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ABSTRACT

An algorithm is proposed which allows sequences of binary numbers to interact. We in-
troduce a 2-dimensional matrix form of the sequences achieved by a general folding method.
Interactions between 1- and 2-dimensional forms of binary sequences generate new sequences,
which compete with the original ones due to selection pressure. Starting from random initial
populations, replicating and self-replicating sequences are generated in large numbers. We re-
port on results for 4-digit sequences and propose non-linear differential equations modelling the

system.
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Self-replication or reproduction has long been considered to be one of the most important
prerequisits of life [1]. Since self-replication is a cyclic process it is natural to ask questions
about its origin, and how this relates to the origin of life itself [2]. Such questions are only
exacerbated by the progress made in the molecular genetic sciences [3]. The simplest living
organisms may be certain RNA phages primarily carrying the information necessary to instruct
or reprogram host cells to reproduce the phages instead of themselves [4]. However, it is gen-
erally accepted that sequences of around 3000 nucleotides are needed for these simplest forms

of life to exist.

Some radically simplified artificial systems have been studied in the past in an attempt to
elucidate certain aspects of reproduction in well defined mathematical frameworks, such as the
cellular automata [5, 6, 7], spinglas models [8, 9] or nonlinear dynamical systems [10, 11, 12, 13].

More recently, complex models have been introduced under the heading of ”artificial life”

[14, 15, 16].

In this letter we shall introduce another simple system, some members of which show the
characteristics of self-replication. It is based on the re-interpretation of logical and mathemati-
cal operations and was inspired by findings made nearly a decade ago in biochemistry. Kruger
et al. [17] and Guerrier-Takada et al. [18] have demonstrated that strands of RNA, which
form 3-dimensional molecules, can operate on themselves and/or other RNA strands. Thus
RNA can occasionally assume the double function of being information carrier (represented by

the sequence of aminoacids in the strand) and enzyme (protein-like, represented by the 2- or



3-dimensional structure of the RNA molecule) at the same time.

In modern digital computers sequences of bits are the primary carrier of information. If we
consider this as the genotypic form of an entity we shall call binary strings, we may ask the
question whether there exists another form, the phenotype, of a bit string capable of carrying
out operations on other bit strings. The answer appears to be 'yes’ and the simplest phenotypic

form that comes to mind is that of a 2-dimensional matrix.

If we now consider a set of binary symbols s;,4 = 1,...., N,N € N,s; € {0,1} [19] to be

organized in a 1-dimensional sequence

§ = (81,52, ey Siy ey SN) (1)
we require the existence of a mapping M

which transforms § to a corresponding 2-dimensional matrix form Pz of the sequence which
should be unique and reversible. The mapping can be termed a folding (this we call the folding
method), following the notion used in molecular biology. In this letter we shall restrict ourselves
to quadratic matrices of size v/N xv/N and corresponding strings of length N. Table 1 gives typ-

ical sample results of various mapping (folding) methods applied to strings with N components.

In contrast to another idea for the folding discussed in the literature [20, 21], the phenotypic

forms considered here are mathematical operators naturally able to interact with the primary



form of strings.

Assume that an operator Pz was formed from string . This operator, in turn, can act on

another string and generate still another string:

P53 = 3" (3)

We can think of a string as consisting of v/N fragments with length /N each. The operator
Ps is able to transform one of these fragments at a time using semi-local operations. In this way
it moves down the string §' in steps of size v/ N until it has finally completed the production of
a new string 5" (see Fig. 1). Then operator Pz unfolds back into its corresponding form as a
string § and is released, together with 5’ and §”, into the ensemble of other strings which will

be called string soup from now on.

A general operation of Pz may be subsumed under the following transformation rule:
5" = f(Ps,3") (4)

A particular example of the action of an operator on a string would be the computation of
scalar products. As we deal with binary strings, the following related computation will be

studied here:

SZ.I_HC\/N:U Epgi18;+k\/ﬁ_® (5)

where k counts the steps the operator has taken down the string. o[ | symbolizes the squashing



function

1 forz>0
ole] = { (6)
0 forxz<0
and © is an adjustable threshold, here fixed at ©® = 1. To give an example: The N = 4 operator
00
Ps = if acting under this operation on string s’ = (100 1) would yield a new string
01

§"=(0001).

The new interpretation for this operation is to consider it in analogy to a chemical reaction
as a polymerization, in which Pz reacts with §’ and produces a new string §”. In a chemical

notation, this would read (skipping the vector arrows from strings)
s+s' — s+s' +35” (7)

We therefore require that a new string is assembled using the interaction of s and s’ as the
source of information that instructs the details of the sequence of s” [22]. In other words, the
proposed system is open with an ongoing generation of new strings. It is this nonequilibrium
character of reactions which makes the self-organizing phenomena encountered here possible.

Table 2 classifies the various reactions.

There are some options to balance the continued production of new strings which depend
on the resource limitations necessarily imposed on such a system. (a) One can run the system
with a fixed number of strings. (b) One can do the same after an intitial period of unrestricted
growth starting from a small number of strings. (¢) One can restrict the raw material in the
soup that may be used to build strings. As Eigen [10] has pointed out, all have qualitatively

similar effects on the system, namely to force strings into a competition for available resources.



The strings that survive in macroscopic numbers must be able either (i) to reproduce themselves
or (ii) to reproduce by the help of others or (iii) to lock into reaction cycles with mutually ben-

eficial transformations. Here, we shall consider systems with a fixed string number M, M € N.

There are some potentially "lethal” strings in these systems. A string is said to be lethal
or "pathological” with respect to the operation of equ. (4) if it is able to replicate in an unpro-
portionally large number in almost any ensemble configuration. In the particular case of equ.
(5) the string consisting of 70”’s only is pathological because it is able to replicate with itself
and with every other string. We shall call this string destructor and shall constantly monitor
string soup reactions in order to remove the destructor upon appearance. Another potentially
hazardous string consists of 717’s only. We shall call it the exploitor. In addition to being able
to replicate itself it is able to replicate with a large fraction of strings. Although the exploitor is
pathological we can deal with it in a more gentle way by providing a means of non-deterministic

string decay.

To this end, we shall introduce the following general stability criterion for strings: A string
may be considered more stable the less 717’s it contains. Its chance to decay therefore depends

on

N
1M =3 % k=1,.., M. (8)
=1
I™®) measures the amount of ”17’s in string & and will determine a probability
p® = (VN (9)

with which an encountered string should decay. The parameter n shall serve us to adjust prob-



abilities slightly. Note that the exploitor has probability p = 1 and must decay upon encounter.

The entire algorithm can now be stated as follows:

STEP 1: Generate M random binary strings of length N each

STEP 2: Select a string[23] and fold it into an operator (a matrix) of dimension

VN x /N
STEP 3: Select another string[23] and apply the operator generated in STEP 2

STEP 4: Release the new string, the old string, and the operator (as string) into

the string soup

STEP 5: Remove one randomly chosen string in order to compensate for the ad-

dition of a string in STEP 4

STEP 6: Monitor the soup and replace destructors by random strings
STEP T7: Select one string[23] and substitute it according to the probability of

equation (9) by a random string.

STEP 8: Go to STEP 2

Table 3 shows the impressive amount of possible interactions between strings as we increase

their length N. For arbitrary N we have

ng =2~ — 1 (10)



string types and
np=2"" —(3x2M) 42 (11)
reactions, excluding reactions with the destructor and self-reactions. The number of potential

self-replications is nggp = ns.

The simplest non-trivial system has strings of length N = 4. We shall name them by

combining the binary numbers they carry into a decimal number:

S1
52

53

S4
with

N
k=> 52" (13)
=1
Everyone of the 15 types of strings can interact with all other types.

We are now in the position to discuss the dynamical behaviour of our system N = 4. Global
quantities which characterize its time development are the concentrations x;(¢) of all different
string sorts s():

2i(t) = ma(t)/ M (14)
where m;(t) is the number of actual appearances of string type s() in the soup and M, as

before, is the constant total number of strings.

Figure 2 shows the first 10* iterations through the algorithm with M = 1000 strings. Al-

though the dynamics looks very noisy, an impression of attractor state behaviour can be gained.



By increasing the population 100-fold this view is confirmed, as can be seen from Figure 3. The
system seems to relax to a macroscopic attractor state as given by the time-averaged concen-
trations. Running the algorithm under different initial conditions reveals that the macroscopic
behaviour is subject to only slight changes, well within the range of fluctuations present in the

system.

Using other folding rules or different parameters n, however, results in visible global changes

of behaviour [24].

We can try to model the proposed string reactions by a system of coupled differential
equations similar to those studied by Eigen and Schuster for the hypercycle [11]. To this end
we have to assume that the important aspects of our system can be described by continuous
non-random concentration functions y;(¢) of the different string types ¢,1 < i < ng, which are

considered to approximate the time averaged concentrations <z;>; [25, 26]:

yi(t) =<a>y, 0 <wi(t) <1 (15)

The deterministic rate equations in y;(¢) arising through mass action kinetics read:

yi(t) = A(t) + | Baya(t) + f:@-kyk(t) — Di| yi(t) + f: Wiy (8)yr(t) — yi,iq)(t) (16)
k#i ki Sk Yk(t)

where B;, Cix, Wi are rate constants for self-replication, replication or other reactions (see
Table 2) derived from a reaction table of the participating string types. They are either 1 if

the reaction exists or 0 otherwise. D; determines a selection term



A(t) is an unspecific growth term

At) = S apius() + 35 D) (18)

where
0)

(19)

{ 1 if the reaction between s and sU) produces s
a;; =

0 otherwise

reflects reactions producing the destructor. Finally, ®(¢) is a flow term used to enact compe-
tition between the various string sorts s( by enforcing that the overall sum of concentrations
in the system is kept constant. The behaviour of these equations for 15 string types with con-
centrations y;(¢) and rate constants derived from the N = 4 system is shown in Figure 4. We
can clearly observe that some concentrations merge into the same levels, due to the particular
interactions present in the dynamics of this binary string system. Since the number of string
types is very low in this simulation, no type dies out. The comparison between the statistical

data and the numerical integration of (16) shows very good agreement.

A wealth of models becomes possible in the proposed framework. Here we have only dis-
cussed the simplest system in some detail. More complex systems will be treated elsewhere
[24, 27]. In general, the combinatorial explosion we encounter here will be useful for application
purposes like optimization [28], since we are able to act at the "atomic level” of the system (the
binary numbers). In addition, the folding methods introduced here can be refined as to allow

the local structure of a sequence to partially determine its 2-dimensional form.
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Figure Captions

Figure 1: An operator Pz acts upon a string 3§’ to produce a new string 3" .

Figure 2: Type concentrations during the first 10,000 iterations through the algorithm of
a binary string system, N = 4, M = 1000. The initial configuration is a randomly

distributed population. Noisy attractor system.

Figure 3: Type concentrations in a simulation using the reaction matrix of the binary string

system N =4. M = 100,000 strings were simulated.

Figure 4: Simulation of the differential equations (16). Constants derived from binary string
system N = 4. Initial conditions same as in Figure 3. Types 1,2,4,8 show highest, types

7,11,13,14 show lowest concentration.

Table 1: Results of 4 different folding methods applied to a string §. Length N is a square

number.

Table 2: Classification of different polymerization reactions. Raw material X not mentioned.

Reactants are conserved.

Table 3: Some low dimensional examples. ' N: Matrix size in one dimension; N: Length
of strings; ng: Number of different string types, excluding destructor; ng: Number of

possible reactions, excluding self-reactions.
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Method 1 2
S1 e S\/ﬁ
Outcome 51 SUN41 o0 S(UN-1)/N41
S\/ﬁ-}-l e 82~\/ﬁ
SW 82~\/ﬁ e SN
S(\/ﬁ—l)ﬂ/ﬁ-l-l e SN
Method 3 4
S1 e SW
Outcome S1 So /N S2/N+41
82~\/]V . S\/ﬁ-l—l
SQ'W-l-l e 53~\/ﬁ
SYN SYN+1  S3N
Table 1:
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Reactants | Product | Description
s+ s s other reaction
s+ s S replication
s+ s s replication
s+ s s other reaction
s+ s S self-replication

Table 2:

21




VN| 2 3 4 5 10

N |4 9 16 25 | 100

ng |15 511 65535 |~ 107 |~ 10%°

np (210~ 2.6 -10% |~ 4 -10°|~ 10|~ 10%°
Table 3:
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