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Increasingly, Artificial Life (AL) models are introduced to study various aspects of the
formal foundation of the phenomenon of life [1]. Metabolism and the ability to self-replicate
have long been considered as the most prominent of these aspects [2, 3, 4, 5]. It is natural to
ask, how AL-systems might be used in application problems of today. Since AL-systems are
based on competition between entities, which brings about selection of some entities that are
more adapted than others (provided there are differences at all among entities), an evident idea
is to artificially select for those entities that are useful from an outside perspective.

We implement this idea in the context of a recently proposed a simple model of self-
replicating strings [6]. These strings form an ensemble called the string soup, in which they
can encounter each other and react according to predefined reaction pathways to produce other
strings. Details may be found in [7, 8].

The system is self-organizing in that every string comes in two alternative forms, its one-
dimensional information holding string form, and in a second form, capable of operating on the
first form of itself and of other strings. Thus, we exploit the physical identity between what is
being organized (operands) and what organizes (operators) in order to ensure self-organization.

Figure 1 depicts the situation in a general setting. Each string is allowed to encounter every
other string, much like chemical reactions occur in a well-stirred vessel. Strings are of different
sorts, represented by different sequences of symbols, with some types coming in larger numbers,
others in smaller. Regardless of the initial distribution of string sorts, those string types which
are produced more often by reactions tend to dominate the string soup in the course of time,
whereas string types which are produced seldomly tend to die out.

As in the past, we apply the following simplifications:
(i) Our set of symbols is restricted to the binary numbers s; € 0, 1
(ii) The length N of strings § in number of components s;,7 = 1,..., N is fixed at some square
number
(iii) Our operators P are two-dimensional quadratic matrices, formed from binary sequences
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Figure 1: Strings encounter each other and react to produce new strings. Details are shown in the inset.

Production of new strings and destruction of old strings are balanced in a competitive system.

according to a certain canonical folding rule M.
(iv) Our interaction is a piecewise scalar product followed by taking a non-linearity.

Using this set of simplifications, we have the following formalism:
A mapping M: §— Pz and an interaction Py & 5 — 3" with
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and O is an adjustable threshold, here fixed at © = 1.

(2)

It was noticed that we had to counter the excessive over-production of certain pathologi-
cal string types. Specifically, the 0-string (destructor) consisting only of Os, and the 1-string
(exploitor) consisting only of 1s had to be counterbalanced. We did so by substituting all de-
structors and, somewhat more gently, by substituting on a probability basis strings with high
content of 1s. In this way having reached a balanced system we examined and reported its
autonomous behaviour, also studying the effect of a possible mutation rate that acts by hitting
each binary number in a string with an equally low probability [9]. The overall algorithm is
shown in Figure 2.

So far, events in the system are autonomous, with reactions going on indepent of an outside
observer. As in other artificial life systems, we have established interactions between entities
that follow their own rules and determine their own agenda. In order to make some use of the
dynamics, we have to introduce a semantics giving meaning to the information that resides in
each of the strings in the soup. Different strings would then mean different things, and newly
produced string types could mean new things to the outside observer. This is the moment
when artificial selection is coming in. Natural selection is already present in the system and
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Figure 2: Flow diagram of one sweep through the algorithm. M sweeps (M: size of the string population)

constitute one generation.

is brought about by the competition of string types for place in the soup (space is limited).
Artificial selection can now be added to direct the evolution of the soup composition.

This can be done most generally by applying independent selection operators to strings.
These operators should be equipped with a different type mapping §. The selection operators
interpret each string according to this mapping, thereby bringing in relevant outside informa-
tion. For instance, they could interpret 5 as a solution to an optimization problem one is
interested in solving:

S:5—=d={xy,....z}T (3)

with L being the dimension of the optimization problem and z; a suitable component of a
solution. & must not be the same for all of the selection operators. Simple examples are
templates or features.

After application of this mapping which generates a solution to the problem that is to be
solved, the selection operator computes a measure of quality Q(Z) of the resulting solution
(sometimes these two steps are lumped together in a single mapping). In order to direct the
evolution towards strings representing advantageous solutions, the selection operator then de-
stroys a less advantageous solution. Less advantageous solutions are solutions which are inferior
in quality (either on an average or best-of-so-far basis) to the solutions already encountered by
the selection operator.

In order to apply this selection pressure in an arbitary direction, it is necessary to substitute
the destroyed low-quality string by a variant of another string. Thus, in a third step, the
selection operator picks a new string from the soup and replaces the destroyed one by a (slightly
changed version of this string). In low-dimensional systems, a random string may be substituted
as well. This procedure is necessary in systems with a fixed number of components, since there
are no possibilities for strings with low production rate, yet favored by selection operators, to
increase their concentration.
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We have done many simulations with varying selection pressure. Here, we shall report only
two experiments in a low-dimensional system that illustrates the key point: Indepedent action
of selection operators. The system we have been using for both experiments is a population of
M = 10000 binary strings of dimension N = 4 reacting according to equation (1). The initial
configuration of the soup is generated by using random strings.

Figure 3 was a run with template-based selection, looking for 4-bit strings that carry a 1 in its
inner components, 8§ = (*, 1,1, *), where * means either 0 or 1 is allowed. Consequently, strings
carrying this signature were amplified more and more strongly, depending on the selection
pressure characterized by the number of independently acting selection operators ng.

Figure 4 was a run using two different selection operators. For simplicity, one was used to
compute a scalar quality measure Q(3) directly from the binary sequence:

Q(3) = 232' -2 (4)

Each quality selection operator stored the average quality @ of string encountered so far, and
destroyed strings that exceeded @, effectively searching for the string with minimal ). The
other one was implementing a constrained into this optimization process by checking for the
hypothetical feasibility of a solution. Only those strings should be feasible that carried a

sequence (0,1,1,0) or (1,0,0,1). In this way, only two strings were allowed to pass the feasibility
test.
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Figure 3: Increasing selection pressure with template selection for strings with (*,1,1,*). Left: ns g = 1;

Middle: n,.; = 2; Right: ny.; = 10. Four strings were amplified rather strongly: s(1%) s(14) (7)) §(6) with s(15)

dominating. (String names derive from converting the binary sequence into numbers to base 10.
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Figure 4: Varying selection pressure with two different types of selection operators: Feasibility test and quality
test (see text). Left: ns(F) = 10, nse(Q) = 0, strings 55 and s(®) dominate; Middle: nse(F) =10, n50(Q) =
1, string s(%) dominates, followed by s°); Right: n,.;(F) = 0, nsei(Q) = 10, s(1) dominates,followed by s(*) s(4)
and s(®) s(%)
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