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Abstract. We investigate the possible organisations emerging from an artificial 
chemistry (AC) of colliding molecules in a well stirred reactor. The molecules 
are generated from 7 basic components (atoms), each with a different behavior. 
After discovering two main types of organisations (metabolic o. and balanced 
o.), we deepen our analysis by studying their behavior over time. The phases 
they pass through and their stability with respect to an external influx of 
random information are examined. We notice that no organisation seems to be 
totally stable over time, yet metabolic organisations pass through a growth 
phase with a much higher stability. Lastly we observe how the different phases 
are triggered by the presence or absence of particular atoms. 

Introduction 

The last years have seen a growing interest for systems where different elements 
interact to generate  new elements, often different from the ones previously present. 
Those systems, also known as Artificial Chemistries, have been used to model 
biological, chemical , ecological and social systems. The revolutionary importance of 
these systems,  in comparison to previous linear or non-linear ones, lies in the fact that 
it is impossible to study them with the method of differential equations. This 
impossibility and its relevance has been clearly noticed  by  Fontana and Buss in  
[Fontana and Buss, 1996].  
      If we consider S to be the space of all possible elements which can be generated 
by an Artificial Chemistry , and P(S) the space of all possible subsets of S, we can see 
that some of those subsets hold two key properties, (1) the property of being a self-
maintaining set of elements, and (2) the property of being a closed set of elements. A 
self-maintaining set of elements is a set where each element can be generated by the 
interaction of the elements of this set, while a closed set is a set whose elements, as 
they interact, cannot generate anything external to the set itself. A set which is both 
self-maintaining and closed is called an organisation. Organisations are a central 
concept in the field of Artificial Chemistries since they represent points of no return 
in the space of the possible states of the system. When a system reaches an 
organisation, it can only remain similar to itself, or devolve into a sub-organisation. 

All this has already been investigated in [Fontana and Buss, 1993] [Ikegami and 
Hashimoto, 1996][Dittrich and Banzhaf 1998][Speroni at al, 2000]. Here we wish to 
address the question what happens if  new elements which are not part of the already 
existing organisation are  inserted into the system. Clearly, sometimes the system will 



return  to the original organisation again. In other cases, it will adapt to a more 
complex organisation, and sometimes it will pass through a transition phase and reach 
a different organisation altogether. We are thus studying the stabilit y of the generated 
organisations respect to an external influx of elements.  To study this question we use 
a system based on combinators [Hindley and Seldin, 1986], [Speroni, 2000].  

The System 

Our Artificial Chemistry keeps a finite number of basic elements (atoms) which 
interact to generate combined elements (molecules). The behavior of the system is 
heavily dependent on the set of atoms which are available at certain moments. Since 
some organisations tend to consume more and more of the same atoms, they often 
prepare the right environment for the next organisation to arise. More specifically, in 
our system we colli de algebraic algebraic structures called combinators to generate 
new combinators. The space of combinators has the following qualiti es: (1) It is 
infinite, (2) each combinator directly represents a different operator, (3) every 
possible operator from the space of strings to the space of strings is present and (4) 
each combinator (in its normal form) can be expressed using a finite set of basic 
elements. 

Table 1. The seven basic combinators C, R, W, B, I, S, K. s0 represents the rest of the string. s0 

can be equal to ∅ or to an  arbitrary string.  

Atom Applied Atom Reduced string Atom Applied Atom Reduced string 
C C x1x2x3 s0 → X1x3x2 s0 I I x1 s0 → x1 s0 
R Rx1x2 s0 → X1 s0, x2 S S x1x2x3 s0 → x1x3(x2x3) s0 
W W x1x2 s0 → X1x2x2 s0 K Kx1x2 s0 → x1 s0 
B B x1x2x3 s0 → x1(x2x3) s0      

Combinators  

Each combinator is a string of symbols with balanced parentheses. Each symbol 
represents an operator that can be applied to the  subsequent elements of  the string. In 
our experiments we used 7 basic operators: B, C, K, I, R, S and W. This set of 
operators contains two disjointed bases of the space of all possible combinators: B, C, 
K, W, and K, S, I. Each base can generate every possible combinator. Thus, elements 
of one base might  be expressed as combinators of the other base. Some redundancy 
will t herefore be present in the solutions. The seventh combinator, the ‘R’ has been 
specifically designed to permit combinators to release independent sub-units (see 
results section). Each combinator can be seen as a simple Lisp program, which uses 
the other programs (as data) to generate new programs.  

Each set of parentheses ‘(‘ ,’ )’ encloses a sub-combinator. Each sub-combinator is a 
combinator in its own right and as such part of the longer combinator. Also each sub-
combinator can hold other sub-combinators inside, as a set of parentheses can enclose 
other sets inside ‘( ( ) ( ) )’ . In Table 1 all operators, from here on called atoms, and 



their effect on the subsequent elements can be seen. Each element xi can be either an 
atom or a sub-combinator. If it is a sub-combinator it will be copied altogether (by the 
atoms W and S), destroyed altogether (by the atom K) or released altogether (by the 
atom R). 

When we write a combinator, some parentheses can be considered useless. These 
might be eliminated, in particular, any set of parentheses with only one or no element 
inside (example, ‘( )’ ,‘(K)’ ). Also parentheses which start a combinator or a sub-
combinator can be  eliminated. For instance,  (S(I)((K)K)) can be written as  SI(KK). 

Reduction Operation and Normal Form Let us consider one combinator. By 
applying its atoms as operators to the rest of the elements, we move from one 
combinator to another. This operation is called reduction. Each combinator codes for 
an operator from the space of strings with parenthesis in itself. Each operator can be 
coded in infinite ways with combinators. When we reduce one combinator to another, 
through a reduction, the coded operator does not change. An example will clarify this. 

If ‘ a’ , ‘b’ and ‘x’ are combinators, with ‘a’ and ‘b’ being one the reduced form of 
the other (‘a’

�
’b’) then ‘a’ * ‘x’

�
’b’ * ’x’ . In our model we consider the list of the 

operators (the molecules) present at a certain time, regardless of the particular coding 
with which they were created. 

When combinators are reduced, they move from being represented by one string to 
being represented by another. Sometimes a combinator reaches a form from which no 
reduction operation is applicable. Those strings are called the normal form of the 
combinator. Not all combinators have a normal form, yet an important theorem in 
combinator theory declares that if a combinator possesses a normal form, this form is 
unique. It is not essential in which order the atoms are reduced, if a normal form 
exists, this is unique and it is always possible to reach it [Hindley and Seldin, 1986].  

In our system we consider only combinators that possess a normal form and we 
store combinators in their normal form. When two combinators interact they generate 
a new combinator and the reduction process starts. A necessary condition for the 
result to be acceptable is to reach a normal form in less than ‘Max_Time’ steps.  

The Artificial Chemistry 

Our  system contains a few hundreds of elements in a well stirred reactor, from now 
on called the soup. Those elements interact with each other and generate other 
combinators, possibly different from both reactants. In our system we do not keep the 
number of elements fixed. Instead, the number of elements released from the reaction 
process can vary, depending on the elements involved. What is kept constant, though, 
is the number of available atoms. Each type of atom exists only with a few copies. 
Beside the soup we keep a registry  (called pool) of the available atoms which are 
supposed to float in the soup. Every time a reaction takes place, the generated 
combinators consume  atoms from the pool, while when the reactants are destroyed 
their atoms are added to the pool. If there are not enough atoms in the pool or any of 
the elements does not reach a normal form in a predefined number of steps, the 
reaction is considered elastic in this environment, and the original combinators are 
retained instead.  



When two elements of the soup collide their reaction generates a multiset of new 
elements. In a formal way we can write   the reaction  in the following form: 

A*b � a(b) � c1...cn (1) 

with a,b,c1,...,cn  combinators.c1 is then the direct result of the normalisation process of 
a*b, while c2,...,cn are the other elements that are released in the operation.  

We now present a short example for illustration purposes. Let two elements be: 
WR and (SKI). If we apply the first to the second we reach WR(SKI) which can be 
reduced to R(SKI)(SKI), then to SKI  releasing a separate copy of SKI. 

WR*SKI � WR(SKI) � R(SKI)(SKI) � SKI, SKI (2) 

In our system we measure the time in physical and biological generations. If 
NMolecule are present at a certain time then, after  each interaction, the physical 
clock will be advanced 1/NMolecule generations, while the biological clock will be 
advanced by the same quantity, only after non elastic interactions.  

The Influx We provide the system with a continuous influx of random information. 
Each physical generation, with a probability Pin depending upon the number of 
existing molecules, we randomly assemble a new molecule to be inserted into the 
soup. The molecule is assembled from the elements of the pool, so the total amount of 
atoms in the soup remains constant. Pin(NMolecules) is an exponential function with  

Pin(NMolecules) = 1  for  NMolecule = MinNMolecules (3) 

and 

Pin(NMolecules) = 0.5 for  NMolecule = HalfProbMolecules (4) 

The influx function in this contribution is different from the influx function presented 
in [Speroni, 2000] and this explains some of the differences in the behaviour of the 
generated organisations. In order to generate a random molecule we pick each atom 
with a probability of 1/9th, open a parenthesis with a probability of 1/9th and close one 
with the same probability. If we close a parenthesis that has never been opened the 
combinator is terminated. If an atom which is not present in the pool is required the 
combinator is aborted and a new one is tried. After a combinator has been constructed 
it is reduced to its normal form and the resulting combinator is inserted into the soup 
provided normalisation is possible. 

The K, R Atom and the Outflux A seemingly small difference from the previous 
model [Speroni, 2000] is the presence of two molecules which eliminate sub-
combinators. Both the K and the R eliminate sub-combinator from a molecule. The 
first totally eliminates it (re-splitting it into atoms), while the second releases it as a 
separate component. In the previous model only one was present (called K, but 
working as R here, releasing the sub-element). In that situation, if  a molecule was 



assembled, the only way to disassemble it was by applying this molecule to other 
molecules. Yet some molecules just would not  normalise into shorter form. And as 
more and more molecules would be frozen in this state, the system would stop. As a 
consequence,  that system needed a constant outflux. 

In the present system, the need to get rid of bulky molecules is not solved for the 
system. We leave such  job as a problem to be solved by the appearing organisations. 
And (as we shall see) it is a job they happen to solve really well .  

Results: 

We asked our system few simple questions: 
1. What are the possible organisations reachable? 
2. Can those organisations be divided into broader categories? 
3. Once the system has found an organisation, how stable is such a solution with 

respect to a random influx of information? 
4. Does such stabilit y depend on the type of organisation?  

Because of the universal characteristics of the space we are working with, many 
organisations are possible. Interestingly, many of them also seem to be accessible to 
the system (an organisation could be present in the space of all the possible ones, but 
be too complex to be found). We made 150 runs with parameters: operation type 
A°B � A(B), atoms used all 7. Number of atoms 2000 of each type.  
MinNMolecules=50, HalfNMolecules 300, no outflux, no mutation, MaxTry=10000. 
MaxLength=100, MaxDepth=20. Starting number of randomly generated molecules 
300. Length of the experiment 10000 generation. We then made 26 esperiments with 
the same parameters, but length of the experiment 30000. 

Each run is then much longer than the runs in the previous work (10000 and 30000 
generations, compared to the 1000 of [Speroni, 2000]). The first interesting 
observation is that no organisation seems to be totally stable. Some experiments 
reached an organisation,  kept  it for many thousand generations, then unexpectedly 
switched to a different one. So far, however, we were not able to gather enough data 
to check  whether  there is a power law distribution between size and frequency of 
extinction events of molecules.  

Two types of organisation have been observed, metabolisms, and balanced 
organisations. Other organisations could be possible as well , but due to the constant 
influx with which we fed the system, only relatively stable organisations could be 
noticed  in the experiments. 

Metabolism 

Metabolisms are particular organisations that were recognised and presented for the 
combinator system in [Speroni, 2000]. Here, we keep the definition of metabolism 
given in [Bagley and Farmer, 1992]: "A metabolism takes in material from its envi-
ronment and reassembles it in order to propagate the form of the host organism...” . 

 Those organisations gained their name by their abilit y to ‘use’ external elements 
as inputs to grow, while being unable to increase their size without an external influx 
of elements. As they grow those metabolism preserve their digital form: elements 



present in them, and quantitative relations between them. In the earlier work, the 
influx of elements would stop after 300 elements were present. Here, the influx 
follows an exponential law and is never totally absent. For this reason the global 
behavior of the new metabolism is now qualitatively different. Metabolisms in our 
system have some unique features that makes them easy to recognise. They have, 
usually, a small number of different elements, sometimes just one or two, and their 
interaction doesn’ t lead to the generation of more elements of the same kind.  

An example of a simple metabolism would be a single element ‘a’ which, applied 
to itself, generates two copies of itself 

a*a� a,a (5) 

So two elements would be flowing into the reaction and two elements would be 
flowing out of it. And the elements are the same so the composition of the soup is not 
changed. Yet if we observe the system after some time we notice an increase of ‘ a’ 
elements. How can this happen?  

The reason lies in the external random elements that we regularly insert. In fact, 
many times those elements give rise to pathways which end up with the production of 
more elements of the metabolism. An example will clarify this. Suppose that the 
molecule S is thrown into the soup. 

S*a� Sa (6) 

Sa*a� Saa (7) 

Saa*a� aa(aa) � a,a,a,a (8) 

So the whole reaction was  

S*3a� 4a (9) 

Reactions like this happen very often and the net result is an increase of elements 
of the metabolic type in the soup. On the other hand, not all molecules inserted 
generate pathways that lead to the release of a’s. Sometimes the molecules just gets 
bigger and bigger, soon reaching the physical limits imposed on the dimension of a 
possible molecule (as one of the system parameters). When this happens, the 
molecule will j ust remain present in the soup without being able to participate in any 
further reaction. This second type of reactions is, in general, relatively rarer, and only 
some atoms gets frozen  as long molecules. 

The Active Phase and its Stability. A metabolism will , in general, have various 
possible phases. The first is always the active phase. Here the number of molecules of 
the system tends to increase as new molecules are randomly inserted. Some junk 
molecules are generated, too, but don’ t, normally, interfere with the process. During 
this phase we can notice a constant increase in the number of molecules, a stabilit y in 
the number of different molecules, a decrease in entropy, nearly no innovativity, and a 
constant decrease in the free atoms in the pool. The number of atoms will t end to 
decrease following a precise relation between the various types of atoms. Once one of 
the atom types  is totally consumed this phase ends and the resting phase begins. 

In an active metabolism no inserted molecule seems to be able to push the system  



into another organisation. Each randomly inserted molecule is ‘digested’ before it can 
harm the organisation. Digested molecules end up either being molecules of the 
metabolism or junk long molecules, unable to react. 

  

Fig. 1. Example of a metabolism in its active phase. 

In some rare case the situation is reverted if a particularly ‘harmful’ molecule is 
inserted. Once this happens the metabolism starts loosing elements. In general, 
elements that  revert the metabolism are elements that are able to destroy other 
molecules without being destroyed (or modified) themselves, for instance  of the form 
‘b’ such that b*x � ’b’ . Often a metabolism (especially in its first active phase) is too 
simple to deal with those molecules. If this happens the system shrinks in size. Once 
the number of elements drops to less than 50 molecules (MinNMolecules), many new 
molecules start to be inserted into the soup. New reactions begin  to happen and the 
system will enter  a transition phase. From here it might revert  back to the old 
metabolism (with  the dangerous molecule being removed from the scene by the flood 
of new molecules), to another metabolism, or to a totally different organisation. Even 
in this latter case we don’ t have an abrupt transition to a new organisation, but rather 
first a shift to a different phase. In a futuristic picture were such organisation is man-
made, and performing a particular task, it would be possible to invoke some 
correction operation before the system gets out of control. 

Even if no dangerous molecule is inserted, the general behaviour of a metabolism 
is directly linked to the molecules of the influx. In our standard example each 
molecule has double the probabilit y to contain a growing atom (S or W) than to 
contain a shrinking one (K). In another experiment no W were allowed and 
metabolisms were very rare. Moreover, those metabolisms  did not grow 
monotonically, but instead behaved as in a random  walk in the number of molecules. 

Rest-Post Metabolic Cloud. In a limited medium a metabolism cannot grow for 
ever. Once  at least one of the atom types is exhausted, the metabolism passes from 
the active phase to the resting phase. In this second phase elements are still i nserted 
and the metabolism tries to transform them as it did before. Yet, since there are not 
enough free atoms in the pool, many transformations stop halfway. Recall  that each 



interaction to be accepted needs to reach a normal form on every molecule generated. 
Yet in order to ‘digest’ a molecule many separate reactions are usually  necessary, 
making it possible for the process to stop halfway. If this happen many new molecules 
are generated, the diversity and entropy increases and many new reactions are tried 
out. 

 

Fig. 2. Transition from active to resting phase. On the left entropy, on the right diversity and 
Number of C Atoms. Both entropy and diversity increase as one of the atom types is exhausted.  

Balanced Organisation 

We call balanced organisations closed self-maintaining sets which do not need 
external input to grow. They, too, metabolise external elements, but instead of using 
their active components to grow (as the metabolism does with the ‘S’ elements in the 
 

 

Fig. 3. Transition from a balanced organisation to another. 



previous example), they just split them up into their atomic components, then reach 
back for the elements in the pool to grow. The abilit y to ‘split up’ components, 
unused in metabolic organisations, is new to this version of the system, and presented 
in ‘ the K,R atom and the outflux’ paragraph. Balancedorganisations often hold two 
types of molecules, molecules which build and molecules which destroy. The 
dynamic balance between these two types permits the organistion to build itself 
continuously and to eff iciently destroy the influx elements which could destabili se 
such balance. 

This kind of organisation tends to fluctuate around a particular average value with 
a corresponding standard deviation. Balanced organisations are not totally stable 
either, and the system will often percolate to a new organisation being sometimes a 
balanced organisation, sometimes a metabolism. 

The Space of Organisations 

A complementary point of view to this dynamic picture is instead to track the 
movement of the system in the space of all possible organisations. Such a space, 
spanned by all possible organisations and their relations of intersection ∩ and union 
∪ generates a lattice [Speroni at al, 2000]. Every set of elements ‘S’ uniquely defines 
an organisation Os. Every time we intersect two organisations we uniquely define 
another organisation, the biggest organisation contained in the intersection. Every 
time we unite two organisations we, again, uniquely define an organisation, the 
smallest organisation generated by the union of the two sets. The operation of union is 
particularly important in our case, since every time we insert a new element into an 
existing organisation we potentially push it towards a larger organisation. As the 
system changes in time, its change can be observed as a movement in this lattice of 
organisations. 

Conclusion 

As we study specific artificial chemistries more and more properties seem to emerge. 
We studied a model which used as elements molecules made up of 7 types of basic 
‘atoms’ . We have observed that many organisations are possible, yet none seems 
totally stable with respect to an external influx of random elements. We discussed 
how a particular kind of organisation, metabolism, uses such an influx. As long as it is 
able to transform the elements of the influx, it is able to keep itself relatively stable, 
while as soon as the influx gets too large or the organisation is unable to transform it 
any more, it is destabili sed.  We observed that often the exhaustion of one or more 
basic atomic types was able to push the system into a different organisation.  
     The field of artificial chemistries is still a quite young subfield of artificial li fe. 
Applications are sporadic at best. Yet the numerous natural examples of systems 
which contain different interacting elements seem to suggest vast possibiliti es of 
application. All too often well planned systems based on few precise components 
seem unable to cope with the enormous variety of forms that nature provides, and end 
up being used under very limited work conditions only. The study of Artificial 
Chemistries, on the other side,  of their metabolic organisations and features like 



stabilit y could permit to organise vast changes in the world that would otherwise be 
impossible to obtain. If those tools are developed it will be important to slow down to 
the point of being able to use them with wisdom, being able to use them for entire 
humanity more than for a selected group of people, for the whole nature more than 
only for human beings. 
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