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Network topology and the evolution of dynamics in an
artificial genetic regulatory network model created

by whole genome duplication and divergence
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Abstract10

Topological measures of large-scale complex networks are applied to a specific artificial regulatory network model created
through a whole genome duplication and divergence mechanism. This class of networks share topological features with natural
transcriptional regulatory networks. Specifically, these networks display scale-free and small-world topology and possess subgraph
distributions similar to those of natural networks. Thus, the topologies inherent in natural networks may be in part due to their
method of creation rather than being exclusively shaped by subsequent evolution under selection.
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The evolvability of the dynamics of these networks is also examined by evolving networks in simulation to obtain three simple
types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes
indicating that it is relatively easy to evolve these classes of dynamics in this model.
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. Introduction

Regulatory networks have become an important new
rea of research in the biological and biomedical sciences
Bower and Bolouri, 2001; Davidson, 2001; Kitano,
001). Specifically, the DNA information controlling
ene expression (i.e. regulation) is the key to under-
tanding differences between species and to evolution
Hood and Galas, 2003). Taking these regulatory inter-
ctions as a whole, a network of interactions (a so-called

∗ Corresponding author. Tel.: +1 8582435763; fax: +1 7097397026.
E-mail addresses: kuo@cs.mun.ca, pdkuo@ucsd.edu

P. Dwight Kuo), banzhaf@cs.mun.ca
W. Banzhaf), leier@maths.uq.edu.au (A. Leier).

regulatory network) can be visualized where gene
teract by regulating other genes and their produc
produce and regulate a myriad of cellular processe
functions. This allows nature to set up and control
mechanisms of evolution, development and physiol
Studying models of regulatory networks can help u
understand some of these mechanisms providing
able lessons for biology.

This contribution uses an artificial genetic regula
network model to pose questions regarding the topo
ical organization of regulatory networks. Specifica
ensembles of this network model are investigated to
termine whether they may be classified as scale-
small-world and possess network motifs. In addition
networks are then evolved toward simple output dyn
ics.

303-2647/$ – see front matter© 2006 Published by Elsevier Ireland Ltd.
oi:10.1016/j.biosystems.2006.01.004
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2. Background47

2.1. Topological measures48

Since one of the most basic features of any complex49

network is its structure, it is natural to investigate net-50

work connectivity. The structure of networks is often51

constrained and shaped by the growth processes that52

create them (including evolution in the case of natural53

networks). Studying the topology of natural networks54

allows an understanding of the structures and dynamics55

which have been exploited by nature. By comparing the56

topologies of artificial networks with natural networks,57

questions regarding the benefits of one topology over58

another can be answered. In addition, some insights into59

the growth processes which create particular topologies60

may be gained.61

Typically, nodes in such an abstraction represent in-62

dividual genes and their associated proteins while the63

directed edges which connect the nodes represent one64

gene’s effect (excitatory or inhibitory) on another.65

2.1.1. Scale-free network topologies66

A topological feature often found in large complex67

networks is the so-called “scale-free” topology. In net-68

works of such a topology, the vertex degree distribution,69

P(k), decays as a power-law. This has been shown for70

a variety of biological systems(Wuchty, 2001; Watts,71

2003; Jeong et al., 2000; Guelzim et al., 2002; van Noort72
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Small-world topology has also been noted in biological94

networks(Watts, 2003; van Noort et al., 2004). 95

2.1.3. Network motifs 96

The previous two topological measures characterize97

networks at the global level. Local graph properties of98

networks have also been investigated such as static net-99

work motifs (Milo et al., 2002, 2004; Shen-Or et al.,100

2002; Wuchty et al., 2003; Yeger-Lotem et al., 2004;101

Dobrin et al., 2004; Mangan and Alon, 2003; Vazquez102

et al., 2004; Banzhaf and Kuo, 2004). 103

Network motifs are defined as the structural elements104

(subgraphs) which occur in statistically significant quan-105

tities in the networks under consideration as compared106

to random networks(Milo et al., 2002). The implica- 107

tion of having certain subgraphs being found in greater108

abundance than would be expected in similar random109

networks is that these local network motifs may convey110

a functional advantage to the system. It is believed that111

studying network motifs can lead to a better understand-112

ing of the potential basic structural elements which make113

up complex networks. Several motifs such as the bi-fan114

(Kashtan et al., 2004), the feed-forward loop(Mangan 115

and Alon, 2003)and the feedback loop(Kashtan et al., 116

2004)have been the subject of study. 117

Tables A.1 (three-nodes), A.2 and A.3 (four-nodes)118

show connection patterns in directed graphs including119

auto-regulatory connections. A presentation of all four-120

node connection patterns is impractical due to space lim-121

itations. 122
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Cet al., 2004; Babu et al., 2004). A scale-free networ

topology can emerge in the context of a growing
work with the addition of new vertices connecting p
erentially to vertices which are highly connected in
network(Barab́asi and Albert, 1999), as well as throug
explicit optimization(Valverde et al., 2002)and dupli-
cation and divergence(Romualdo et al., 2003; Kuo a
Banzhaf, 2004).

2.1.2. Small-world network topologies
Another topological feature found in large co

plex networks is the so-called “Small-world” top
ogy. Watts (2003)defines a Small-world graph as a
graph withn vertices and average vertex degreek that
exhibitsL ≈ Lrandom(n, k) ∼ ln (n)

ln (k) andC � Crandom∼
k
n

for n � k � ln (n) � 1.C is the clustering coefficie
which is defined as follows: if vertexv haskv neigh-

bours,C = 2
n

∑n
v=1

(
kv(kv−1)

2

)
, whereL is the charac

teristic path-length of the network (average numbe
links connecting two nodes).LrandomandCrandomrefer to
the characteristic path-length and clustering coeffic
for a random graph with the samek andn, respectively
BIO 2530 1–24

2.2. Artificial regulatory network model

The artificial regulatory network (ARN) model co
sidered here(Banzhaf, 2003a,b; Banzhaf and Kuo, 20
Kuo and Banzhaf, 2004; Kuo et al., 2004)consists o
a bit string representing a genome with direction
5′ → 3′ in DNA) and mobile “proteins” which intera
with the genome through their constituent bit patte
Proteins are able to interact with the genome, mos
tably at “regulatory” sites located upstream from ge
Attachment to these sites produces either inhibitio
activation of the corresponding protein. These inte
tions may be interpreted as a regulatory network
proteins acting as transcription factors.

A “promoter” signals the beginning of a gene on
bit string analogous to an open reading frame (ORF
DNA—a long sequence of DNA that contains no “sto
codon and therefore encodes all or part of a protein.
gene is set to a fixed length oflgene= 5 32-bit integer
which results in an expressed bit pattern of 160-bit
promoter bit sequence of 8-bits was arbitrarily sele
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to be “01010101”. By randomly choosing “0”s and “1”s143

to generate a genome, any one-byte pattern can be ex-144

pected to appear with probability 2−8 = 0.39%. Since145

the promoter pattern itself is repetitive, overlapping pro-146

moters or periodic extensions of the pattern are not al-147

lowed, i.e. a bit sequence of “0101010101” (10-bits) is148

detected as a single promoter site starting at the first bit.149

However, regions associated with one gene may overlap150

with another should a promoter pattern also exist within151

a portion of the coding region of a gene. In such cases,152

each gene is treated independently.153

Immediately upstream from the promoter exist two154

additional 32-bit segments which represent the enhancer155

and inhibitor sites. As previously mentioned, attachment156

of proteins (transcription factors) to these sites results157

in changes to protein production for the corresponding158

genes (regulation). It is assumed that only one regulatory159

site exists for the increase of expression and one site for160

the decrease of expression of a given protein. This is161

a radical simplification since natural genomes may have162

5–10 regulatory sites per gene that may even be occupied163

by complexes of proteins(Banzhaf, 2003a).164

Processes such as transcription, diffusion, spatial165

variations and elements such as introns, RNA-like mo-166

bile elements and translation procedures resulting in a167

different alphabet for proteins are neglected. This last168

mechanism is replaced as follows. Each protein is a 32-169

bit sequence constructed by a many-to-one mapping of170

its corresponding gene which contains five 32-bit se-171

quences. The protein sequence is created by performing172

t se-173

q pos-174

s175

a176

they177

“ his178

c ator179

one ge

which returns a “1” if bits on both patterns are com-180

plementary. The degree of match between the genome181

and the protein bit patterns is specified by the number182

of bits set to “1” during an XOR operation. In general, a183

Gaussian distribution results from measuring the match184

between proteins and bit sequences in a randomly gen-185

erated genome(Banzhaf, 2003a). By making the sim- 186

plifying assumption that the occupation of both of a187

gene’s regulatory sites modulates the expression of its188

corresponding protein, a gene–protein interaction net-189

work may be deduced comprising the different genes190

and proteins parameterized by strength of match. The191

bit-string for one gene is shown inFig. 1. 192

The rate at which proteini is produced is given by: 193

dci

dt
= δ(ei − hi)ci∑

j cj

(1) 194

ei, hi = 1

N

N∑
j

cj exp(β(uj − umax)) (2) 195

whereei andhi represent the excitation and inhibition196

of the production of proteini, uj represents the number197

of matching bits between proteinj and activation or in- 198

hibition sitei, umax represents the maximum match (in199

this case, 32),β andδ are positive scaling factors, and200

ci is the concentration of proteini at time t. The con- 201

centrations of the various proteins are required to sum202

to 1. This ensures competition between binding sites for203

proteins. 204

n be205

ree206

reg-207

. At208

net-209

n in210

gene211

pro-
U
N
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E

he majority rule on each bit position of these five
uences so as to arrive at a 32-bit protein. Ties (not
ible with an odd number forlg) for a given bit position
re resolved by chance.

Proteins may then be examined to see how
match” with the genome at the regulatory sites. T
omparison is implemented using the XOR oper

Fig. 1. Bit string for
BIO 2530 1–24

ne in the ARN model.

The effect of one gene’s products on another ca
investigated in the ARN model by looking at the deg
of match between one gene’s protein and another’s
ulatory sites (one excitatory and one inhibitory site)
different matching strengths (thresholds), different
work topologies are obtained. An example is show
Figs. 2 and 3. Each node in the diagram represents a
found in the genome along with its corresponding
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Fig. 2. Gene–protein interaction network for a random genome at a threshold of 21 bits.

Fig. 3. Gene–protein interaction network for a random genome at a threshold of 22 bits.

tein forming a gene–protein pair. Edges in the diagram212

represent a regulatory influence of one gene’s protein213

on another gene. For the diagrams presented, the net-214

work interaction diagrams at thresholds of 21 and 22 are215

shown.Fig. 3 is in fact a subgraph ofFig. 2.216

Although the actual genome has not changed, by sim-217

ply changing the threshold parameter, different network218

topologies are obtained.Figs. 2 and 3also possess differ-219

ent numbers of genes since only connected gene–protein220

pairs are displayed. Should a change in the parameter-221

ized threshold lead to the creation of an isolated node, it222

is deleted from the diagram. Only the largest network of223

interactions is displayed.224

It is possible to have multiple clusters of gene–protein225

interactions that are not interconnected. This is likely to226

occur as the threshold level is increased. As connections227

between gene–protein pairs are lost due to the threshold,228

each cluster of gene–protein pairs becomes isolated from229

the others. This often occurs abruptly indicating a phase230

transition between sparse and full network connectivity.231

The relationship between the number of edges in the232

graph and the threshold is shown inFig. 4 for a sample233

of 200 networks. As the threshold increases from 0 to234

32 (thex–axis), the fraction of edges in the graph over235

the number of edges in a fully connected network of236

the same number of nodes (also the number of edges237

in any ARN graph at threshold 0) goes from 1.0 to 0.0.238

There is a sharp transition from full connectivity to no239

connectivity. 240

Fig. 4. Diagram showing the fraction of edges in a graph at a given
threshold (x–axis) compared to a fully connected graph for 200 net-
works.
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2.3. Whole genome duplication and divergence241

Whole genome duplication might be an important242

evolutionary mechanism for generating novelty in the243

genome and additionally might give a reasonable expla-244

nation for speciation(Ohno, 1970). When whole genome245

duplication occurs, pairs of functionally redundant paral-246

ogous genes are created. Since only one gene of a pair of247

paralogous genes is required to retain its original func-248

tion, the second is free to diverge. This might lead to249

the second gene being lost or acquiring a novel function250

through subsequent mutations. A review of the role of251

gene duplication in the creation of novel proteins can be252

found inHughes (2005).253

Evidence for either whole genome duplications or254

substantial gene duplication events exist in the liter-255

ature. Specifically, there has been evidence for gene256

duplications inSaccharomyces cerevisiae (Wolfe and257

Shields, 1997; Friedman and Hughes, 2001; Teichmann258

and Babu, 2004; Dujon et al., 2004; Kellis et al., 2004)259

(and in simulation byvan Noort et al. (2004)), Es-260

cherichia coli (Babu and Teichmann, 2003; Friedman261

and Hughes, 2001; Teichmann and Babu, 2004; Babu et262

al., 2004), vertebrates(Nadeau and Sankoff, 1997)and263

other organisms. More generally, three quarters of the264

transcription factors inE. coli have arisen from gene du-265

plication(Babu and Teichmann, 2003)and at least 50%266

of prokaryotic genes and over 90% of eukaryotic genes267

are created by gene duplication(Teichmann and Babu,268

2004). A review of the mechanisms facilitating gene du-269
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Fig. 5. Histogram of the number of genes in each genome (200
genomes) fitted to a power-law:P(g) ∼ g−γ for a mutation rate of
1.0%.γ was calculated to be 0.9779.

32-bit string is generated. This string is then used in a se-288

ries of whole length duplications followed by mutations289

to generate a genome of lengthLG. 290

To generate such networks, a divergence (or muta-291

tion) rate for the duplication and divergence mechanism292

must be chosen. First, mutation rates of 1% and 5%293

were examined. Two-hundred genomes were generated294

by 12 duplication events per genome leading to individ-295

ual genomes of lengthLG = 212 × 32 = 131,072. From 296

these genomes, the number of genes were then deter-297

mined based on the number of promoter patterns present.298

Fig. 6. Histogram of the number of genes in each genome (200
f
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lications can be found inZhang (2004).

. Network topologies in the ARN model

With the ARN, duplication and divergence can
ore directly investigated due to its implementation

he genetic string as opposed to an examination a
etwork level (i.e. where gene duplication happen

he genome level in nature) as is the case in othe
tract regulatory network models (i.e. differential eq
ion models, Boolean models). In addition, topolog
elationships can be easily investigated by paramete
ion of the threshold. Specifically, the presence of sc
ree, Small-world and network motif topologies can
bserved in the ARN model. In Sections3.1–3.3, we
ummarize our findings previously published in par
anzhaf and Kuo (2004)andKuo and Banzhaf (2004.

.1. Gene duplication and the ARN model

The ARN genome is created through a series of w
ength duplication and divergence events. First, a ran
BIO 2530 1–24

genomes) fitted to a power-law:P(g) ∼ g−γ for a mutation rate o
5.0%.
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Fig. 7. Histogram of the number of genes in 200 genomes whose bits
have been chosen at random.

The distribution of the number of genes present in the299

genome of sizeLG is shown inFigs. 5 and 6.300

The distribution of the number of genes inFig. 5fol-301

lows a power-law-like distribution. However, inFig. 6302

the distribution is disrupted. This is attributed to the303

higher rate of mutation. At such a mutation rate, the304

disruption of the network becomes so prevalent that it305

begins to disrupt the duplication of nodes leading to a306

network with a random number of genes.307

For an 8-bit promoter, the probability that it remains308

intact after one duplication event is only 66% at a mu-309

tation rate of 5%. Therefore, many of the genes copied310

during the duplication process will be subsequently de-311

stroyed (by disruption of the promoter) in later dupli-312

cation steps. However, there will also be other genes313

which arise from this higher mutation rate. But, these314

new genes will also be easily destroyed via mutation.315

Genomes which start with very large numbers of genes316

are disrupted early on in the duplication process by muta-317

tion, while those with few genes obtain additional genes318

through mutation.319

To test this explanation, genomes of lengthLG were320

created completely at random without the use of duplica-321

tion and divergence. The distribution of these completely322

randomly generated networks are shown inFig. 7. This323

distribution is quite similar to that generated inFig. 6324

lending additional support to the hypothesis that at 5%325

mutation the network topology becomes effectively ran-326

domized.327

In the case of no mutations (0% probability of mu-328

ber329

re no330

ng),331

Fig. 8. Distribution of values ofγ for the best fit ofP(k) ∼ k−γ with
a mutation rate of 1.0%.

or have 2(# of duplications)genes (due to the presence of a332

01010101 pattern in the original 32-bit starting string).333

We wish to obtain a network which shows a topology334

primarily due to the effects of duplication. Therefore,335

the distribution of the number of genes in networks gen-336

erated by duplication and divergence may be used as an337

estimate of the effect of mutation rate on the network338

as compared to randomly generated genomes. Obtain-339

ing a power-law-like distribution of the number of genes340

accomplishes this goal. That distribution is sufficiently341

randomized so as not to resemble the case of 0% muta-342

tion while not being dominated by mutational effects (as343

shown by its lack of similarity to the Gaussian-like dis-344

tributions shown inFigs. 6 and 7). With these considera- 345

tions in mind, the networks generated by 1% divergence346

may be examined with respect to their topologies. 347

3.2. Scale-free and small-world topologies in the 348

ARN model 349

The network of gene–protein interactions is param-350

eterized by the threshold value leading to 32 possible351

networks for each genome (although the case of zero352

connectivity and full connectivity are neglected). The353

histograms of the vertex degree distribution were fitted354

to the equationP(k) = αk−γ for each threshold value, 355

using the sum of least squares method. The threshold356

value which produced aγ value closest to 2.5 was kept357

(a large number of networks which have displayed scale-358

, 359

- 360

d are361

362
Utation) during the duplication process, a large num
of networks either have zero genes (where there a
01010101 patterns in the original 32-bit starting stri
BIO 2530 1–24

free behavior exhibit values of 2< γ ≤ 3 (Goh et al.
2002)). Values for the parameterγ characterizing scale
free networks were calculated for 200 genomes an
shown inFigs. 8 and 9.
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Fig. 9. Distribution of values ofγ for the best fit ofP(k) ∼ k−γ with
a mutation rate of 5.0%.

There exist many genomes created by duplication and363

divergence which may be considered to satisfy the defi-364

nition of a scale-free network.Fig. 10shows an example365

of one network’s vertex degree distribution fit to a power-366

law distribution. It does obey a distribution similar to a367

power-law (scale-free) distribution.368

In Fig. 8, there is a large number of networks whose369

coefficientγ is close to 0, which would seem to be at odds370

with the previous statement. However, it can be attributed371

to the fact that with a low mutation rate the probability of372

discovering new promoter patterns through subsequent373

duplication and divergence steps is also low. Therefore,374

if there were few promoters in the initial string, there will375

often be few genes in the overall genome. With a small376

number of genes, the scale-free coefficientγ will often377

F and
d

Fig. 11. Plot ofC/Crandomand (Lrandom− L)/Lrandomfor each of the
randomly generated genomes (200 genomes) with a mutation rate of
1.0%.

be of small magnitude. In addition, from the distribution378

of γ in Fig. 9, the majority of the networks created by 5%379

mutation cannot be classified as scale-free. This again,380

reinforces the previous finding that a mutation rate of381

5% or higher during the duplication and divergence pro-382

cess generates networks that are close to having random383

connectivity. 384

To test whether these networks could also be classi-385

fied as having small-world topology, the clustering co-386

efficient,C, and the characteristic path-length,L, were 387

calculated and compared to a randomly connected net-388

work of the same size and vertex degree distribution. The389

threshold value that produced a network with the smallest390

absolute difference,| L − Lrandom|, that also satisfied 391

C � Crandom were taken to be those most characteris-392

tic of the Small-world network topology. The additional393

constraint,L > 1.3, was also enforced to exclude graphs394

that were close to being fully connected. 395

The distributions for the clustering coefficient and396

the characteristic path-length obtained from the 200397

genomes for 1% mutation are shown inFig. 11. It can 398

be derived from the figure, that a majority of genomes399

has a threshold at which the interaction network ap-400

proaches or satisfies the definition of a small-world net-401

work topology. All graphs considered as having scale-402

free and small-world topology were found in the transi-403

tion areas ofFig. 4. 404

Why does whole genome duplication create scale-free405

and small-world topologies? Part of the answer is that406

the duplication process, despite being performed directly407

ar to408

work409

410
U

ig. 10. Degree distribution of a network generated by duplication
ivergence with 1% mutation.
BIO 2530 1–24

on the genetic string can be considered to be simil
the mechanism of preferential attachment at the net
level.
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Fig. 12. An example of the effect of two duplication events. Highly connected (shaded) nodes become even more highly connected (preferential
attachment). Each node represents a gene protein pair; each edge represents an interaction between gene–protein pairs.

Consider the duplication process on a string which411

contains multiple genes while neglecting the effects of412

mutation. For simplicity, it is assumed that no additional413

genes are created from a duplication event by joining414

the end of one genome and the beginning of its copy.415

On the left ofFig. 12, a network of five gene–protein416

pairs is shown that proceeds through a single duplica-417

tion event generating the network shown on the right418

side.419

The more highly connected nodes on the left (the orig-420

inal nodes and their copies—all shown in grey) become421

even more highly connected after a single duplication422

event. This can again be seen in the third part of the di-423

agram which shows the result of a further duplication424

event. As the number of duplication events increases,425

the difference in the number of connections between426

highly connected nodes and less connected nodes in-427

creases. This can be thought of as a form of preferen-428

tial attachment since nodes that are already highly con-429

nected will become even more so after subsequent du-430

plication events. Preferential attachment has been shown431

to be a mechanism which can generate scale-free net-432

works (Barab́asi and Albert, 1999; Romualdo et al.,433

2003). 434
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Fig. 13. Decomposition of a six-node graph created by duplication. Demonstrates that any of the nodes in the original topology can be replaced
with its copy without changing the topology and vice versa. If we replace any node in the original graph (nodes 1, 2, and 3) with its copy (nodes 1′,
2′, and 3′) and its associated edges to the original graph, the overall topology remains identical.

However, this part of the answer neglects the mecha-435

nism of mutation. Mutation may be thought of as an op-436

erator which reorganizes the network. If mutations occur437

on a gene, this may either change the gene–protein pair’s438

binding site, or the generated protein thus reorganizing439

a portion of the network. The other possibilities are that440

mutations may either disrupt the promoter pattern in ef-441

fect deleting a gene–protein pair from the network, cre-442

ate a new gene–protein pair by creating a new promoter443

site, or are neutral. The topology of the network as mea-444

sured by the number of genes in the system is dominated445

by the effects of duplication, not divergence. Thus, the446

scale-free distribution observed is due to the duplication447

mechanism, acting similar to preferential attachment.448

How can the small-world topologies found in the449

ARN model be explained? If we examine the definition450

of a small-world network more closely, it colloquially451

states that a network is highly clustered but that there452

are many links between these clusters which effectively453

reduce the overall diameter of the network. Frequently,454

hubs also appear in small-world networks(Watts, 2003).455

Hubs also appear in the ARN model through the dupli-456

cation process (analogous to preferential attachment to457

more highly connected nodes). However, because of the458

way the duplication process works (assuming no muta-459

tion), the maximum distance1 between any two nodes460

before and after a duplication remains constant. This461

1 The number of edges traversed to get from node “a” to “ b”.

happens because the duplication step effectively makes462

a copy of all nodes and all edges simultaneously. It is463

self-evident that the maximum distance between any two464

nodes in only the original graph and the copied portion of465

the network are the same (if we discount the edges which466

connect the original nodes with the copied nodes). Thus,467

the path-length between any two nodes in the original468

graph is the same as in the copy. 469

This shows that the maximum path-length is invari-470

ant to duplication and thus generally remains small (see471

Fig. 13). Therefore, the average path-length will always472

be bounded by the maximum path-length and will never473

increase. As the network grows via the duplication pro-474

cess, its characteristic path-length might only grow very475

slowly – if at all – due to mutations. 476

The clustering coefficient of the network is quite high477

again as a result of the duplication process. Because of478

the regularity of the connection patterns, nodes in the net-479

work remain highly connected and increase in connec-480

tivity with each duplication event. Mutation only serves481

to perturb the topology partially randomizing some of482

the edges in the graph. Thus, the formation of small-483

world topologies is consistent with the network creation484

method of whole genome duplication and divergence.485

3.3. Network motifs in the ARN model 486

Tables A.1 (three-nodes), A.2 and A.3(four-nodes) 487

show connection patterns in directed graphs including488
BIO 2530 1–24
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Fig. 14. Average frequency of occurrence for subgraphs of size three
in 800 instances of the artificial regulatory network model generated
by a duplication and divergence procedure.

auto-regulatory connections up to isomorphism. This489

list includes networks with auto-regulatory connections490

(those which have edges which begin and end at the same491

node) which have been previously ignored by others492

(Milo et al., 2002, 2004; Wuchty et al., 2003; Yeger-493

Lotem et al., 2004; Dobrin et al., 2004; Mangan and494

Alon, 2003). We believe that such connectivity may be495

important.496

To detect alln-node subgraphs, a subgraph finding497

algorithm similar to one devised byMilo et al. (2002)498

was implemented. The algorithm was applied to 800 in-499

stances of the artificial regulatory model generated by the500

duplication and divergence process. As a control, it was501

additionally applied to 800 networks whose genomes502

ree in
twork

Fig. 16. Frequency of occurrence for subgraphs of size three in the
transcriptional network ofEscherichia coli.

were generated randomly (by choosing the full num-503

ber of bits at random). Results of applying the subgraph504

counting algorithm to the two cases are shown inFigs. 505

14 and 15. For both methods of network generation, the506

genome length was set at 217 = 131,072 (12 duplication 507

events in the case of duplication and divergence). For508

networks generated by duplication and divergence, the509

mutation rate was set at 1% since this creates networks510

dominated by duplication effects. 511

In both cases, the threshold had to be determined. The512

ratio of the number of edges to the number of vertices for513

the two natural regulatory networks was approximately514

2 to 1. Therefore, in the ARN framework, the threshold515

was chosen by iteratively raising the value until the net-516

work generated had a ratio that was equal to or less than517

2 to 1. 518

in the
UFig. 15. Average frequency of occurrence for subgraphs of size th
800 randomly generated instances of the artificial regulatory ne
model.
BIO 2530 1–24

Fig. 17. Frequency of occurrence for subgraphs of size three
transcriptional network ofSaccharomyces cerevisiae.



U
N

C
O

R
R

E
C

TE
D

 P
R

O
O

F

P.D. Kuo et al. / BioSystems xxx (2006) xxx–xxx 11

Fig. 18. Average frequency of occurrence for subgraphs of size four
in 200 instances of the artificial regulatory network model generated
by a duplication and divergence procedure.

Fig. 19. Average frequency of occurrence for subgraphs of size four in
200 randomly generated instances of the artificial regulatory network
model.

This was then compared to the results of applying519

the algorithm to two natural transcriptional networks2,520

E. coli (Shen-Or et al., 2002)andS. cerevisiae (Milo et521

al., 2002). The results can be seen inFigs. 16 and 17. In522

Figs. 14–17, the most frequent natural subgraphs (ID-22523

and ID-12) are both well represented in duplication and524

divergence-generated artificial networks whereas only525

one can be detected in fully random networks.526

The subgraph counts for subgraphs of size three and527

four for all types of regulatory networks investigated are528

presented inTables A.1 and A.3. For artificial networks,529

2 Obtained fromhttp://www.weizmann.ac.il/mcb/UriAlon/.

Fig. 20. Frequency of occurrence for subgraphs of size four in the
transcriptional network ofEscherichia coli.

average numbers of counts are shown, whereas for nat-530

ural regulatory systems only one network each is inves-531

tigated. 532

Using the sum of square error (SSE) criterion, the533

similarity between the distributions of subgraphs for the534

four types of networks was calculated. The similarity535

is shown for both three and four node subgraphs in536

Table 1. 537

The network distributions obtained from duplication538

and divergence (D&D) are quite similar to that ofS. cere- 539

visiae for subgraph sizes of both three and four according540

to the SSE criterion. In contrast, the distributions of the541

n the
BIO 2530 1–24

Fig. 21. Frequency of occurrence for subgraphs of size four i
transcriptional network ofSaccharomyces cerevisiae.

http://www.weizmann.ac.il/mcb/UriAlon/
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Table 1
Sum of square error (SSE) between the distributions of subgraph counts
(for subgraph size three/four) for the four types of networks examined

D&D Rand E. coli Yeast

D&D 0 – – –
Rand 1.5348/5.3093 0 – –
E. coli 1.0844/1.4227 2.2392/5.6148 0 –
Yeast 0.0072/0.0984 1.4886/5.1497 1.1693/1.2356 0

Each distribution has been normalized such that the maximum count
of any individual subgraph is 1.0.

randomly generated networks were not similar to any542

of the three other network types investigated. Networks543

created by duplication and divergence and the regulatory544

networks ofE. coli andS. cerevisiae are all more similar545

to each other than to the randomly generated networks.546

Because gene duplication is considered a more im-547

portant mechanism of evolution in eukaryotes than in548

prokaryotes, it is interesting that the duplication and di-549

vergence networks are more similar to the eukaryoticS.550

cerevisiae rather than the prokaryoticE. coli. This might551

suggest that the topology has been shaped by duplication552

events inS. cerevisiae’s evolutionary history.Teichmann553

and Babu (2004)suggest that over 90% of eukaryotic554

genes are created by gene duplication. Our observations555

support this argument: It is striking how similar the dis-556

tributions of subgraphs are for these three networks as557

compared to the randomly created topologies.558

We can further investigate the individual subgraphs559

well represented in these networks. FromFigs. 14, 16560

and 17, motifs with IDs 12 and 22 are present in substan-561

tial numbers. These motifs correspond to the so-called562

single input module(Milo et al., 2002). This is also the563

case when examining subgraphs of size four inFigs.564

18–21where network motif IDs 459 and 563 are well565

represented. However, in counts of both three and four566

node subgraphs, the single input modules were not well567

represented in randomly created graphs.568

ion on

How is the single-input module created by duplica-569

tion and divergence? We can examine the effect of du-570

plication on the simplest of gene interactions, where one571

gene has a regulatory influence on another. If these genes572

and their connections are duplicated we can obtain the573

so-called single input module network motif. 574

Fig. 22 shows the effects of two duplications on575

the simplest of regulatory influences. As can be seen576

two types of subgraphs should be created with equal577

probability, the single-input module and the so-called578

single-output module. However, from examining the mo-579

tif counts for both natural and artificial networks the580

counts yield asymmetrical number. InLeier et al. (2005) 581

we will show why this is a natural consequence of the582

duplication and divergence process. 583

4. Evolving dynamics in the ARN model 584

In the previous section, the topology of the ARN585

model was investigated. Topology, however, is only one586

of the aspects of a genetic regulatory network. It is the587

dynamics of the network that gives rise to the myriad of588

functions observed in natural systems. Here we examine589

the dynamics of our ARN model by attempting to evolve590

simple time series. 591

If we try to evolve time series in the ARN model, the592

evolvability of the ARN model can be looked at with593

some possible relevance to the evolvability of natural594

systems. The types of analysis and search mechanisms595

relevant to such processes could also be important to596

etic597

ard598

) 599

600

s a601

lay602

(see603
U
N

C
O

Fig. 22. The effect of whole genome duplicat
BIO 2530 1–24

the simplest possible interaction between two genes.

the field of synthetic biology where synthetic gen
regulatory networks have been evolved in vivo tow
dynamics such as oscillations(Yokobayashi et al., 2002
in silico (Mason et al., 2004)and in numero(François
and Hakim., 2004). Such an investigation also provide
framework in which we can begin to study the interp
between network dynamics, evolution and topology
alsoKuo et al. (2004)).
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4.1. Extracting a signal from the ARN model604

Simulation of the ARN model produces the dynam-605

ics of the protein concentrations in the system. However,606

the system has no assigned semantics—protein concen-607

trations have no meaning outside the system (they per-608

form no cellular function other than regulation). Addi-609

tionally, since the protein concentrations must sum to 1610

(i.e.
∑

ci = 1), certain functions are excluded (e.g. two611

sinusoids with the same phase and frequency).612

In order to use the ARN framework to obtain more613

arbitrary dynamics, a mapping is required. We have cho-614

sen to do this by adding an additional transcription fac-615

tor binding site to the genome. Remember that proteins616

acting as transcription factors can bind to transcription617

factor binding sites influencing the transcription of ad-618

jacent genes. The rate of transcription of this new site619

is taken to be similar to a protein concentration which620

has no other effects on the system. It is the dynamics of621

this particular site that will be evolved toward specific622

dynamics.623

This is done by randomly choosing an additional 64-624

bit sequence along the genome. The first 32-bits specify625

a transcription factor binding site representing an inhibi-626

tion site while the second 32-bits specify a transcription627

factor binding site for activation. The proteins in the sys-628

tem are free to bind to these two additional regulatory629

sites (which can be thought of as a gene with no protein630

of its own or promoter). The levels of activation and in-631

hibition produced at these two sites are calculated in the632

s ins633

i on-634

c ich635

g e for636

a and637

u638

N he639

d mics640

e ion641

s red642

d rbi-643

t644

ome645

a nges646

i can647

b nted648

i ed649

t ibi-650

t in of651

i lso652

b onal653

s

Fig. 23. Plot of the three time series.

4.2. Optimization and simulation details 654

A simple (50+ 100)-Evolutionary Strategy (ES) is 655

used to evolve the solution,s(t) (Beyer and Schwefel, 656

2002). Genomes were generated by 10 duplication events657

per genome subject to 1% mutation leading to individ-658

ual genomes of lengthLG = 32,768. Each generation, 659

100 new individuals are created from the current pop-660

ulation using 1% single-point (bit-flip) mutation (i.e.661

on average, 328 mutations per genome). The fitness of662

these solutions was calculated and the best 50 of 150663

(parents+ children) proceed to the next generation. The664

ES was terminated when the best solution found was not665

improved upon for 250 generations. 666

The objective is to minimize the fitness function cal-667

culated as the mean square error (MSE) between the668

desired function and the evolved function. The follow-669

ing cases were examined and are shown inFig. 23: 670

f (t) = sin(t) (Case #1),f (t) = 2 exp (−0.1t) − 1 (Case 671

#2) andf (t) = 2
1+exp (−0.2t+10) − 1 (Case #3). These 672

cases represent oscillatory, decaying exponential and673

sigmoidal dynamics which are all relatively simple yet674

biologically important. 675

All solutions were generated with a time step of676

dt = 0.1 s. The constant step size facilitates the quick677

comparison of dynamics between solutions. In addition,678

since the dynamics of the system do not change quickly679

with respect to this particular step size (i.e. the second680

derivative of the function is small), it is an appropriate681

choice for the three cases. The initial protein concentra-682

n)683

ps684

dy-685

ess686
U
N

C
O

R
R

E

ame way as in Eq.(2)and are modulated by the prote
n the system. However, instead of calculating a “c
entration” of a protein generated from this site (wh
enerates no actual protein of its own) as is the cas
gene, the activity at this site is simply summed

sed directly as an output function,s(t) = ∑
i(ei − hi).

ormalization ofs(t) between−1 and 1 generates t
ynamics of this site which are taken to be the dyna
xtracted from this network. Without this normalizat
tep, it is difficult to match the scaling of the desi
ynamics. However, since the scaling is effectively a

rary, this is not a problem.
The additional binding sites added to the gen

re a method to extract dynamics from the cha
n protein concentrations of the ARN model. This
e visualized as a network like the ones prese

n Figs. 2 and 3except where each protein is link
o an additional node representing the new inh
ion/activation site (that does not generate a prote
ts own). Additional inhibition/activation sites may a
e added to the genome for the extraction of additi
ignals.
BIO 2530 1–24

tions (the initial conditions for the differential equatio
are set to 1

# of genes. In addition, the first 100 time ste
(10 s) are ignored in order to exclude the startup
namics of the model. Thus, for calculation of the fitn
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function, the normalized output generated by the ARN687

model from timet = 10, . . . , 110 s is compared with the688

time seriesf (t) from timet = 0, . . . , 100 s.689

4.3. Results690

Table 2summarizes the results of 10 evolutionary691

runs for each of the 3 fitness cases.Fig. 24 shows the692

progress of the best evolutionary run for each case.693

The ARN model accurately generates dynamics ap-694

proximating the sinusoid, the exponential and the sig-695

moid functions with good accuracy for all runs. In all696

fitness cases and evolutionary runs, the MSE calculated697

was less than 0.00588654. Additional support for the698

success of these simulations can be seen in the final pop-699

ulation fitness averages shown inTable 2. The average700

population fitness values (MSE) are relatively small with701

low standard deviation indicating that the population is702

such that all individuals generate solutions that closely703

approximate the respective objective functions.704

Table 2
Results of 10 runs of (50+ 100)-ES on each case

Case-run Best MSE #Gens. #Genes Avg. MSE (Pop.) Avg. #Genes (Pop.)

1-1 0.001445217 731 47 0.00287 (7.7e−4) 45.31(5.72)
1-2 0.001165628 381 74 0.00316 (7.8e−4) 76.92(3.42)
1-3 0.000614281 1214 105 0.00114 (1.5e−4) 117.59(4.57)
1-4 0.000747053 835 234 0.00291 (8.2e−4) 244.00(13.2)
1-5 0.001861556 428 63 0.00326 (6.8e−4) 75.08(9.34)
1-6 0.000640149 1077 101 0.00186 (3.5e−4) 102.49(4.08)
1-7 0.001561523 315 26 0.00440 (8.5e−4) 32.78(5.55)
1-8 0.000151746 1040 124 0.00058 (1.3e−4) 135.63(6.32)
1-9 0.000519559 933 71 0.00134 (3.4e−4) 92.88(53.2)
1-10 0.000846462 858 55 0.00270 (4.5e−4) 48.57(3.22)

2-1 0.00411971 708 133 0.00447 (1.3e−4) 142.83(5.88)
2-2 0.00478168 642 166 0.00554 (2.5e−4) 185.95(13.5)
2-3 0.00363873 354 27 0.00641 (5.5e−4) 52.22(7.00)
2-4 0.00441011 359 20 0.00660 (6.1e−4) 31.95(7.38)
2-5 0.00381064 747 97 0.00505 (3.0e−4) 106.81(5.71)
2-6 0.00402240 877 63 0.00464 (1.8e−4) 58.83(4.17)
2-7 0.00426413 501 128 0.00574 (3.5e−4) 116.14(8.75)
2-8 0.00537858 287 176 0.00661 (4.6e−4) 164.40(11.1)
2-9 0.00511630 466 58 0.00688 (5.6e−4) 54.26(3.73)
2-10 0.00588654 519 45 0.00643 (1.7e−4) 45.65(3.10)

3-1 0.00101533 1235 154 0.00150 (1.3e−4) 147.59(20.6)
3-2 0.00035992 557 36 0.00068 (1.2e−4) 39.22(2.40)
3-3 0.00001843 758 100 0.00004 (1.0e−5) 102.45(2.93)
3-4 0.00001732 721 96 0.00004 (1.0e−5) 96.55(2.80)
3-5 0.00011328 617 97 0.00025 (6.0e−5) 102.78(4.02)
3-6 0.00002073 825 104 0.00013 (5.0e−5) 109.78(5.03)
3-7 0.00005429 465 108 0.00044 (1.8e−4) 112.37(11.4)
3-8 0.00016598 879 177 0.00047 (2.2e−4) 186.02(9.87)
3-9 0.00005034 575 195 0.00031 (1.2e−4) 212.16(9.57)
3-10 0.00002219 987 39 0.00006 (1.0e−5) 39.49(2.42)

The standard deviation is given in parenthesis.

Fig. 24. Fitness plot of the best solutions and the average fitnesses
using (50+ 100)-ES for each case.
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A wide variety of networks with differing numbers705

of genes were found to generate equivalent dynamics706

for the three time series. The numbers of genes used707

to obtain solutions was usually large, due to a lack of a708

penalty on the number of genes during evolution. The al-709

gorithm was then reapplied with the addition of a penalty710

on the number of genes. Because penalty functions are711

typically arbitrary and problem dependent (since they712

directly affect the search space), a simple approach was713

taken. Instead of penalizing the number of genes in the714

system, networks with more than 10 genes were set715

to have a fitness of 4.0. In this way, the fitness land-716

scape of each time series is not as directly impacted.717

Regions of the search space which have 10 or less genes718

are completely unaffected while regions with more than719

10 genes are equally penalized. In this way, we can be720

sure that we have not drastically altered the entire search721

space when performing search. In other words, the solu-722

tions found using this new fitness function could also be723

found with the original fitness function and would have724

the same fitness—which allows direct comparison of725

solutions.726

Results of 10 runs on each time series are shown727

in Table A.2. The algorithm was terminated when the728

best fitness obtained was less than 5.0 × 10−3 rather729

than after 250 generations of fitness stagnation. Use of730

the previous termination criterion can lead to algorithm731

termination before a good solution has been obtained.732

In all runs, networks were obtained which have 10 or733

less genes and can generate the desired dynamics with734

MSE < 5.0 × 10−3.735

What would be the minimum number of genes re-736

quired to generate equivalent dynamics for each time se-737

ries? For the sinusoid, a simple oscillator can be written738

in the matrix form:739

ẋ(t) =
[

0 ω

−ω 0

]
x(t)740

Fig. 25. Three two-gene networks that generate sigmoid dynamics. Th k dynamics.

which leads tox1 = − sin(ωt) andx2 = − cos(ωt). We 741

can take the vectorx to be the concentrations of gene–742

protein pairs. 743

If this equation was to be implemented in the ARN744

model how would it look? There would be two gene–745

protein pairs represented by nodes, “1” and “2”. The746

first equation (˙x1 = ωx2) can be implemented by node747

“2” having an inhibitory relationship with node “1”. The 748

second equation, likewise, can be implemented with an749

excitatory relationship between node “1” and node “2”.750

In this way, the simple oscillator can be implemented.751

For the ARN dynamic model to extract this oscillatory752

dynamic, it would simply have to have higher connectiv-753

ity with one of the protein products of either node “1” or754

“2”. Therefore, the minimum possible number of genes755

required to generate an oscillator in the ARN model756

is 2. 757

The requirements to generate a decaying exponential758

in the ARN model are decidedly simpler. In the dynam-759

ical equations the effects of excitation and inhibition on760

one gene are exponential in nature. Therefore, we simply761

would need one gene in the system whose protein prod-762

uct binds with greater strength to the inhibitory rather763

than the excitatory site from which the dynamics are ex-764

tracted. So, one gene is required to create the dynamics765

of a decaying exponential. 766

The situation is somewhat more complicated in the767

case of the sigmoid-type function. A means of deriving768

the minimum requirements for this function to a canon-769

ical form as was done for the previous two types of dy-770

that771

ater772

s to773

oid774

algo-775

two776

of
BIO 2530 1–24

e “O” node denotes the additional site used to extract the networ

namics was not found. However, it can be reasoned
the minimum number of genes required must be gre
than one since a network with only one gene lead
exponential-type dynamics. To show that the sigm
dynamics can be generated with two genes, the
rithm was rerun such that networks with more than
genes had a fitness of 4.0.Fig. 25 shows examples
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three different network topologies which can generate777

the sigmoid dynamics.778

Therefore, the minimum number of genes required to779

generate a sigmoid is two.780

In all of these cases, the number of genes actually781

used by the ARN is far higher than the minimum re-782

quirement. This has a bearing on evolvability. Provided783

a large number of degrees of freedom is cheaply avail-784

able to the system, AND provided that the overall in-785

teraction of these degrees of freedom allows reaching a786

goal incrementally, a large number might have an ad-787

vantage over a small number in terms of search effi-788

ciency and evolvability. We conjecture that in such a789

case that once a good solution has been found, a grad-790

ual decline in the number of degrees of freedom with a791

simultaneous readjustment of the remaining degrees is792

a far better strategy than employing parsimony from the793

beginning.794

5. Conclusion795

The ARN model first proposed byBanzhaf (2003a)796

was studied from the perspective of network topology797

and the evolution of dynamics. We addressed questions798

raised in both artificial evolutionary processes and799

network biology. Specifically, the model was examined800

from the perspective of the scale-free, small-world801

and network motif topological properties when created802

using a whole genome duplication and divergence803

process. This process was chosen since it has been804

the805

806

deed807

. Al-808

pres-809

gies810

rop-811

era-812

ere813

r to814

rks815

816

817

vo-818

ere-819

the820

uch821

the822

lded823

stri-824

ech-825

ures.826

It may be the case that the motif distributions in these827

natural networks are to a large part also the result of828

other organizing forces such as duplication and diver-829

gence (although evolutionary pressures are certainly re-830

sponsible for fine-tuning of distributions). Therefore, it831

may be more interesting to investigate transcriptional832

regulatory network topology with regard to the meth-833

ods of network creation. Efforts in this direction are just834

beginning. 835

Further, the evolution of the dynamics of this model836

has been investigated. It was demonstrated that the dy-837

namics of this model can be evolved toward simple time838

series behaviors such as the sinusoid, sigmoid and de-839

caying exponential time series. Examining the networks840

generated in different genomes shows that many differ-841

ent networks give good approximations to each of the842

prescribed behaviors. This indicates that within the ARN843

framework there exist an extensive number of function-844

ally equivalent topologies which may be progressively845

evolved. 846

Due to the way in which genes are specified in the847

model, there are plenty of opportunities for individuals in848

the population to acquire neutral mutations beneficial to849

their further evolution(Ohta, 2002). Since extensive non- 850

coding regions exist in these genomes, neutral mutations851

are free to accumulate new genes that might suddenly852

appear when a new promoter pattern has been created853

through mutation. 854

An open question within this framework is how the855

number of genes affects the ability to generate functions856

duce857

ard858

by859

rved860

dif-861

r of862

s. Is863

ual864

865

866

867

and868

869

870

871
U
N

C
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R
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E
Cpreviously implicated as an important factor in

evolution of genomes and due to its simplicity.
Networks generated from this processes can in

be classified as being scale-free and small-world
though many researchers have claimed that the
ence of scale-free and Small-world network topolo
are hallmarks of evolution, we believe that these p
erties follow naturally from the processes of gen
tion of the networks. In addition, these networks w
also found to have subgraph distributions simila
those found in the transcriptional regulatory netwo
of E. coli and S. cerevisiae unlike those of random
networks.

For the examination of static network topology, e
lution was not included among the processes. Th
fore, the topologies obtained are directly related to
method of construction. This might indicate that s
topologies in natural networks may be a result of
way they are created rather than being explicitly mo
by evolution. In other words, the node and vertex di
bution outcomes are a reflection of the generation m
anism rather than the result of evolutionary press
BIO 2530 1–24

of a given type. From the results presented, we de
that it is quite easy to evolve the ARN model tow
simple time series. Evolvability is helped in our case
more degrees of freedom. In addition, it was obse
that each solution evolved for any of the time series
fered substantially from run to run. A huge numbe
different topologies can generate equivalent dynamic
this the trick nature used to provide good, yet individ
solutions to organisms?
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Appendix A. Additional data

See Figs. A.1–A.3andTables A.1–A.3.
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Fig. A.1. Network motifs of size three and their ID.
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Fig. A.2. Subgraphs of size four and their ID. Only motifs which were present in at least one of the four cases are shown. All other motifs have
been omitted.
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Table A.1
Subgraphs of size three and their distribution

Net. Count in Net. Count in

ID ID* D&D Rand E. coli S. cerv ID ID* D&D Rand E. coli S. cerv

0 6 2424 76 35 751 43 A 0 0 0 0
1 A 4 0 0 1 44 108 0 0 0 0
2 12 490 271 40 246 45 A 1 0 0 0
3 A 11 0 26 24 46 110 0 0 0 0
4 14 6 0 0 0 47 A 0 0 0 0
5 A 0 0 0 0 48 A 0 0 3 0
6 A 12 0 124 138 49 A 0 0 0 0
7 A 0 0 8 0 50 A 0 0 0 0
8 A 0 0 1 0 51 A 0 0 0 1
9 A 0 0 2 0 52 A 0 0 0 0

10 A 0 0 0 0 53 A 0 0 1 0
11 A 0 0 0 0 54 A 0 0 0 0
12 36 27659 0 587 8800 55 A 0 0 0 0
13 A 8 0 76 104 56 A 0 0 0 0
14 38 15 0 2 44 57 A 0 0 0 0
15 A 0 0 1 1 58 A 0 0 0 0
16 A 20 0 11 22 59 A 0 0 54 4
17 46 0 0 0 1 60 A 0 0 12 0
18 A 0 0 0 0 61 A 0 0 0 0
19 A 0 0 2 1 62 A 0 0 0 0
20 A 0 0 1 0 63 A 0 0 0 0
21 A 0 0 0 0 64 A 10 0 0 0
22 A 5016 0 3353 2987 65 A 0 0 0 0
23 74 36 0 0 18 66 A 0 0 0 0
24 A 5 0 0 0 67 A 0 0 0 0
25 78 3 0 0 0 68 238 0 0 0 0
26 A 0 0 0 0 69 A 0 0 0 0
27 A 6 0 53 25 70 A 0 0 0 0
28 A 0 0 32 0 71 A 0 0 0 0
29 A 0 0 0 0 72 A 0 0 0 0
30 A 0 0 0 0 73 A 0 0 6 0
31 A 14 0 713 0 74 A 0 0 3 0
32 A 0 0 0 0 75 A 0 0 0 0
33 A 3 0 0 0 76 A 0 0 46 0
34 A 0 0 0 0 77 A 0 0 0 0
35 A 0 0 0 0 78 A 0 0 0 0
36 A 0 0 0 0 79 A 0 0 0 0
37 A 0 0 0 0 80 A 0 0 0 0
38 98 0 0 0 0 81 A 0 0 0 0
39 A 0 0 0 0 82 A 0 0 0 0
40 102 0 0 0 0 83 A 0 0 0 0
41 A 0 0 0 0 84 A 0 0 0 0
42 A 6 0 14 3 85 A 0 0 0 0

D&D: Duplication and divergence genomes; Rand: Random genomes. ID* are the subgraph designations given byMilo et al. (2002). IDs shown as
A are subgraphs with self-regulatory connections which do not have a designation inMilo et al. (2002).
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Table A.2
Results of 10 runs of (50+ 100)-ES on each case with a penalty function

Case-run Best MSE #Gens. #Genes Avg. MSE (Pop.) Avg. #Genes (Pop.)

1-1 0.00287157 89122 10 0.00734 (1.1e−3) 9.73(0.54)
1-2 0.00444153 13643 8 0.00912 (8.1e−4) 7.29(0.43)
1-3 0.00486211 401417 9 0.01027 (2.3e−4) 9.18(0.18)
1-4 0.00470516 133229 10 0.00707 (6.1e−4) 10.20(0.20)
1-5 0.00356387 21205 10 0.01493 (4.7e−3) 10.20(0.20)
1-6 0.00493755 99553 10 0.00870 (1.5e−3) 9.92(0.49)
1-7 0.00398828 11342 10 0.02751 (1.3e−2) 10.00(0.49)
1-8 0.00472991 23091 10 0.00989 (2.4e−3) 10.20(0.20)
1-9 0.00480238 395 9 0.30263 (7.5e−2) 9.47(0.56)
1-10 0.00281274 1664 8 0.20032 (7.5e−2) 9.59(0.89)

2-1 0.00484099 639 8 0.00811 (5.4e−4) 7.02(2.08)
2-2 0.00492588 2799 9 0.00714 (6.2e−4) 9.02(0.98)
2-3 0.00418354 820 5 0.00659 (5.0e−4) 6.32(1.69)
2-4 0.00478972 5336 9 0.00636 (4.9e−4) 9.33(1.02)
2-5 0.00497284 1676 9 0.00759 (4.2e−4) 9.31(0.71)
2-6 0.00490717 468 9 0.00810 (6.9e−4) 8.82(1.01)
2-7 0.00430360 642 10 0.00785 (6.5e−4) 8.51(1.49)
2-8 0.00472030 3529 10 0.00577 (2.6e−4) 9.67(0.73)
2-9 0.00467765 10112 10 0.00601 (2.6e−4) 10.18(0.25)
2-10 0.00413019 241 5 0.00798 (9.1e−4) 7.00(1.66)

3-1 0.00345716 35 6 0.05491 (1.8e−2) 8.84(1.35)
3-2 0.00375144 61 9 0.04274 (1.5e−2) 8.80(1.05)
3-3 0.00425317 8 6 0.13660 (7.1e−2) 7.71(1.66)
3-4 0.00149893 15 8 0.10153 (4.1e−2) 8.41(1.62)
3-5 0.00373932 21 10 0.07446 (3.5e−2) 8.44(1.42)
3-6 0.00299901 208 8 0.01359 (4.0e−3) 8.92(0.99)
3-7 0.00341115 32 7 0.03841 (1.1e−2) 8.55(1.16)
3-8 0.00492678 109 10 0.01886 (6.7e−3) 8.49(1.25)
3-9 0.00101274 4 6 0.39698 (1.8e−1) 7.73(1.84)
3-10 0.00423338 19 9 0.07139 (3.1e−2) 8.59(1.40)

The standard deviation is given in parenthesis.

Table A.3
Subgraphs of size four and their distribution

Net. Count in Net. Count in
IDs D&D Rand E. coli S. cerv IDs D&D Rand E. coli S. cerv

0 4137 43 4 843 462 2 0 8 23
2 56 125 10 116 463 1 0 0 1
3 0 1 0 5 465 1 0 46 346
4 1716 2 0 0 466 0 0 0 9
6 3 2 38 150 468 0 0 0 1
8 0 2 0 0 469 0 0 0 1

12 61 249 3 329 472 0 0 17 6
13 0 3 0 0 473 0 0 9 0
14 1531 247 510 16925 474 0 0 3 2
15 0 3 0 31 475 0 0 2 0
16 9 5 0 75 483 4 0 0 120
18 0 3 5 19 484 0 0 1 1
19 0 2 0 0 487 0 0 0 1
21 0 4 1 11 493 5 0 16 33
22 0 0 0 3 494 0 0 0 17
23 1 0 0 0 498 0 0 1 4
26 0 3 36 157 499 0 0 0 15
28 0 0 2 10 505 0 0 1 0
35 1337 1 8 1105 525 0 0 0 1
37 0 0 0 5 533 0 0 0 2
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Table A.3 (Continued )

Net. Count in Net. Count in
IDs D&D Rand E. coli S. cerv IDs D&D Rand E. coli S. cerv

39 0 0 0 1 548 0 0 1 0
45 1451 123 118 1246 563 130570 0 45585 59569
46 0 1 72 81 564 521 2 0 121
47 10 4 0 0 565 34 0 0 0
49 530 0 0 0 566 11 0 0 0
51 0 4 58 4 568 54 0 0 0
55 0 3 1 0 570 16 2 191 129
56 0 0 6 0 571 0 0 103 0
63 10 245 0 92 576 161 0 19077 0
64 0 3 8 0 578 20 0 0 0
65 0 4 0 0 587 410 3 1606 150
67 0 4 0 0 588 8 4 0 0
69 1 0 0 0 590 24 2 0 32
71 0 5 0 11 594 3 4 0 0
77 1 0 0 0 602 1028 0 415 24
79 0 4 0 0 606 27 0 0 0
88 0 0 1 0 617 0 0 90 0
95 0 4 7 0 622 0 0 0 16
96 1 4 0 0 632 0 0 5 0
98 1293 246 188 3859 647 3 0 0 0
99 0 3 167 528 654 2 0 0 0

100 0 5 0 51 658 20 0 0 0
102 1 4 0 0 691 0 0 624 0
106 291 3 3569 4618 692 0 4 6 0
108 2 4 0 16 693 0 0 8 0
112 1 4 1 195 695 0 0 7 0
113 0 0 39 83 722 0 0 0 1
114 0 0 0 1 750 0 1 0 0
120 0 0 12 0 786 0 0 1950 118
123 0 3 18 43 787 2 0 96 3
124 0 0 1 0 788 0 0 11 0
125 0 0 0 5 801 167 0 659 0
126 0 0 1 0 803 75 0 0 0
131 0 0 259 0 804 0 0 0 1
137 0 0 1 0 974 0 0 18 0
145 1 4 10 27 978 0 0 15 0
150 2 4 0 10 979 0 0 9 0
154 1 0 0 0 987 0 0 2 0
158 10 0 7 14 988 0 0 202 0
164 0 0 0 1 989 0 0 81 0
199 0 3 6 28 998 0 0 281 0
200 0 0 14 0 1001 0 0 1 0
201 0 0 5 3 1017 0 0 1 0
202 0 0 1 0 1025 0 0 1 0
207 0 0 5 0 1041 0 0 15 1
237 39 2 0 6 1053 0 0 9 1
273 0 0 40 2 1094 0 0 2710 0
274 0 0 6 0 1105 0 0 124 0
275 0 0 1 0 1145 0 0 61 0
279 0 0 9 0 1160 0 0 13 0
281 0 0 508 0 1521 44 0 26 3
282 0 0 30 0 1526 5 0 0 0
283 0 0 1 0 1531 0 0 9 0
289 0 0 1 0 1606 0 0 6 0
293 1 4 704 1261 1612 0 0 0 1
294 0 0 16 0 1618 0 0 5 0
295 0 0 0 2 1846 0 0 57 1
296 0 0 1 0 1847 43 0 7 0
298 0 0 1 0 1855 354 0 0 0
301 0 0 43 14 1897 0 0 14 0
302 0 0 3 0 1898 0 0 4 0
303 0 0 7 0 1957 0 0 208 0
306 0 0 1 0 1958 0 0 1 0
309 6 0 125 737 1968 0 0 99 0
310 0 0 5 0 2094 0 0 14 0
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Table A.3 (Continued )

Net. Count in Net. Count in
IDs D&D Rand E. coli S. cerv IDs D&D Rand E. coli S. cerv

342 0 4 4 0 2339 0 0 1 0
343 0 0 11 0 2486 0 0 8 0
361 0 0 1 0 2579 1 0 0 0
362 0 0 1 0 2619 0 0 4 0
364 0 0 1 0 2623 0 0 30 0
459 301970 41 2052 88321 2634 0 0 1 0
460 8 1 391 1085 2643 0 0 18 0
461 157 4 25 729 2677 0 0 120 0

D&D: Duplication and divergence genomes; Rand: Random genomes. Only motifs which were present in at least one of the four cases are shown.

Fig. A.3. Subgraphs of size four and their ID. Only motifs which were present in at least one of the four cases are shown. All other motifs have
been omitted.
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from optimal design. Europhys. Lett. 60, 512–517.

van Noort, V., Snel, B., Huynen, M.A., 2004. The yeast coexpre
network has a small-world, scale-free architecture and can b
plained by a simple model. EMBO Rep. 5 (3), 280–284.

Vazquez, A., Dobrin, R., Sergi, D., Eckmann, J.-P., Oltvai, Z
Barabasi, A.-L., 2004. The topological relationship betw
the large-scale attributes and local interaction pattern
complex networks. Proc. Natl. Acad. Sci. 101 (52), 179
17945.

Watts, D., 2003. Small Worlds: The Dynamics of Networks betw
Order and Randomness. Princeton University Press, Princeto

Wolfe, K., Shields, D., 1997. Molecular evidence for an ancien
plication of the entire yeast genome. Nature 387 (6634),
713.

Wuchty, S., 2001. Scale-free behavior in protein domain netw
Mol. Biol. Evol. 18 (9), 1694–1702.



TE
D

 P
R

O
O

F

24 P.D. Kuo et al. / BioSystems xxx (2006) xxx–xxx

Wuchty, S., Oltvai, Z., Barab́asi, A.-L., 2003. Evolutionary conserva-995

tion of motif constituents in the yeast protein interaction network.996

Nat. Genet. 35 (2), 176–179.997

Yeger-Lotem, E., Sattath, S., Kashtan, N., Itzkovitz, S., Milo, R., Pin-998

ter, R.Y., Alon, U., Margalit, H., 2004. Network motifs in inte-999

grated cellular networks of transcription-regulation and protein–

protein interaction. Proc. Natl. Acad. Sci. 101 (16), 5934–1000

5939. 1001

Yokobayashi, Y., Weiss, R., Arnold, F., 2002. Directed evolution of a1002

genetic circuit. Proc. Natl. Acad. Sci. 99 (26), 16587–16591. 1003

Zhang, J., 2004. Evolution by gene duplication: an update. Trends Ecol.1004

Evol. 18, 292–298. 1005
E
C

U
N

C
O

R
R

BIO 2530 1–24


	Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence
	Introduction
	Background
	Topological measures
	Scale-free network topologies
	Small-world network topologies
	Network motifs

	Artificial regulatory network model
	Whole genome duplication and divergence

	Network topologies in the ARN model
	Gene duplication and the ARN model
	Scale-free and small-world topologies in the ARN model
	Network motifs in the ARN model

	Evolving dynamics in the ARN model
	Extracting a signal from the ARN model
	Optimization and simulation details
	Results

	Conclusion
	Acknowledgements
	Appendix A Additional data
	References


