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Abstract 
 We present the Bondable Cellular Automata model, which 
uses simple 1-dimensional, binary cellular automata as the base 
atomic elements of an artificial chemistry.  Reactions are 
dependent upon an emergent, ‘resolution independent’ 
observable, measurable for individual or composite cellular 
automata structures.  We discuss the rationale behind our 
choice of observable, ‘mean polarity’, and behind the choice of 
a bonding mechanism based on this observable.  From simple 
experimentation we observe that using cellular automata as the 
underlying dynamical system coupled with mean polarity as the 
reaction success criterion shows potential to support sustainable 
emergent behaviour. 

Introduction 
The general model for an artificial chemistry consists of the 
{S (material), R (reaction rule set), A (algorithm)} triplet, 
with R applied to S according to A (Dittrich et al, 2001).  
Typically R is hand-coded and applies to a single level of 
structural hierarchy, while S is composed of atomic types with 
little or no internal dynamic.  This provides ease of analysis at 
the expense of flexibility. 
 This work applies a recent, alternate approach of ‘sub-
symbolic’ artificial chemistry, described in RBN-World 
(Faulconbridge et al, 2009), and in (Faulconbridge et al, 
2010), where reactions can apply at any level, with reaction 
success based upon an internal dynamic of colliding bodies. 

Here cellular automata (CA) are used to provide the 
internal dynamic.  By using CA as base atoms it is possible to 
construct ‘Bondable CA’ (BCA) systems where the 
application of R is dependent upon an emergent, possibly 
‘resolution independent’ observable of individual (atomic) or 
composite (molecular) CA structures.  The bonded CA within 
composite structures are able to exchange state information, 
introducing new dynamics to the CA, and potentially leading 
to emergent behaviour and structure in the chemical system. 

Why use Internal Dynamics? 
If we allow each body (be it an atom or composite molecule) 
in an artificial chemistry to possess an internal dynamical 
system, then we can allow the reactions which occur between 
bodies to affect the configuration of their systems.  Moreover 
we can allow the reverse: for the configuration of the bodies’ 
systems to affect their ability to react.  This way a feedback 
loop is formed. 

 This can be achieved by forming reaction rules that are 
based upon the value of an observable of each body’s internal 
dynamical system.  If the chosen observable is measurable for 
any body of any internal structure or size, be it a single atom 
or complex molecule, then potentially any two bodies can 
react with each other, even if their size and structure differ.  
This allows composite bodies of arbitrary size and structure to 
be constructed, and allows their dynamical systems to couple 
and interact.  As they grow these composite bodies will take 
the form of an increasing hierarchy of systems within systems 
within systems, all interacting with each other. 
 Further, in the BCA model we have chosen to use an 
observable that reflects change in the configuration of a 
body’s dynamical system as it occurs, whether or not this 
change has been caused by reaction with another body.  So 
two bodies that meet the criterion to react with each other at 
one instance in time might not do so at another instance 
because of interim change in the values of each body’s 
observable; and vice versa.  Similarly, when two bodies react 
to form a larger, single body, the interaction between their 
dynamical systems will cause changes to each over time, and 
might lead to structural instability.  If, according to the values 
of their observables, subcomponents of the single body no 
longer meet the criterion to remain bonded then 
decomposition of the single body will occur.  Such 
decomposition will have a knock-on effect upon the internal 
dynamic of the remaining body, which in turn may cause 
further, future decomposition, and so on.  Thus we have 
introduced and element of spontaneity to the reactions that 
take place, allowing them to occur well after or even in the 
absence of collision between bodies. 
 So using bodies that possess internal dynamical systems 
and basing reaction rules upon a suitable observable of those 
systems allow a rich set of reaction types to take place, 
between bodies unbounded by size, thus providing a 
sophisticated platform upon which we can model and explore 
multi-layered dynamical systems and how they interact. 

Why use Cellular Automata? 
The Cellular Automaton is an ideal underlying system for a 
sub-symbolic chemistry.  A tenet of artificial life research is 
that complex, interesting behaviour may arise from a 
deceptively simple mechanism, and the cellular automaton is a 
deceptively simple dynamical system; deceptive because 
intuition would suggest that from simple rules must emerge 
simple outcomes.  Yet we knew in 1966 that CA with large, 
intricately constructed transition rules were capable of 



universal computation (von Neumann, 1966), and we know 
now that 1-dimensional CA are capable of performing 
universal computation (Cook, 2004), or of generating pseudo-
random numbers that pass all current tests for randomness 
(Wolfram, 2002).  It is even speculated that CA-type 
processes are at work in nature, such as the colour patterns 
generated in the spiral of the Cone Snail, or in the formation 
of snowflakes (Wolfram, 2002). 
 Further, a strand of research that allows the CA’s transition 
rule to be altered during iteration has allowed computations to 
be performed that are not possible with ‘simple’, standard 1-
dimensional CA (Mitchell et al, 1993, 1997), (Kanoh and Wu, 
2003), as opposed to those CA which require a partition of 
cells to store the ‘program’ to be executed, such as (Cook, 
2004).  Other work has explored the capability of 2-
dimensional CA to perform computations, including universal 
computation (Sapin et al, 2007). 
 Thus simple CA, when allowed to interact, have the 
potential to produce a wider range of behaviours than in 
isolation.  Placing them within the framework of an artificial 
chemistry, with the continual ‘composition, decomposition, 
re-composition’ processes of combinations of CA, allows this 
potential to be explored in a more open-ended, emergent 
manner.  Figure 1 shows how linking two circular, 1-
dimensional CA between just one cell of each can lead to 
large changes in configuration within a short time, and in 
automaton B’s case interferes with its otherwise short and 
simple cycle of just 8 configurations. 

Figure 1: The impact of linking two circular, 1-dimensional 
cellular automata between one cell of each.  The linked cells 
see each other’s neighbourhood when updating.  Note that the 
simple, cyclic configuration of unlinked automaton B 
becomes disturbed through interaction, and that both CAs’ 
configurations are affected. 

 This paper describes the BCA model from different 
perspectives: from the perspective of the individual CA cells, 
from the perspective of the CA, the atom, and from the 
perspective of the molecules, composed of many CA.  It 
describes the reaction mechanism that allows composition, or 
bonding, and decomposition, or unbonding, to occur between 
bodies, be they atoms or molecules.  It provides an example of 
collision leading to bonding then subsequent, spontaneous 
decomposition.  It describes and discusses the reasoning 

behind and the impact of using mean polarity as the 
underlying observable upon which reactions are based.  
Finally conclusions are drawn, which will steer the direction 
of future work. 

The BCA Model 
The Bondable Cellular Automata model is an artificial 
chemistry that uses 1-dimensional, binary CA for its base 
(atomic) elements.  These atoms bond to form molecules and 
molecules further bond to form larger molecules of arbitrary 
size.  Adopting the approach in (Faulconbridge et al, 2009), 
the reaction rules between bodies (whether they be singular 
atoms or composite molecules) are not explicitly defined for 
each type of body, but instead reaction success is based upon 
the comparison of the value of a single observable for each 
body; an observable that is based upon the internal CA 
configurations yet can be measured for any constructible 
body. 

Model Perspectives 
Since BCA is an artificial chemistry based upon cellular 
automata it is useful to describe and observe it from different 
perspectives. 
 
Sub-atomic Level. BCA can be viewed as a collection of 
interacting cells.  Each cell updates its binary state each 
iteration, according to the collective state of its perceived 
neighbourhood of other cells and its assigned transition rule.  
Figure 2 illustrates the cell’s perspective. 
 

Figure 2: The central (green) cell perceives its neighbourhood 
as its left and right neighbours, which for rule-width 2 is the 2 
cells either side (in blue), but BCA allows a cell to perceive 
the neighbourhood of a cell in another CA, allowing 
information to flow between them. 
 
Atomic Level. BCA can be viewed as a collection of 
bondable atoms.  Each atom is a circular CA and bonding 
causes cells in one atom to link to cells in another atom, as 
shown in Figure 3.  Atoms with positive polarity can bond to 
atoms with negative polarity while atoms with the same 
polarity cannot bond and atoms with zero polarity are always 
inert; this is the ‘bonding criterion’. At any instant in time an 
atom’s polarity is defined as: 
 

polarity = count(cells in state ‘1’) – count(cells in state ‘0’) 
 
So, in Figure 3 the upper atom has 5 cells in state ‘1’ and 7 
cells in state ‘0’, giving it a polarity of 5 – 7 = -2 (polarity 
sign: negative).  Similarly the lower atom has polarity of 12 – 
0 = +12 (polarity sign: positive).  Hence these atoms can bond. 



 

Figure 3: Two bonded atoms are linked between pairs of cells 
(colour-coded accordingly).  Each cell sees its partner’s 
neighbourhood when updating. 
 
 Bonding causes cells in one atom to link to cells in the 
other atoms.  Cells can have only one link at a time.  Linking 
causes a cell to view the corresponding cell’s neighbourhood 
rather than its own when updating.  Atoms can be bonded to 
many other atoms, limited only by the availability of unlinked 
cells.  This leads to a rich, complete-graph structure for 
bonded atoms, as illustrated in Figure 4. 

Figure 4: The underlying atomic structure of a molecule.  
Each atom is a circular CA, and each CA has its own 
transition rule. 
 
Molecular Level.  BCA can be viewed as an artificial 
chemistry, a collection of molecules that collide in pairs and 
bond. 
 Due to two body reactions each molecule consists of 
exactly two (sub) molecules or (conceptually) of a single 
atom.  Figure 5 shows how this leads to a binary-tree structure 
for molecules, with each parent molecule containing two child 
molecules. 

When molecules collide, if they meet the bonding criterion, 
then they bond.  If they bond this may cause changes to the 
internal configuration of the CA, which in turn affects 
polarity, which may lead to sub-components unbonding, 
which is explained later in the Bonding Example section. 

Molecules bond by linking pairs of atoms, one in each pair 
from each molecule, and how these pairs are chosen and 
linked is described in the next section.  A key aspect of BCA 
is that the rich underlying atomic structure of molecules is 
hidden at this molecular level.  This greatly simplifies the 

description of molecular types and reactions.  Also it is 
possible for two molecules with the same molecular identity 
to have different structure at the atomic level, thus allowing 
isomers to be modeled.  Moreover, since a molecule’s polarity 
is the emergent outcome of initial configuration, the transition 
rules and the topology of the underlying atomic bonds, it is 
possible for two molecules of the same type to possess 
opposing polarities and thus bond. 

 

Figure 5: Molecular structure is nested, forming a binary tree. 
Key: Molecule (rounded square), Atom (outlined ring). 

Material and Reactions 

Atoms and Molecules 
In BCA, 1-dimensional, unbounded (circular) binary CA form 
the atomic elements, their type identified by their transition 
rule.  Atoms can bond to form molecules, and molecules can 
bond to atoms or other molecules to form ever-larger 
molecules. 
 Single atoms behave like standard CA, updating the state of 
each cell each iteration according to the application of the 
transition rule to the cell’s neighbourhood. 
 When two atoms are bonded, pairs of cells between each 
atom are ‘linked’ together.  When updating, linked cells still 
use their own transition rule but see their partner’s 
neighbourhood instead of their own.  Thus the cell states (the 
‘configuration’) of paired atoms affect each other. 

Collisions 
BCA’s topology is a well-mixed soup, consisting of bodies, 
which can be single (unbonded) atoms or composite 
molecules.  At any point in time collision can randomly occur 
between any two bodies.  Two bodies that collide are known 
as the reactants, and are tested to see if they will bond 
according to the bonding criterion. 

Bonding Criterion 
Reactants bond according to the mean polarity of each 
reactant’s configuration. 
 Reactants with opposing polarity signs may bond (positive-
to-negative or negative-to-positive) whilst any reactant with 

 



neutral-signed polarity is considered inert and will not react 
with any other body. 
We note that polarity is a scalable, ‘resolution independent’ 
observable in our model, since it can be measured for single 
atoms and for molecules of arbitrary size.  Polarity is also an 
emergent property of the configuration of a body, which itself 
is an emergent property of the initial configuration and 
transition rule(s) of the underlying CA, and of the effect of the 
bonds between them.  Hence polarity is an emergent property 
of the underlying dynamical systems and how they interact. 

Bonding Mechanism 
Atomic Level.  Two atoms with opposing polarities bond by 
forming links between pairs of cells.  Which cells link to form 
the ‘bond site’ is determined by comparison of each CA’s 
configuration at the time of collision.  In keeping with the 
concept that ‘opposites attract’, the longest continuous run of 
currently unlinked state 1 cells is identified in the ‘positive’ 
atom, and the longest run of currently unlinked state 0 cells is 
identified in the ‘negative’ atom. The shorter of these runs 
determines the size of the bond site.  Each cell in the shorter 
run is then linked to a cell in the longer run on a 1-to-1 basis 
until the shorter run is exhausted.  Thus every cell has the 
potential to contribute to a bond site, and therefore to interact 
with cells in other CA, while the actual location and size of 
the bond site is an emergent outcome of the automatas’ 
current configurations.  
 
Molecular Level.  When two molecules with opposing 
polarities collide, they form bonds between pairs of atoms, in 
the manner described above.  The molecules will attempt to 
form bonds between two pairs of atoms, but in practice might 
form a bond between only one pair, or even not be able to 
form any bond at all, as the process below explains. 

Each molecule is polled for its atom with most positive 
polarity, and its atom with most negative polarity.  Again, by 
the principle that opposites attract, the most positive atom in 
the first molecule is paired with the most negative atom in the 
second molecule (and respectively for the other pair).  These 
atoms bond together at the atomic level in the manner 
described in the previous section. 
 Sometimes the chosen pairs of atoms cannot bond, because 
one or both atoms has no free, unlinked cells with which to 
form a bond.  In this situation any ‘fully linked’ atom is 
overlooked and the molecule polled for the next most 
positive/negative atom as appropriate.  This process will 
continue if necessary until either a bondable pair of atoms is 
found or no more candidates exist.  In the latter situation this 
will lead to the molecules bonding between just one pair of 
atoms, or in the extreme case not bonding at all. 
 Allowing two pairs of atoms to possibly form the bond 
between molecules maintains consistency with the concept 
that polarity underpins the bonding mechanism, with the 
most-oppositely polarised atoms in each molecule being 
attracted to each other and attempting to bond.  The key 
benefit of allowing more than one pair of atoms to bond 
between molecules is that it allows a rich graph structure to 
develop at the atomic level, illustrated in Figure 4.  If only one 
pair of atoms were allowed to bond between molecules then 
this structure would be restricted to a tree, providing less 

opportunity for interaction between the atoms within a 
molecule. 

Unbonding Mechanism 
Unbonding occurs spontaneously at the molecular level.  If a 
body consists of more than a single atom, then every iteration 
of the system the bonds between the two sub-components that 
form a body are tested.  The test is simple: if the two atoms 
which are actually bonded no longer attract, then they unbond.  
Unbonding removes all links between paired cells in each 
atom, and their CA no longer interact. 

This unbonding will weaken the link, and hence interaction, 
between the two sub-components of the body, and if it was the 
last bond will lead to separation of the body into smaller 
bodies.  Those bodies will then themselves be subject to 
potential spontaneous decomposition, and so on. 

Bonding Example 
Figure 6 illustrates by example the composition of two 
colliding molecules, and their subsequent decomposition into 
two new molecules. 

Let A and B be molecules in the BCA system.  Further, let 
A be composed of sub-molecules C and D, since this fact will 
become useful when describing the decomposition stage. 
 

Figure 6: Example of the bonding of two molecules, A and B, 
and the subsequent, spontaneous decomposition of the 
resultant into two different molecules, C and D-B. 
 
Composition. Suppose that A and B collide (Figure 6.i).  
They have opposing polarities and attempt to bond. 
 Let the most positive and most negative atoms in A be 
identified as a1 & a2 (respectively as b1 & b2 in B; see Figure 



6.ii).  Unlinked cells are available on each atom and so a1 
bonds to b2 while a2 bonds to b1 (Figure 6.iii).  The 
molecular equation for this reaction is simply: 
 

A + B → A-B 
 

A-B denotes composition.  Since the reaction success of A 
+ B is not guaranteed for every collision between the types, 
the current equation is insufficient.  So during simulation our 
system records the percentage reaction success of collision 
between pairs of types and we can more accurately write the 
equation as: 
 

A + B 63%
→ A-B 

 
 Note that this says nothing about the underlying atomic 
structure, thus allowing the aforementioned isomers to exist. 
 
Decomposition. We now suppose that the formation of A-B 
leads to changes in the cell states of the underlying CA, 
through interaction between bonded atoms.  These changes 
subsequently cause the bonded atoms in A’s two sub-
molecules, C & D (see Figure 6.iv), to no longer attract.  
Hence the bonds break and A decays (Figure 6.v). 
 This leads to the breakaway of C as a separate body, while 
D remains bonded to B, effectively forming a new molecule 
(Figure 6.vi). 
 The equation for decomposition is: 
 

A-B 18i
→ D–B , C 

 
 Ni represents the number of iterations the composite 
survived for, and the comma indicates separation. We can 
consider Ni as the reaction rate for a decomposing reaction.  
The full chain of events can be written as: 

 
A + B 63%

→ A-B 18i
→ D–B , C 

 
 Some composites will decompose into the original two 
molecules that formed them, so reversible reactions can be 
supported by the model. 

During the run of a simulation we can track the entire flow 
of compositions and decompositions for all molecules to 
derive the reaction network. 

The Impact of Polarity 
The choice of polarity as the basis for the bonding criterion 
followed a process of deduction and experimentation. 
 Table 1 lists the key, measurable properties of a CA and 
their suitability for the role.  It was quickly identified that any 
candidate property for underpinning the bonding criterion 
would need to be not just resolution independent, but would 
also need to at least in part reflect the dynamic nature of a 
CA’s configuration in order to be an emergent property 
leading to emergent behaviour. 

Therefore rule width, dimension, number of cell states and 
size were discounted as too trivial to be useful since they 
remain constant or ignore the CA’s configuration; they 
effectively reduce to static elemental types seen in the general 
artificial chemistry model.  Likewise Transition Rule was 

discarded for the above reason and further since it cannot be 
consistently defined for bonded structures. 

 
 

 Resolution 
Independent? 

Dynamic? 

Rule width Yes No 
Dimension (1d, 2d, …) Yes No 
No. of possible cell states Yes No 
Size Yes Weakly 
Transition rule No No 
Configuration Yes Yes 

Table 1: Summary of key measurable properties of CA. 

 
 This left measures based upon Cell Configuration, which 
fall into two broad categories: long-term measures and instant 
measures. 
 A good example of a long-term measure is cyclelength, as 
used for RBN-World.  We can measure the cyclelength of a 
CA as the number of iterations required for the configuration 
to return to a previous state.  One strength of using 
cyclelength is that it is an emergent outcome of bonding; as 
structures bond the cyclelengths of the sub-components and 
the combined structure can change.  Also, since cyclelength is 
partly dependent upon other properties of CA such as 
transition rule and the current configuration, it could provide a 
valuable reflection of the nature (and specifically Wolfram 
classes (Wolfram, 1984)) of combined CA. 
 However one downside to using cyclelength is that its value 
for a particular body remains static until that body reacts with 
another body through collision.  We believe that using an 
alternative observable, one whose value can change both 
because of and independent of reaction with other bodies, 
adds flexibility to the model since it allows spontaneity and 
uncertainty to what reactions occur and when. 

The other downside to using cyclelength and similar 
measures is computational cost.  Determining the cyclelength 
of a body in BCA requires direct simulation, since it is 
dependent upon not just the CA but also how they are bonded; 
in the worst case its time cost is the Cartesian product of the 
combined width of a body’s CA. 
 Therefore initially BCA employed the instant measure of 
polarity at the moment of collision.  Instant polarity is an 
emergent outcome of both internal configuration and the 
bonding mechanism, is computationally inexpensive (the cost 
is linear with respect to combined width) and allows for 
spontaneous unbonding.  It also provides underlying 
consistency to the model:  the bonding criterion, the location 
of bonds in the bonding mechanism (at molecular and atomic 
levels) and the unbonding mechanism can all be based upon 
this single characteristic. 
 Unfortunately during simulation the measure of instant 
polarity proved to be too stochastic for some transition rules, 
as Figure 7 demonstrates.  The reaction success of colliding 
bodies became dependent upon the time of collision, which is 
randomly chosen. 
 Therefore the measure of mean polarity was implemented.  
This retains the benefits of instant polarity, including 
computational cost rising linearly with size, but, as seen in 
Figure 7, also smoothes the impact of large changes in 



configuration between successive iterations.  In our 
experimentation the mean is calculated from the instant that a 
body is formed, but alternative calculations, such as the mean 
for the last 100 cycles, could be used, allowing later changes 
in configuration to have greater impact upon it. 
 

Figure 7: Polarity of a Rule 30 Cellular Automata over time.  
Whilst the snapshots of polarity change erratically between 
iterations, mean polarity smoothly settles to a steady value.  

Experiments in Mean Polarity 
 
Rule width 1 
Width (number of cells) 12 
Dimension 1d 
Number of possible cell states 2 (binary) 
Number of transition rules 256 
Initial configuration of cell states ‘000000000001’ 

 
Number of iterations:  
Isolated CA 4096 
Paired System 100000 

Table 2: Set-up for the Isolated and Bonded Pairs 
experiments. 
 
A key question about mean polarity is whether it would be too 
smooth a measure, essentially reducing in most cases to a 
static value over time.  To answer this question simulations 
were run using CA with width 12, rule-width 1, providing 256 
possible transition rules, or atomic types.  Each type of CA 
was simulated in turn in isolation for 4096 iterations.  This is 
the maximum theoretical cyclelength for a width 12 CA and 
thus allows a fair calculation of mean polarity over time for 
the individual CA.  Each CA began with the same initial 
configuration of a single cell set to state ‘1’, all others ‘0’. 
 Following this we attempted to bond every possible pair of 
CA in turn.  If they bonded then the simulation was run for a 
further 10000 iterations, far short of the maximum theoretical 
16.7 million iterations required to cover all possible 
cyclelengths, but in practice sufficient time to determine the 
long-term sign and magnitude of the pair’s mean polarity.  
Table 2 records the set-up for both experiments.  This is the 
first step into the reaction chemistry of the BCA model. 

Results and Discussion 
Isolated CA. For 141 out of 256  (56%) of types the sign of 
mean polarity changes during simulation for isolated atoms.  
Table 3 shows that although all types begin with negative 
polarity approximately a quarter of types finish with neutral 
mean polarity and are hence inert. 
 
 

Positive 75 (29%) 
Negative 115 (45%) 
Neutral 66 (26%) 

Table 3: Tally of final sign of mean polarity of isolated CA 
after 4096 iterations. 
 
 That such a sizeable proportion of CA types become inert 
raises concern.  However the ‘periodic  table’ of types (Figure 
8 in the Appendix) shows that the vast majority of types that 
achieve neutral mean polarity take more than 256 iterations to 
do so, and the opportunity for those CA to bond with others 
and be ‘rescued’ from inertia remains open during that time. 

The periodic table illustrates a strong correlation between 
the time taken to settle and the amount by which mean 
polarity changes.  All CA begin with mean polarity of -10.  
Those that finish with that same value never change polarity.  
Those that finish with mean polarity close to -10 tend to settle 
within 8 iterations, and as final polarity drifts away from -10, 
so the time taken to reach the new value tends to increase.  
We see that many CA types reach high positive polarities, 
notably acquiring a change of sign, and relatively speaking 
take their time to do so.  This is good since it demonstrates 
that the mean polarity measure is dynamic in the majority of 
cases for long enough to present a ‘window of opportunity’ 
for different reactions to occur. 
 
Bonded Pairs. 

 
Total possible unique pairs 32640 
Of which bonded 8625 (25%) 
 
Change seen in mean polarity value:  
Individual CA 14049 (81%) 
Paired System 7921 (91%) 
 
Change seen in mean polarity sign:  
Individual CA 5799 (34%) 
Paired System 3938 (45%) 
 
Both CA and paired system changed 
polarity 

371 (4%) 

Both CA changed polarity but paired 
system did not (the changes ‘cancel out’) 

253 (3%) 

One CA’s polarity remained stable while 
the other’s and the paired system’s 
changed 

402 (5%) 

Table 4: Summary Data for the Bonded Pairs experiment. 
 
Table 4 summarises the results of attempting to bond in pairs.  
The listed percentages for changes seen in polarity are 
calculated as proportions out of the total number of pairs that 
succeeded in bonding.  We observe that in around 4 out of 



every 5 of such cases the act of bonding re-introduces a 
dynamic element to the value of polarity of the individual CA, 
and in around 1 out of every 3 cases also leads to a sign 
change.  We also see that in almost half of cases following 
bonding the paired system’s polarity sign changes.  This 
reinforces the view that mean polarity is an emergent outcome 
of both the underlying CA configurations and the bonding 
mechanism, not just because it aggregates the values for the 
subcomponents, but crucially because the subsequent 
interaction caused by bonding leads to changes in the 
subcomponents’ values themselves. 

In the 5% of cases where bonding causes a sign change for 
one of the CA, if this change were rapid then during a full 
simulation this would lead to rapid decay of the combined 
body, releasing both atoms near-instantly back into the soup.  
This provides the potential for bonding to cause the 
appearance of unstable molecules, leading to rapid chain 
reaction; a complement to the slower decay modeled in the 
unbonding mechanism.  In such paired systems, the CA whose 
sign remains stable is also of interest, since it might have 
catalytic properties, causing change in the CA it bonds with 
whilst itself remaining unchanged in polarity sign.  Seeking 
and identifying CA atoms with this property, and possibly 
even molecules too, is a further step in the research. 

Additionally, we observed that bonding causes an overall 
drift away from neutrality for the bonded pairs, so the act of 
bonding leaves proportionally fewer inert bodies in the system 
than if CA were left to iterate in isolation. 

These results suggest that rather than locking CA into inert 
structures with (near) static mean polarity as was feared, 
bonding could be a self-sustaining process, keeping the 
system active. 

Conclusion and Future Work 
The modeling and polarity experimentation suggest that BCA 
shows the potential to allow behaviour and structure to be 
emergent properties of both the bonding mechanism and the 
underlying CA configurations.  More generally it allows us to 
study the results of the interaction that occurs between simple 
dynamical systems when they are placed within the 
framework of an artificial chemistry. 

By allowing reactions to occur sometime after or even in 
absence of a collision BCA is also able to model useful 
chemical concepts such as variable decay rates, spontaneous 
reactions derived from internal configuration (rather than due 
to external trauma), isomers, and catalytic behaviour.  Thus 
we believe that it is a worthy candidate system for the study of 
emergence. 
 The experimentation suggests that mean polarity could be 
an ideal resolution independent observable on which to base 
reaction success, possibly leading to a positive cycle in system 
behaviour, where reactions lead to changes in the internal 
structure of bodies leading to the potential for further 
reactions.  However to assess this further experimentation is 
needed, including full simulation runs where numerous 
molecule of many types are present, and are allowed to react 
to form much larger bodies. 
 Mean polarity is only one of many possible ways to 
determine reaction success.  Other candidate observables 
based upon CA configuration exist and can be explored too, 

including the possibility of basing reaction success upon a 
family of measures, or on higher moments.  For whichever set 
of observables we select, we need to strike a balance. 

The experimentation using instant polarity has shown that 
using short-term measures which are based on a 
computationally inexpensive snapshot of the configuration 
can lead to essentially stochastic behaviour.  Conversely, 
other long-term measures, such as cyclelength, are less 
sensitive to short term configuration changes but have 
increasingly large computational overhead as larger molecules 
appear, which impinges upon the scalability of experimental 
simulation.  So other candidates will need to be able to display 
the balance that the use of mean polarity so far achieves, in 
tempering stochastic influence whilst keeping the 
computational overhead low. 

In the experimentation so far the rate of iteration for the CA 
has been identical to the rate of iteration for collision.  So 
every time the system performs a collision (or a set of 
simultaneous collisions) it also updates the configuration of 
every CA.  This need not be so, since we can instead allow the 
CA to operate in a different time frame and iterate them an 
arbitrary number of times between each collision.   
 Further work will examine the reaction networks formed by 
full simulation of the model, assess the impact of allowing the 
CA configurations to iterate at a different rate to the collisions 
and assess the model’s viability for application to the 
modeling of other domains. 
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Appendix 

 

Figure 8.  A ‘periodic table’ for the transition rules in BCA.  The value at which mean polarity settles for each transition rule in 
the Isolated CA experiment, with a starting configuration of a single bit set to ‘1’.  The scale across the top shows the mean 
polarity.  The number in each box indicates a transition rule.  The greyscale shading shows how many iterations it takes for the 
value of mean polarity to settle to its final value.  While individual shades may be hard to discern the general trend is clear. 


