On the Dynamics of an Artificial Regulatory
Network

W. Banzhaf

Department of Computer Science, University of Dortmund, D-44221 Dortmund
banzhaf@cs.uni-dortmund.de
http://1s1l-www.informatik.uni-dortmund.de/people/banzhaf/

Tel: +49 231 9700-953 Fax: +49 231 9700-959

Abstract. We investigate a simple artificial regulatory networks (ARNs)
able to reproduce phenomena found in natural genetic regulatory net-
works. Notably heterochrony, a variation in timing of expression, is easily
achievable by simple mutations of bits in the genome. It is argued that
ARNSs are useful and important new genetic representations for artificial
evolution.

1 Introduction

Regulatory networks are a fascinating new area of research in biology [4, 5]. With
the advent of whole genome information and the realization that - in higher
organisms - but a tiny fraction of DNA is translated into protein, the question
what the rest of DNA is doing becomes all the more pressing. Regulation seems
to be a very reasonable answer for a functional role of unexpressed DNA. Even
in single-celled organisms, regulation takes up a substantial part of their highly
compressed genomes. According to Neidthardt et al. [18], 88 % of the genome
of the bacterium FE.Coli is expressed, 11 % is suspected to contain regulatory
information (see also Thomas [22]).

It is also recognized that the information on DNA-strings controlling the ex-
pression of genes is key to understanding the differences between species and
thus to evolution [12]. How evolution actually managed to evolve different struc-
tures of multicellular organisms from more or less the same proteins seems to
be a question of the sequence and the intensity of events during development.
Even at the level of biochemical reactions necessary for, e.g. metabolism, regu-
lation plays an important role, thus spanning reaction times from milliseconds
(physiology) to Megayears (evolution).

There are three major genetic mechanisms, all tied to regulation [5], which
allow such a variety of reactions of living organisms to the pressure for survival:

1. Interactions between the products of genes
2. Shifts in the timing of gene expression (heterochrony)
3. Shifts in the location of gene expression (spatial patterning)



Regulatory networks are used by Nature to set up and control mechanisms of
evolution, development and physiology. Regulatory networks unfold the patterns
and shapes of organism morphologies and of their behavior. In addition, they
mediate between development and evolution, since many evolutionary effects can
be followed through their regulatory causes.

It 1s therefore natural to ask whether we can learn from this type of con-
trolling the organization of matter in the area of artificial evolution. Over the
last decades, simple approaches to artificial evolution have proven useful in op-
timization problems of engineering and in combinatorial problems of computer
science [19,21,11,9,15,2,8,7]. Most of these approaches, however, use a primi-
tive genotype-phenotype mapping without implementing any dynamics into this
process of mapping information into behavior. Only recently it was realized that
it may the dynamical (and possibly complex) mapping of genotypes to pheno-
types, that allows natural systems to evolve with ease (see, for example, [13]).

How can we make use of these insights in artificial evolutionary systems?
Previous work in the area is scattered. Eggenberger [6] has studied the patterning
of artificial 3D-morphologies. Reil [20] has set up an artificial genome and studied
some consequences for artificial ontogeny. Kennedy [14] examined a model of gene
expression and regulation in an artificial cellular organism. Bongard and Pfeifer
have considered the relation between evolving artificial organisms and behavior

In this contribution we shall present a recently conceived model of a regu-
latory networks which should be useful for artificial evolutionary systems. The
model 1s a simplification and abstraction of what the author perceives as key
elements of the protein-genome interaction in regulatory networks. It is not yet
connected to a semantics of structures or behavior, but shows a rich behavioral
dynamics. Thus it seems most appropriate to study this artificial regulatory
network (ARN) in the context of Artificial Life.

The paper is organized as follows: Section 2 explains the overall view of
the artificial regulatory network model, section 3 views it from the static and
dynamic perspective. Section 4 explains the concept of heterochronic control.
Section 5 exemplifies the plasticity of such systems to evolutionary pressure,
section 6 summarizes the discussion and outlines future steps.

2 The artificial regulatory network

Our ARN consists of a bit string with direction (like 5 — 3’ in DNA), the
‘genome’; and mobile information-carrying molecules, 'proteins’, which are equip-
ped with bit patterns for interaction with the genome. Together, they represent
a theoretically closed world with a network of interactions between genome and
proteins, and a dynamics of protein concentration development determined by
this network.

More technically, a mechanism for reading off genes and for producing pro-
teins of particular bit-patterns is given in the form of a ’genotype-phenotype
mapping’. Proteins are able to wander about and to interact with any pattern
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Fig. 1. Distribution of matches for sample proteins with their genome. The distribution
is roughly Gaussian, as should be expected from random genomes.

on the genome, notably with ’regulatory sites’ located upstream from genes.
By attaching to these special sites, they can positively (by enhancing) or neg-
atively (by inhibiting or silencing) influence the production of (other) proteins.
We observe the production of proteins and the dynamics of their concentration
changes which are a result of the interplay between all the interactions taking
place simultaneously. At this time, there is no energy or raw material considered
in the system.

The genome is implemented as a sequence of 32-bit (integer) numbers. The
length of the sequence, [, determines the length of the genome and is frequently
used as a parameter. A particular START pattern, the ’promoter’; is used to
signal the beginning of a gene on the bit string (analogous to an open reading
frame (ORF) on DNA), starting at the next integer. The signal used is arbitrary
and was chosen as ’01010101’, a one-byte pattern which in a genome generated
by randomly choosing ’0’s and ’1’s will appear with a probability of 278
0.0039 = 0.39%. Genes have a fixed length of {; = 5 32-bit integers resulting in
a bit pattern of 160 bits for each gene (this could be changed later into a STOP
signal).

Upstream from the promoter site two special sites are located, one enhancer
site and one inhibitor site, both of length 32 bits. Attachment of proteins to these
sites will result in changes in protein production of the corresponding gene. It
is assumed that an equally low production of proteins takes place if both sides
are unoccupied. Usually, however, there will be proteins around to influence the
expression rate of a particular gene, and we shall look at that in more detail
later. In this simple model, we restrict ourselves to just one regulatory site for
expression and suppression of proteins, a radical simplification with regard to
natural genomes, where 5-10 regulatory sites are the rule that might even be
occupied by complexes of proteins.

Proteins are produced from genes by feeding their bit patterns into a genotype-
phenotype mapping function and producing mobile elements carrying other bit
patterns, the proteins. In this model, therefore, we disregard the transcription
process completely. Further, there are no introns, no RNAs and no translation
procedure resulting in a different alphabet for proteins. Instead, proteins consist



of bit patterns of a particular type: Each protein is a 32-bit number resulting
from a many-to-one mapping of its gene: On each bit position in the gene’s inte-
gers the majority rule is applied so as to arrive at one bit for the protein. In the
case of a tie (not possible with an odd number for /), this is resolved by chance.

Proteins can now be examined as to how they 'match’ the genome: Each bit
pattern of a protein can be compared to the genome pattern with the overlap be-
ing the number of bits set in an XOR operation. Thus, complementarity between
genome and protein bit patterns determines their match. In general, it can be
expected that a Gaussian match distribution results when shifting proteins over
all the sequence of a random genome. Notably, there are a few high-matching and
a few low-matching positions and many average-matching ones on the genome.

3 Static and dynamic view

Let us first look at examples from the static perspective. Table 1 gives three
examples of genomes with increasing size. We list the number of genes which
roughly follows the 0.39% rule, the maximum match between resulting proteins
and their genome at any location, and the number of times such a maximum
match has been found.

Table 1. Sample genomes of increasing size. As can be seen the number of proteins
with maximum match remains about the same, but their specificity increases.

Genome length [ |Number of genes|Maximum match|Frequency of max. match

1000 3 25 3
10000 37 28 4
100000 409 30 3

If we look at the distribution of matches the picture according to Figure 1
emerges for a sample genome with 3 proteins: Roughly a Gaussian distribution
of matches is found for each of these genes.

Let’s change perspective and look from the genome’s point of view, and more
specifically, from the point of view of regulation sites. A number of proteins are
produced and floating by, with some providing better matches to the site, other
proteins providing worse matches. In principle, each protein has the potential
to interact with each regulatory site, and the degree of matching will determine
the probability of occupation of a certain site with a certain protein.

Because proteins are competing for attachment to regulatory sites, the prob-
ability of occupation with a particular protein is dependent on the degree of
matching of all other proteins to this site.

Under the simplifying assumption that occupation of two regulatory sites per
gene modulates the expression of corresponding protein, a network of interac-
tions between genes and proteins can be deduced, which can be parametrized



Fig. 2. Distribution of matches of proteins of a larger example. 9 out of 32 proteins are
depicted and their matches with the enhancer (black) and inhibitor (gray) regulatory
sites of all 32 genes of this example (I = 10, 000).

by strength of match. Figure 2 shows a sample network, again taken from the
example genome with 32 genes / proteins.

No evolution has taken place (recall these genomes are generated by randomly
drawing bits), and the network of interactions shows a highly random view of
the resulting interactions. These networks must be considered very complex (in
terms of layers vs. participating nodes) and a deep hierarchy of interactions is
visible!.

In the rest of this section we shall concentrate on the dynamics of the inter-
action network. A match between a protein and regulatory site of a gene leads
to activation or inhibition of protein production of the corresponding gene. Gen-
erally, the influence of a protein ¢ with i = 1, ..., n, on an enhancer/inhibitor site
is exponential in the number of matching bits, exp(3(u; — Umaz)) Where Upmgy is
the maximum match achievable.

The concentration of protein molecules ¢; of protein j modulates this strength
to produce the following excitatory / inhibitory signals for the production of

protein i:
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where a scaling was done as to have a maximum match for the best matching

protein, both in excitatory and inhibitory signals.

Given these signals, protein 7 is produced via the following differential rate
equation

dci

dt

! As has been observed in natural genome organization, shallow hierarchies, up to the
point of modularity, are a hallmark of biological organisms. It is interesting to note
that a simple process of duplication and divergence suffices to reach a similar state,
even from a random genome [1].

= (5(62 — mz)cz - (3)



A flow term assures that concentrations remain in the simplex, ) . ¢; = 1,
resulting in competition between sites for proteins.
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Fig.3. Two different dynamical systems realized by two different genomes. Left: A
dampened (nonlinear) oscillator type of dynamics. Right: Slow and smooth develop-
ment of concentrations.
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Fig.4. Two other dynamics. Left: Settlement into a point attractor is well under way.
Right: Extended transition phase with one protein achieving high values of concentra-
tion then switching the state to expression of another gene.

If we look at the dynamics of concentration changes of proteins, starting from
a state of equal concentration that reflects the native low-level expression of all
genes, we can observe that some proteins increase their level of concentration,
then fall again, with usually one being left over. Thus, a typical dynamic system
behavior can be seen, well known as ’point attractor’ in dynamical systems
theory [10].

For different random genomes (different number of genes, matching etc) the
dynamics is remarkably different. There are cases of longer and shorter time



scales, there are complicated and simple dynamics. Figures 3 - 4 show four
different dynamics resulting form four different genomes.

It should be noted that this richness of dynamics is merely a result of different
genomes of the same length, with different patterns for proteins resulting in dif-
ferent matching and regulation results. No development has yet been put in place.
There are three types of competition effective simultaneously, (i) competition of
proteins for binding sites (only regulatory sites considered), (ii) competition of
binding sites for proteins, and (iii) competition of genes for raw material for
production of proteins. This latter competition is implemented by normalizing
the strength of the inhibition / enhancement signals through division by N.

4 Heterochronic control

If we look at this from the perspective of how many proteins are above or below
a certain production threshold we can observe the turning on or turning off of
genes (on/off could be set equal to x 2 or x 1/2 of initial production, or it could
be based, as here, on an absolute concentration value, 0.8 here). This translates
into a timing of onset/termination of protein production. Figure 4, right, for
instance, shows the timing of onset and termination of concentrations above 0.8
for protein 7 (arrows), t,, = 9,000,t,75 = 22,000.

Changing the degree of matching between regulatory sites and proteins by
one or two bits can result in dramatic changes in the dynamics, but it must
not. Sometimes there are no changes at all and we have a neutral variation.
Sample changes that actually varied the expression are shown in Figure 5. It is
interesting to note that variations in patterns are translated by the ARN into
time variations, similar to what was observed in natural GRNs [5]
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Fig. 5. Genome of Figure 4. Left: Degree of matching between protein 7 and inhibitory
site to gene 4 changed by one bit. Timing of expression of protein 7 changes substan-
tially: ton, = 14,500,¢55; = 30,500. Right: Degree of matching between protein 7
and inhibitory site to gene 4 increased by another bit, timing changes even further
ton = 30,000, £o5 s = 53, 000.



Heterochrony, i.e. a variation in the timing of onset or offset of certain genes
are heavily used in development for generating particular structural effects [17,
16]. As we can see by comparing Figures 5, left and right, and 4, right, small
changes cause small effects. The same principle could be also of use in physi-
ological reactions, for instance under the control of external factors exceeding
certain threshold values.

Interestingly, the range of possible changes is partitioned logarithmically, due
to the change of occupation probability, that is depending on an exponentiated
matching difference between proteins and DNA bit-patterns. This can be seen
most easily, if we put all concentration curves of protein 1 and 7 into one plot,
see Figure 6. We can clearly see the range of changes expanding with further
additions of bit flips.
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Fig.6. Genome of Figure 4. Degree of matching between protein 7 and inhibitory site
to gene 4 changed progressively. Timing of expression of protein 7 changes in increasing
step sizes.

5 Evolution

The most important question to be addressed with such a model is whether it
would be possible to define arbitrary target states and evolve the genome / pro-
tein network toward this target state. Our first results in a typical simulation
are shown in Figure 7. It shows the progress of a network in approaching the
target concentration of a particular protein, here protein 6. As we can see, the
evolutionary process quickly converges towards this target state. It must be em-
phasized, that the very simplest way of doing evolution was used here, a (1+ X)
evolution strategy, with A = 1 [19]. Various experiments were performed with the
same genome (not shown here), allowing evolution of other concentration levels



for other proteins. We can see from the figure, that steep declines in the deviation
(error) curve are followed by stagnation periods. These stagnation periods, are,
however, accompanied by continued changes in the genome under evolution. It
is merely the mapping of the genome that does not show many consequences of
these variations. By construction we designed a system with many neutral path-
ways. During some periods it does not look as if there is evolutionary progress,
but nevertheless changes happen in genomes due to neutral steps.
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Fig. 7. Evolution at work: 3 different runs of a (14 X) strategy to arrive at a prespecified
concentration of one particular protein: cg = 0.085 at time ¢ = 100.

This can be seen if we consider the changes in concentration levels of all pro-
teins at ¢ = 100 in Figure 8. Here we can discover that all protein concentrations
change over time, with many stagnation periods for all proteins. Huge steps are
sometimes shown by certain proteins, which are not reflected in the fitness of an
individual, due to the focus on measuring only the deviation from ¢ = 0.085 for
fitness.

6 Summary

In this contribution we have shown that a simple model for artificial regulatory
networks can be formulated which captures essential features of natural genetic
regulatory networks. Although our investigation is preliminary in that it is only
qualitative in results, the different behavior of these networks from usual genetic
represenations can be seen already from the few examples shown here.

With this contribution we have just started on a path that relates changes in
time and intensity to tiny pattern changes on bit strings. As such, the network
picture of a genome might be a very fruitful approach and could possibly provide
the algorithmic ”missing link” between genotypes under constant evolutionary
changes and remarkably stable phenotypes that we find in the real world.
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