
 AIM−GP and Parallelism

 Peter Nordin
Physical Resource Theory

Chalmers University of
Technology

 Sweden

Frank Hoffmann
LS11

University of
Dortmund
Germany

Frank D. Francone
RML

Technologies, Inc.
USA

Markus Brameier
LS11

University of
Dortmund
Germany

Wolfgang
Banzhaf

LS11
University of
Dortmund

Germany

Abstract

Many machine learning tasks are just too hard to be
solved with a single processor machine, no matter how
efficient algorithms we use and how fast our hardware is.
Luckily genetic programming is well suited for
parallelization compared to standard serial algorithms.
This paper describes the first parallel implementation of
an AIM-GP system creating the potential for an
extremely fast system. The system is tested on three
problems and several variants of demes and migration
are evaluated. Most of the results are applicable to both
linear and tree based systems.

Keywords: Genetic Programming, Machine Code GP,
Parallelism

1. Introduction

The hardware speed of desktop computers is growing
exponentially. This means that every year new
application areas can be addressed with machine learning
and adaptive systems. The constant development of new
algorithms and implementation methods also enables us
to explore previously impossible terrain. However there
are absolute physical limitations to even the fastest serial
computer with the most efficient algorithm. The ultimate
goal of artificial intelligence might be to build an
algorithm with capabilities of the human mind. The
problem is that if we were to simulate the maximum
computing capability of the human brainwith all
synapses activea serial computer must be smaller than
a single atom to accomplish this. This fact is due to
limitations caused by the speed of light and there is
nothing we can do about it except for extending our
algorithms to parallel computers. In addition, parallel
desktop computers are becoming mainstream with
seamless support from operating systems making multi-
processor systems uncomplicated to use.

Genetic programming has proven to be a very robust,
efficient and broadly applicable method. The good news
in this context is that it is also very suitable for
parallelization which has been successfully demonstrated
(Andre and Koza 1996). Some parallel approaches even
display nearly "super linear speed-up" over the simple
serial approach. This means that the parallel version of
the algorithm is more efficient even if it is simulated on a
purely serial machine (Andre and Koza 1996). This is a
very beneficial property of a machine learning algorithm
and it has led to unique and impressive projects such as
the 1000 processor Alpha machine under construction in
John Koza's team.

AIM-GP (Automatic Induction of Machine Code with
Genetic Programming) is formerly know as CGPS. This
method induces binary machine code directly without
any interpreting steps enabling speed-ups of two orders
of magnitude. AIM-GP is the fastest GP approach and

the most studied linear GP method. But as seen above,
even a very efficient algorithm will eventually benefit
from parallelization. This paper documents the
implementation of a parallel AIM-GP algorithm and
experiments design to evaluate it. A large part of the
results count for tree based systems, too.

2. Method

The method can be subdivided into AIM-GP
implementation, hardware, and parallelization:

2.1 AIM−GP
AIM-GP uses a linear representation directly
corresponding to binary machine code. Crossover is
performed as a string crossover between instructions
while mutation switches instruction or selected bits
within the instruction. In the experiments we use the
PowerPC chip from Motorola and the original version of
AIM-GP without instruction blocks. For further details
on AIM-GP see (Nordin 1997, Banzhaf et al . 1998,
Nordin et al. 1999).

2.2 Hardware

To connect several processors into a parallel computer is
not a trivial task. Several different architectures exist. In
our experiments we have used the Parsytec Power
Explorer, one of the most widespread commercial
systems. The power explorer is a MIMD machine
(multiple instruction multiple data system) with up to 64
power PC processors. The configuration used for the
experiments was a 16 processor variant, but the approach
will port directly to 64 processors.

Each node in the computer consists of a PowerPC601, a
T414 support transputer processor, 32 MB of RAM and
Boot ROM as seen in Figure 1. The support processor
manages efficient serial communication between nodes,
see Figure 2.

Figure 1: A node in the Power XPlorer

Figure 2: The T414 Transputer

The PowerPC is a conventional cached RISC processor
also used in for instance Macintosh computers.

Figure 3: The PowerPC processor

The nodes of the the Parsytec Power Explorer are
coupled together in a grid as seen in Figure 4.

Figure 4: Connection of Nodes

We use the standard set-up with the Ultrix operation
system.

2.3 GP and parallelization

There are several ways to parallelize the GP algorithm. It
could be divided both with regard to fitness cases and to
the population. However, the most common way to
achieve parallelization is through "demes". The notion of
demes was introduced by Wright in 1943 as a description
of a phenomenon in natural evolution where an animal
population is divided into subpopulations (Wright 1943).
Between the otherwise separated subpopulations
infrequent migration takes place. This model is often
referred to as the island model, see Figure 5. Demes are
argued to reduce the possibility for evolution to end up in
a local minimum and this increase the efficiency of the
paradigm. This "super linear speed-up" has been
observed in simulations of evolutionary algorithms.

Figure 5: Island Model

The demes can be arranged in different patterns. Two of
the most common are the "stepping stone model as ring"
and "the stepping stone model as lattice" (Kimura 1953),
see Figure 6.

Figure 6: Stepping Stone model as ring and lattice

A related approach using demes is the neighborhood
model. Here the individual can migrate to more than the
closest island, they can move within a predefined
"neighborhood distance", see Figure 7 (Gorges-Schleuter
1989).

Figure 7: Neighborhood model

There exists several implementations of parallel EAs in
research. Tanese (Tanese 1989) used an island model of
a GA for a parallel machine. He concluded that
migration rates have a decisive influence on the
performance of the algorithm and that it is possible to
achieve at least linear speed-up by adding new nodes.

Andre and Koza implemented a parallel GP system on a
transputer network (Andre and Koza 1996).

2.4 Design of the AIM-GP system
To maximize performance we knew that we needed to
keep communication between nodes to a moderate level.
We also wanted to keep the system flexible and portable
using standard Ultrix features. The main design of an
AIM-GP node is illustrated in Figure 8.

Figure 8: A node with AIM−GP

The emigration of individuals takes place through an
input/output queue where the export thread is responsible
for sending it to another node. In a similar way there is
an immigration queue and an immigration thread on the
receiving island. The immigration individual in the
simplest case replaces a random existing individual.

AIMGP uses 8 of the 32 registers of the PowerPC (r03 -
r10), while the machine instructions in the function set
were add, addi, subf, mullw, mulli, and, andi, or, ori,
xor, xori, eqv, nand, nor, slw, srw, sraw.

The output of the system can be presented both as
assembler and decompiled into C, for example:

00000000: 7D032378 * or r03,r08,r04 ;
00000004: 7C051838 and r05,r00,r03 ;
00000008: 7CE85038 and r08,r07,r10 ;
0000000C: 7C883C30 srw r08,r04,r07 ;
00000010: 7C683C30 * srw r08,r03,r07 ;
00000014: 7CA54A14 add r05,r05,r09 ;
00000018: 7CE54BB8 nand r05,r07,r09 ;
0000001C: 7C8643B8 nand r06,r04,r08 ;
00000020: 7C644378 * or r04,r03,r08 ;
00000024: 7CA449D6 mullw r05,r04,r09 ;
00000028: 7CE623B8 nand r06,r07,r04 ;
0000002C: 7C880278 * xor r08,r04,r00 ;
00000030: 7D0A1838 * and r10,r08,r03 ;
00000034: 7C842038 * and r04,r04,r04 ;
00000038: 7C895430 * srw r09,r04,r10 ;
0000003C: 7CE019D6 mullw r07,r00,r03 ;
00000040: 7C834B78 or r03,r04,r09 ;
00000044: 7C834B78 * or r03,r04,r09 ;
00000048: 4E800020 blr ;

int individual_function(int r03, int r04, int
r05, int r06, int r07, int r08)
{
r03 = r08 | r04;
r08 = r03 >> r07;
r04 = r03 | r08;
r08 = r04 ^ r00;
r10 = r08 & r03;
r04 = r04 & r04;
r09 = r04 >> r07;
r03 = r04 | r06;
return r03;
}

3. Experiments

3.1 Evaluation problems

We selected three problem classes to evaluate the
properties of the parallel AIM−GP:

1. A boolean problem
2. A function regression problem
3. An image classification problem

Twenty runs with different random seeds were performed
for each of the problem set−ups. All problems were
either run for a maximal number of tournaments or until
a perfect solution (fitness 0) was found. The fitness
function always used the sum of the absolute values of
errors. Both mutation and crossover probabilities were
set to 90%.

Function regression

For function regression we used a polynomial which
allowed for scaling of difficulty:

234 x3)yx(5)y,x(f −+=

Each time the fitness cases consisted of 200 randomly
selected values. The instructions in the function set
consisted of the operations add, sub, mul.

Parity function

The parity function takes a number of N bits and outputs
"1" if the number of "ones" is even or "0" otherwise:

0n
nbe

N

=
⊕=

In this case the function set was {and, or, nand, nor}
with the constants 1 and 0. We deliberately sustained
from using the xor instruction to make the problem
harder. Using the xor AIM-GP solves the problem almost
immediately. The parity function belongs to the hardest
class of Boolean function with a very rough search space.

Partitioning of Images

Images classification is a growing application domain
due to increasing use of digital images and due to
decreasing cost of hardware.
The objective of the problem is to divide the pixels of an
image into two classes depending on properties of the
original pixels in the image. Figure 8 illustrates the
output of an individual segmenting the image in two
areas with two gray-tones. The individual is feed by x
and y coordinates and expected to give the class of that
pixel as output. 500 randomly selected pixels are used for
individual fitness and another 500 are used for

generalization. The output of the individual is interpreted
as one of two cases depending on if its greater than or
less than a certain threshold value. The individual is free
to use all of the machine code instruction in the PPC
AIM-GP implementation.

Figure 8: Exampe image segmentatio

Figure 9: Input image data

Initial populations show individuals usually overfitting
stripes to certain points as in Figure 10. Later more
complex, often fractal patterns appear, see Figure 11.
Finally a fitting geometry evolves as in Figure 8.

Figure 10: Stipes: uses only one input

Figure 11: Pattern which uses both inputs

4. Results

In this work the parallel AIMGP system has been
investigated in relation to the influence of migration on
the learning process. The system has been configured
using a sub−population size of 1000 individuals for all
16 processing nodes. Each experimental result is
documented as an average of the 20 runs performed.

4.1 Migration Effects
The migration between demes has a qualitative and a
quantitative effect. The migration frequency specifies
how many individuals migrate each time interval. The
qualitative part defines which individuals are allowed to
migrate.

4.2 Migration Frequency
In all our experiments migration rate is varied by
changing the frequency of migration instead of the
number of individuals that are emigrated from each deme
during each migration phase. This is different from
(Andre and Koza 1996) who took the latter approach.
Our migration technique is strongly motivated by nature
where migration is a rather continuous process. During
each migration step only one individual is selected from
each deme and moved to all adjacent nodes in the
transputer network as shown in Figure 4. In addition to
the motivation by nature there are some technical
advantages: The workload of the links is reduced and
synchronization problems occur less frequently.

A test run without migration is shown in Figure 12 where
the fitness development of all isolated demes can be
seen. Effectively, this means running the problem with
different random seeds 16 times simultaneously. The GP

system uses tournament selection. The migration rate is
measured in relation to number of tournaments. With a
very high migration rate (every 250th tournament) we get
a development as in Figure 13. The high migration rate
results in a worse final fitness. With a migration every
1000nd tournaments we get a graph as depicted in Figure
14. We conclude that migration is important for the
parallelization of a GP system and we can see a 15 fold
increase in performance in the best migration setting
compared with runs without migration. On the other hand
too much migration is not optimal. In all test cases we
see worse performance with too high migration.

4.3 Migration Strategies
The method by which an individual is selected for
emigration controls the quality of the emigrating
individual. In our experiments we evaluated several
different approaches. We used random emigration,
emigration of the best and tournament emigration.
Tournament emigration chooses the winner of the last
tournament as emigrant giving a random distribution of
better individuals but seldomly the best individual in the
population.

Tables 1-9 summarize our results for the three problems
and the three migrations strategies respectively. Tables 1
and 2, for instance, show how random migration and
tournament migration tend to perform similarly in
relation to the best fitness found, the number of
evaluations and the number of executed instructions per
run. Average values and standard deviations (σ) are
given for all three measures.
In comparison, emigration of the best performs worse
(see Table 3) probably due to a higher tendency to get
stuck in local optima. Only runs with very fast search
might do better with emigration of the best since a more
elitistic approach is better as a global optimum is being
approached.

There seems to be a trade-off between fast progress in
fitness and loss of diversity with emigration of the best as
illustrated in Figure 19. Loss of diversity lets the
evolutioary process run into local sub-optima because no
new genetic material can be created. This is especially
the case if best individuals are reproduced in different
demes with high migration rates. In contrast, Figure 18
shows a rather continuous improve in fitness for the
random strategy when the migration rate is increased.

The selection of individuals which are to be replaced by
the immigrants can also affect performance. We have
studied three basic methods: random selection, selection
of the worst individual and tournament selection where
the loosers of the tournament are selected for
replacement. We found that there is little difference in
performance. Even random selection appears to be a
robust method.

Figure 12: Fitness over time (in million evaluations) of
best individual in all 16 demes without migration

Figure 13: Fitness over time of best individual in all
demes with migration every 250 tournaments

Figure 14: Fitness over time of best individual in all
demes with migration every 1000 tournaments.

Migration distance 250 500 1000 2000 3000 ∞
Fitness 0 0 0 0 0 355

σ Fitness 0 0 0 0 0 185

% No solution 0 0 0 0 0 30

Evaluations*106 162 240 198 219 346 2569

σ Evaluations 13 49 25 20 99 588

Instructions*106 7790 12823 9852 10504 19523 161755

σ Instructions 856 3078 1658 1836 6349 37683

Table 1: Random emigration (function regression)

Migration distance 250 500 1000 2000 3000 ∞
Fitness 0 0 72 0 0 355

σ Fitnes 0 0 72 0 0 185

% No solution 0 0 5 0 0 20

Evaluations*106 272 164 480 381 272 2569

σ Evaluations 82 14 304 125 39 588

Instructions*106 9811 7650 28086 14309 14954 161755

σ instructions 1068 921 19492 2655 2480 37683

Table 2: Tournament emigration (function regression)

Migration distance 250 500 1000 2000 3000 ∞
Fitness 79 0 0 72 218 355

σ Fitness 55 0 0 72 150 185

% No solution 10 0 0 5 10 20

Evaluations*106 1371 444 252 637 982 2569

σ Evaluations 472 137 46 321 415 588

Instructions*106 80121 25400 13374 38064 60188 161755

σ instructions 30563 8821 2910 20575 26577 37683

Table 3: Emigration of the best (function regression)

Migration
distance

250 500 1000 2000 3000
∞

Fitness 0,5 0,6 0,6 0,9 1,7 6,2

σ Fitnes 0,2 0,3 0,3 0,4 0,8 0,8

% No solution 20 20 15 20 25 95

Evaluations*106 988 930 865 834 1085 2014

σ Evaluations 172 169 171 160 164 78

Instructions*106 23344
7

21198
2

21382
3

19862
0

258084 477506

σ Instructions 45273 42213 43789 41124 43065 29289

Table 4: Random emigration (parity function)

Migration
distance

250 500 1000 2000 3000
∞

Fitness 1 1 0,9 0,8 1,1 6,2

σ Fitnes 0,5 0,5 0,5 0,4 0,4 0,8

% No solution 20 20 20 20 35 95

Evaluations*106 710 765 835 973 1144 2014

σ Evaluations 179 164 162 172 171 78

Instructions*106 16696
2

17718
5

19812
2

23400
7

277529 477506

σ Instructions 45829 43833 41783 44068 43968 29289

Table 5: Emigration of the best (parity function)

Migration
distance

250 500 1000 2000 3000
∞

Fitness 0,2 12 12 8 10 6,2

σ Fitnes 0,1 1 1,2 1,15 1,2 0,8

% No solution 10 20 25 25 20 95

Evaluations*106 801 790 1063 999 998 2014

σ Evaluations 157 184 177 187 156 78

Instructions 19013
1

18767
8

25620
7

24087
0

240227 477506

σ Instructions 40300 47350 45369 47971 40384 29289

Table 6: Tournament emigration (parity function)

Migration distance 100 400 1000 2000 ∞
Fitness 34 34 37 57 97

σ Fitness 8 9 8 14 9

Table 7: Random emigration (image partitioning)

Migration distance 100 400 1000 2000 ∞
Fitness 24 49 54 68 97

σ Fitness 8 14 23 14 9

Table 8: Emigration of the best (image partitioning)

Migration distance 100 400 1000 2000 ∞
Fitness 41 33 44 58 97

σ Fitness 5 3 3 5 9

Table 9: Tournament migration (image partitioning)

Figure 18: Best fitness over time (in million evaluations) for
random migration and different migration frequencies
(function regression)

Figure 19: Best fitness over time for elitist migration and
different migration frequencies (function regression)

Figure 20: Progress of fitness for the different migration
strategies and migration frequency 250 (function regression)

5. Summary

Our AIM−GP system has been parallized efficiently on a
transputer network. Results have been presented for
different problem domains using different migration
strategies and migrations rates. In general the deme
approach has proven a usefull concept for parallization .

Acknowledgement

Peter Nordin gratefully acknowledges support from the
Swedish Research Council for Engineering Sciences.

Bibliography

[Andre and Koza 1996] Andre, D. and Koza, J. (1996)
Parallel Genetic Programming: A Scalable
Implementation Using The Transputer Network
Architecture. In Angeline, P.J. and Kinnear, K.E.
(eds.), Advances in Genetic Programming 2, MIT
Press, Cambrige.

[Banzhaf et al., 1998] Banzhaf, W., Nordin, P. Keller,
R. E., and Francone, F. D. (1998). Genetic
Programming An Introduction. On the
automatic evolution of computer programs and its
applications. Morgan Kaufmann, San Francisco
and dpunkt Verlag, Heidelberg.

[Gorges-Schleuter 1990] Gorges-Schleuter, M. (1990)
Genetic algorithms and population structure A
massively parallel algorithm. Ph.D. thesis,
University of Dortmund, Germany.

[Kimura 1953] Kimura, M. (1953) Stepping Stone
Model of Population. Annual Report of Nat. Gent.
Japan, p. 62-63.

[Nordin 1997] Nordin, J.P. (1997) Evolutionary
Program Induction of Binary Machine Code and
its Application. Krehl Verlag, Münster, Germany.

 [Nordin et al. 1999] Nordin, P., Banzhaf, W., and
Francone, F. (1999) Effective Evolution of
Machine Code for CISC Architecture using Blocks
and Homologous Crossover. In Spector, L.,
Langdon, W.B., O`Reilly, U.-M., and Angeline,
P.J. (eds.), Advances in Genetic Programming 3,
MIT Press, in press.

[Tanese 1989] Tanese, R. (1989) Distributed Genetic
Algorithms. In Schaffer, J.D. (ed.), Proceedings of
the 3rd International Conference on Genetic
Algorithms, Morgan Kaufmann.

[Wright 1953] Wright, S. (1943) Genetics 28, p.114.

