformist to appear.

The model described contains a number of parameters
that can be tuned to achieve a desired balance between con-
formity and nonconformity. The next section offers exper-
imental results showing how different values of some of
those parameters affect the performance of the developed
social model.

Experiments
Our experiments are conducted in a Monte-Carlo simulation
which is functionally as close as possible to the simulation
used by Deneubourg et. al. (Deneubourg et al., 1991). We
use a grid-based environment and do not allow cells to be
occupied by more than one object and one agent at the same
time. Each iteration of the simulation, the agents are up-
dated in random order. During the update cycle, each agent
communicates with one random member within its commu-
nication range r and then performs an action depending on
its current state and perception (e.g., moves one cell toward
its home location, or picks up an object). After the com-

munication session is completed, the agent is not allowed
to communicate for the next TS = 5 time steps (it contin-
ues, however, its sorting work). This is done to reduce com-
putational costs of the simulation. In addition, whenever a
conformist becomes a nonconformist, it is not allowed to
communicate until it settles down at its newly generated po-
sition. This is because the new nonconformist does not yet
know its own task – it will be determined based on the type
of the first object it encounters after its new home location is
found. Finally, if an agent tries to become a nonconformist
by generating a random number and comparing it with the
probability pn and fails, its next chance to do so is scheduled

in TN =
TU

2
time steps. This is done to let nu accumulate

updates before firing pn again. The general process of clus-
tering and sorting can be seen in Fig. 2.

To assess the performance of the developed model, we
collect two types of statistics: the size of the largest cluster
and the number of clusters. We define clusters as follows:
1) An isolated object is a cluster of size 1; 2) An object q
belongs to a cluster Q if q is of the same type as objects in
Q and is located in an adjacent cell to any of the objects in
Q.

Each experiment uses the following defaults: NU = 10,

TU = 500, NG =
N

4
, N = 50, r = 40, lh = lx = 1,

lc = 0.1, c = 5, grid: 80 × 60, 3 types of objects, 300
objects of each type. If for any of these parameters another
value is used, it is explicitly stated so in the caption of the
relevant figure. For each experiment, we ran 30 trials and
averaged the results. All plots show mean values accom-
panied by error bars of ±1.96 standard errors of the mean;
thus, the error bars correspond to 95% confidence intervals
of the mean. For each set of experiments, Shapiro-Wilk tests
have been conducted which consistently produced p-values
that are greater than 0.05; thus, there is no reason to reject
the hypothesis that our experimental data are not normally
distributed.

As it is clear from Fig. 3, the group of socially intelligent
agents demonstrates better performance than ALR agents.
We included homing agents without a social model into
benchmarks in Fig. 3 as well, in order to understand what
part of the performance boost acquired by social agents is
actually due to their social abilities as opposed to the perfor-
mance boost gained due to the homing mechanism.

To estimate the influence of different parameters on the
overall performance of the model, we conducted a series of
experiments where we varied lx, c, lh, lc, and r.

As one might expect, smaller values of lx result in a rela-
tively quick convergence of the population to one task; thus,
the number of clusters decreases relatively slow (because
objects of the other two types are consistently ignored), but
the size of the largest cluster grows faster (Fig. 4). Note that
at t ≈ 12, 000 the first nonconformists appear; conformists
are recruited by nonconformists (see Eq. 9) and start form-

Bioinspired Robotics

ECAL 2013 986

(a) The size of the largest cluster. (b) The number of clusters.

Figure 3: Experimental results for three modes: ALR agents, homing agents (no social model), and social agents; grid: 120×
100.

(a) The size of the largest cluster. (b) The number of clusters.

Figure 4: The influence of task loyalty lx on the performance. Four modes: ALR agents, social agents with lx = 0.1, lx = 1,
and lx = 20.

(a) The size of the largest cluster. (b) The number of clusters.

Figure 5: The influence of conformity c on the performance. Four modes: ALR agents, social agents with c = 0.1, c = 1.0,
and c = 5.0.

(a) The size of the largest cluster. (b) The number of clusters.

Figure 6: The influence of communication range r on the performance. Four modes: ALR agents, social agents with r = 1,
r = 10, and r = ∞. The grid size, similarly to previous experiments, is 80× 60.

Bioinspired Robotics

987 ECAL 2013

ing larger groups, and, as a result, the number of clusters
starts decreasing faster.

Conformity c prevents agents from defecting from the
course of majority. Fig. 5 shows that with large values of
conformity the entire population works steadily on one task
as few or no nonconformists emerge. Thus, the size of the
largest cluster increases, but the overall number of clusters
declines relatively slowly. On the contrary, smaller values
result in a situation when many nonconformists with differ-
ent home locations appear, effectively dismantling the agent
population. In this case, the largest cluster is gradually de-
stroyed by competing nonconformists.

The influence of the lc and lh parameters is less signifi-
cant; relevant figures are omitted due to lack of space.

In our final series of experiments, we estimated the influ-
ence of the communication range r (Fig. 6). Agents with
limited r have less chance to encounter each other; there-
fore, establishing cooperation is rather unlikely. It is quite
natural that such agents show performance similar to non-
social homing agents.

Similarly to the trade-off between exploitation and ex-
ploration in genetic algorithms, there is a trade-off between
conformity and nonconformity in the proposed social model.
Conformity is vital for cooperation, avoiding conflicting
goals, and convergence; nonconformity, on the other hand,
is useful for exploring the task space in search for new goals.
Small values of task loyalty lx combined with large val-
ues of conformity c may be used to generate agents that
tend to work collaboratively and consistently on creating one
large cluster, ignoring other tasks. If it is more important to
quickly decrease the number of clusters, large values of lx
and home loyalty lh may be used. Note that the described so-
cial model can be reduced to the homing algorithm described
on page 2 by assuming lx = ∞, lh = ∞, and c = ∞.

Conlusions
In this paper, we have proposed a model of conformity and
nonconformity, a social phenomenon observed in human so-
ciety. We tackled a well-known problem, collective dis-
tributed sorting. Our approach originated in the domain of
swarm intelligence, but evolved into socially intelligent ap-
proach as the social awareness of agents increased. We pro-
vided evidence that using the ideas of conformity and non-
conformity can be beneficial in artificial multi-agent systems
and can increase performance of a task.

The algorithm described in this paper is extreme in the
sense that our agents act like zero-intelligent particles (Bent-
ley and Ormerod, 2011); that is, the decision to change the
home location and/or the task being carried out is based
purely on the number of other agents working at that home
location and/or on that task. Our experimental results in-
dicate that even this extreme model, based only on so-
cial information, is useful and can be applied in collective
robotics. Further research could be conducted to reveal

whether adding the social component of intelligence to the
agents that are already capable of making informed deci-
sions can increase the effectiveness of the robot group as a
whole.

Acknowledgements
W.B. acknowledges funding from NSERC under the Discov-
ery Grant Program RGPIN 283304-07 and RGPIN 283304-
12.

References
Aronson, E. (2007). The Social Animal. W. H. Freeman and com-

pany, New York.

Bayindir, L. and Sahin, E. (2007). A review of studies in swarm
robotics. Turkish Journal of Electrical Engineering, 15:115–
147.

Beckers, R. and Holland, O. (1994). From local actions to global
tasks: Stigmergy and collective robotics. Artificial life,
IV:181–189.

Bentley, A. and Ormerod, P. (2011). Agents, intelligence, and so-
cial atoms. In Slingerland, E. and Collard, M., editors, Cre-
ating Consilience: Integrating the Sciences and the Humani-
ties. Oxford University Press.

Bonabeau, E., Dorigo, M., and Theraulaz, G. (1999). Swarm Intel-
ligence: From Natural to Artificial Systems. Oxford Univer-
sity Press.

Deneubourg, J. L., Goss, S., Franks, N., Sendova-Franks, A., De-
train, C., and Chretien, L. (1991). The dynamics of collec-
tive sorting robot-like ants and ant-like robots. Simulation of
Adaptive Behaviour, pages 356–363.

Grech, R., Florez-Revuelta, F., Monekosso, D. N., and Remagnino,
P. (2012). Robot teams: Sharing visual memories. In Dis-
tributed Autonomous Robotic Systems.

Melhuish, C., H. O. and Hoddell, S. (1998). Collective sorting and
segregation in robots with minimal sensing. In Proceedings
of the fifth international conference on simulation of adaptive
behavior on From animals to animats.

Sahin, E. (2005). Swarm robotics: From sources of inspiration to
domains of application. Swarm robotics, 3342:10–20.

Seeley, T. D. (2010). Honeybee democracy. Princeton University
Press.

Verret, S., Zhang, H., and Meng, M. (2004). Collective sorting
with local communication. Intelligent Robots and Systems,
3:2687–2692.

Vorobyev, G., Vardy, A., and Banzhaf, W. (2012). Supervised
learning in robotic swarms: From training samples to emer-
gent behavior. In Distributed Autonomous Robotic Systems.

Wang, T. and Zhang, H. (2004). Collective sorting with multiple
robots. Robotics and Biomimetics, pages 716–720.

Bioinspired Robotics

ECAL 2013 988

