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Abstract

Topological measures of large-scale complex networks are applied to a specific artificial regulatory network model created
through a whole genome duplication and divergence mechanism. This class of networks share topological features with natura
transcriptional regulatory networks. Specifically, these networks display scale-free and small-world topology and possess subgrap
distributions similar to those of natural networks. Thus, the topologies inherent in natural networks may be in part due to their

method of creation rather than being exclusively shaped by subsequent evolution under selection.

The evolvability of the dynamics of these networks is also examined by evolving networks in simulation to obtain three simple
types of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes

indicating that it is relatively easy to evolve these classes of dynamics in this model.
© 2006 Published by Elsevier Ireland Ltd.

Keywords: Regulatory networks; GRNs; Network motifs; Scale-free; Small-world; Duplication and divergence

1. Introduction regulatory network) can be visualized where genes in:
teract by regulating other genes and their products te

Regulatory networks have become an important new produce and regulate a myriad of cellular processes ard
areaof researchinthe biological and biomedical sciencesfunctions. This allows nature to set up and control the:
(Bower and Bolouri, 2001; Davidson, 2001; Kitano, mechanisms of evolution, development and physiologys
2001) Specifically, the DNA information controlling  Studying models of regulatory networks can help us te
gene expression (i.e. regulation) is the key to under- understand some of these mechanisms providing valk-
standing differences between species and to evolutionable lessons for biology. 38
(Hood and Galas, 2003Jaking these regulatory inter- This contribution uses an artificial genetic regulatorys
actions as a whole, a network of interactions (a so-called network model to pose questions regarding the topolog-
ical organization of regulatory networks. Specifically,.

ensembles of this network model are investigated to de-

"+ Corresponding author. Tel.: +1 8582435763; fax: +17097397026. [€7MiNe whether they may be classified as scale-free,

E-mail addresses: kuo@cs.mun.ca, pdkuo@ucsd.edu small-world and possess network motifs. In addition, the:
(P. Dwight Kuo), banzhaf@cs.mun.ca networks are then evolved toward simple output dynams
(W. Banzhaf), leier@maths.ug.edu.au (A. Leier). ics. %

0303-2647/$ — see front matt@r2006 Published by Elsevier Ireland Ltd.
doi:10.1016/j.biosystems.2006.01.004
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2. Background Small-world topology has also been noted in biologicad:
networks(Watts, 2003; van Noort et al., 2004) %

2.1. Topological measures
2.1.3. Network motifs 9
Since one of the most basic features of any complex  The previous two topological measures characterize
network is its structure, it is natural to investigate net- networks at the global level. Local graph properties ofs
work connectivity. The structure of networks is often networks have also been investigated such as static net-
constrained and shaped by the growth processes thatwork motifs (Milo et al., 2002, 2004; Shen-Or et al. 0
create them (including evolution in the case of natural 2002; Wuchty et al., 2003; Yeger-Lotem et al., 2004
networks). Studying the topology of natural networks Dobrin et al., 2004; Mangan and Alon, 2003; Vazquez:
allows an understanding of the structures and dynamicset al., 2004; Banzhaf and Kuo, 2004) 103
which have been exploited by nature. By comparing the  Network motifs are defined as the structural elemenis
topologies of artificial networks with natural networks, (subgraphs)which occur in statistically significant quanes
guestions regarding the benefits of one topology over tities in the networks under consideration as comparesl
another can be answered. In addition, some insights intoto random networkgMilo et al., 2002) The implica- 1o
the growth processes which create particular topologies tion of having certain subgraphs being found in greates
may be gained. abundance than would be expected in similar randowma
Typically, nodes in such an abstraction represent in- networks is that these local network motifs may convey
dividual genes and their associated proteins while the a functional advantage to the system. It is believed that
directed edges which connect the nodes represent onestudying network motifs can lead to a better understand-
gene’s effect (excitatory or inhibitory) on another. ing of the potential basic structural elements which make
up complex networks. Several motifs such as the bi-fan
2.1.1. Scale-free network topologies (Kashtan et al., 2004}he feed-forward loofMangan s

A topological feature often found in large complex and Alon, 2003)and the feedback loofKashtan et al., s
networks is the so-called “scale-free” topology. In net- 2004)have been the subject of study. 17
works of such a topology, the vertex degree distribution, ~ Tables A.1 (three-nodes), A.2 and A.3 (four-nodesjs
P(k), decays as a power-law. This has been shown for Show connection patterns in directed graphs including
a variety of biological system@Vuchty, 2001; Watts, ~ auto-regulatory connections. A presentation of all fougz
2003; Jeong et al., 2000; Guelzim et al., 2002; van Noort node connection patterns is impractical due to space lirar

et al., 2004; Babu et al., 2004) scale-free network  itations. 122
topology can emerge in the context of a growing net-

work with the addition of new vertices connecting pref- 2.2. Artificial regulatory network model 123
erentially to vertices which are highly connected in the

network(Baralasi and Albert, 1999)s well as through The artificial regulatory network (ARN) model con-:z
explicit optimization(Valverde et al., 2002and dupli-  sidered heréBanzhaf, 2003a,b; Banzhaf and Kuo, 200435
cation and divergencgRomualdo et al., 2003; Kuo and Kuo and Banzhaf, 2004; Kuo et al., 200égnsists of 12
Banzhaf, 2004) a bit string representing a genome with direction (i.ex

5 — 3 in DNA) and mobile “proteins” which interact 1

2.1.2. Small-world network topologies with t_he genome thrpugh their_ constituent bit patternss
Another topological feature found in large com- Proteins are able to |_nteract with the genome, most nas
plex networks is the so-called “Small-world” topol- t@Ply at“regulatory” sites located upstream from genes:
ogy. Watts (2003)defines a Small-world graph as any Attgchment to these sites pr.oduces ¢|ther |nh|p|t|on o
graph withn vertices and average vertex degfethat a}ctlvatlon of the corresponding protein. These mter:?u‘zs
exhibitsL ~ Lrandon{n, k) ~ % andC > Crandom~ tions may b.e mterpreted'asf a regulatory network withs
Kforn > k > In(n) > 1.Cisthe clustering coefficient proteins acting as transcription facFors. N
no . ' X . A “promoter” signals the beginning of a gene on thes
which is defined as follows: if vertex hask, neigh- bit string analogous to an open reading frame (ORF) an
bours,C = 23", (M) whereL is the charac-  DNA—a long sequence of DNA that contains no “stop?:s
teristic path-length of the network (average number of codon and therefore encodes all or part of a protein. Eagh
links connecting two nodes)yandomandCrandomrefer to gene is set to a fixed length ffne= 5 32-bit integers o
the characteristic path-length and clustering coefficient which results in an expressed bit pattern of 160-bits. A
for a random graph with the samendn, respectively. promoter bit sequence of 8-bits was arbitrarily selected
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to be “01010101". By randomly choosing “0"s and “1"s  which returns a “1” if bits on both patterns are comss
to generate a genome, any one-byte pattern can be explementary. The degree of match between the genome
pected to appear with probability 2 = 0.39%. Since and the protein bit patterns is specified by the numbes
the promoter pattern itself is repetitive, overlapping pro- of bits set to “1” during an XOR operation. In general, as
moters or periodic extensions of the pattern are not al- Gaussian distribution results from measuring the mateh
lowed, i.e. a bit sequence of “0101010101” (10-bits) is between proteins and bit sequences in a randomly ges-
detected as a single promoter site starting at the first bit. erated genoméBanzhaf, 2003a)By making the sim- s
However, regions associated with one gene may overlapplifying assumption that the occupation of both of a:
with another should a promoter pattern also exist within gene’s regulatory sites modulates the expression of its
a portion of the coding region of a gene. In such cases, corresponding protein, a gene—protein interaction nets
each gene is treated independently. work may be deduced comprising the different genes

Immediately upstream from the promoter exist two and proteins parameterized by strength of match. The
additional 32-bit segments which represent the enhancerbit-string for one gene is shown ig. 1 192
and inhibitor sites. As previously mentioned, attachment ~ The rate at which proteinis produced is given by: 19
of proteins (transcription factors) to these sites results dei  8(ei — hi)e:
in changes to protein production for the corresponding i Z—C
genes (regulation). Itis assumed that only one regulatory I
site exists for the increase of expression and one site for 1N
the decrease of expression of a given protein. This is ¢;, h; = Iy ch expB(u; — umax)) (2) s
a radical simplification since natural genomes may have j
5-10regulatory sites per gene that may even be OCCUpie%\/heree»
by complexes of proteinBanzhaf, 2003a) '

Processes such as transcription, diffusion, spatial
variations and elements such as introns, RNA-like mo-
bile elements and translation procedures resulting in a
different alphabet for proteins are neglected. This last
mechanism is replaced as follows. Each protein is a 32-
bit sequence constructed by a many-to-one mapping of
its corresponding gene which contains five 32-bit se-
guences. The protein sequence is created by performing
the majority rule on each bit position of these five se-
guences so as to arrive at a 32-bit protein. Ties (not pos-
sible with an odd number fdg) for a given bit position
are resolved by chance.

Proteins may then be examined to see how they
“match” with the genome at the regulatory sites. This
comparison is implemented using the XOR operator

(1) 104

andh; represent the excitation and inhibitiorss
of the production of protein « ; represents the numberie
of matching bits between protejrand activation or in- 1ss
hibition sitei, umax represents the maximum match (inss
this case, 32)8 andé are positive scaling factors, antke
¢; is the concentration of proteihat timer. The con- 2
centrations of the various proteins are required to swm
to 1. This ensures competition between binding sites fas
proteins. 204
The effect of one gene’s products on another can be
investigated in the ARN model by looking at the degress
of match between one gene’s protein and another’s reg-
ulatory sites (one excitatory and one inhibitory site). Abs
different matching strengths (thresholds), different nets
work topologies are obtained. An example is shown i
Figs. 2 and 3Each node in the diagram represents a geae
found in the genome along with its corresponding pro-

Inhibition Enhancer  Promotor .
Gene Information

Site Site Site
01010101
32 Bits 32 Bits 32 Bits | 32 Bits | 32 Bits _|_ 32 Bits _| _ 32 Bits
Use XOR to
determine degree
of match between .
Protein and gr?o?t;itrsl
Inhibition / By
Enhancer Site Majority

Fig. 1. Bit string for one gene in the ARN model.
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Fig. 3. Gene—protein interaction network for a random genome at a threshold of 22 bits.

tein forming a gene—protein pair. Edges in the diagram the number of edges in a fully connected network afs
represent a regulatory influence of one gene’s protein the same number of nodes (also the number of edges
on another gene. For the diagrams presented, the netin any ARN graph at threshold 0) goes from 1.0 to 0.Qss
work interaction diagrams at thresholds of 21 and 22 are There is a sharp transition from full connectivity to n@ss
shown.Fig. 3is in fact a subgraph d¥ig. 2 connectivity. 240
Although the actual genome has not changed, by sim-
ply changing the threshold parameter, different network
topologies are obtaineBigs. 2 and &lso possess differ- 1r
ent numbers of genes since only connected gene—protein 4
pairs are displayed. Should a change in the parameter-
ized threshold lead to the creation of an isolated node, it
is deleted from the diagram. Only the largest network of ~ 0.7
interactions is displayed. 0.6-
Itis possible to have multiple clusters of gene—protein
interactions that are not interconnected. This is likely to
occur as the threshold level is increased. As connections %4
between gene—protein pairs are lost due to the threshold, 0.3
each cluster of gene—protein pairs becomes isolated from , ,
the others. This often occurs abruptly indicating a phase
transition between sparse and full network connectivity. : i
The relationship between the number of edges in the 9 ;- ; el
graph and the threshold is shownl-‘lig. afor a sample Fig. 4. Diagram showing the fraction of edges in a graph at a given
of 200 netw_orks. AS the_ threshold mpreases from 0 to threshold ¢—axis) compared to a fully connected graph for 200 net-
32 (thex—axis), the fraction of edges in the graph over s

0.5

0.1
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2.3. Whole genome duplication and divergence 90

Whole genome duplication might be an important
evolutionary mechanism for generating novelty in the 70
genome and additionally might give a reasonable expla-
nation for speciatiofOhno, 1970)When whole genome
duplication occurs, pairs of functionally redundant paral- 50
ogous genes are created. Since only one gene of a pair of
paralogous genes is required to retain its original func-
tion, the second is free to diverge. This might lead to 30
the second gene being lost or acquiring a novel function ,,
through subsequent mutations. A review of the role of
gene duplication in the creation of novel proteins can be 1°
found inHughes (2005) 0

Evidence for either whole genome duplications or
substantial gene duplication events exist in the liter-
ature. Specifically, there has been evidence for geneFig. 5. Histogram of the number of genes in each genome (200
duplications inSaccharomyces cerevisiae (Wolfe and genomes) fitted to a power-law(g) ~ g7 for a mutation rate of
Shields, 1997; Friedman and Hughes, 2001; Teichmann 1-0%:7 was calculated to be 0.9779.
and Babu, 2004; Dujon et al., 2004; Kellis et al., 2004)

(and in simulation byvan Noort et al. (2009) Es- 32-bit string is generated. This string is then used in a se-

cherichia coli (Babu and Teichmann, 2003; Friedman (ieq of whole length duplications followed by mutationses
and Hughes, 2001; Teichmann and Babu, 2004; Babu et generate a genome of lengti.

al., 2004) vertebrate¢gNadeau and Sankoff, 199@hd To generate such networks, a divergence (or mutar
other organisms. More generally, three quarters of the yjo ) rate for the duplication and divergence mechanism
transcription factors iif. coli have arisen from gene du- et pe chosen. First. mutation rates of 1% and 5%
plication(Babu and Teichmann, 2008nd at least 50%  ere examined. Two-hundred genomes were generated
of prokaryotic genes and over 90% of eukaryotic genes 15 gyplication events per genome leading to individss
are created by gene duplicatiofeichmann and Babu, 3 genomes of lengthg = 212 x 32 = 131,072. From 2
2004) A review of the mechanisms facilitating gene du- o6 genomes, the number of genes were then deter-

plications can be found i#hang (2004) mined based on the number of promoter patterns preset.

60

0 500 1000 1500 2000 2500 3000
# of Genes

290

3. Network topologies in the ARN model
22

With the ARN, duplication and divergence can be
more directly investigated due to its implementation on
the genetic string as opposed to an examination at the ®[
network level (i.e. where gene duplication happens on 16f 1
the genome level in nature) as is the case in other ab- 14} 1
stract regulatory network models (i.e. differential equa- |
tion models, Boolean models). In addition, topological
relationships can be easily investigated by parameteriza-
tion of the threshold. Specifically, the presence of scale-
free, Small-world and network motif topologies can be &} 1
observed in the ARN model. In SectioBs1-3.3 we 4l i
summarize our findings previously published in parts in
Banzhaf and Kuo (2004ndKuo and Banzhaf (2004)

8l ]

n
T

200 250 300 350 400 450 500 550 600 650 700
3.1. Gene duplication and the ARN model # of Genes
. . Fig. 6. Histogram of the number of genes in each genome (200
The ARN ge_nome IS (_:reated throth ase_”es ofwhole genomes) fitted to a power-lawP(g) ~ ¢~7 for a mutation rate of
length duplication and divergence events. First, arandom 5 g,
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60

0]
340 350 360 370 380 390 400 410 420 430 440 0 0.5 1 1.5 2 25 3 35
# of genes Gamma

Fig. 7. Histogram of the number of genes in 200 genomes whose bits Fig. 8. Distribution of values of for the best fit ofP(k) ~ k=7 with
have been chosen at random. a mutation rate of 1.0%.

The distribution of the number of genes present in the OF have £ °fdupicationsigenes (due to the presence of a:

genome of size.g is shown inFigs. 5 and 6 01010101 pattern in the original 32-bit starting string}as
The distribution of the number of genesfig. 5fol- We wish to obtain a network which shows a topologys
lows a power-law-like distribution. However, Fig. 6 primarily due to the effects of duplication. Thereforess

the distribution is disrupted. This is attributed to the the distribution of the number of genes in networks ges
higher rate of mutation. At such a mutation rate, the €rated by duplication and divergence may be used as:an
disruption of the network becomes so prevalent that it €Stimate of the effect of mutation rate on the network

begins to disrupt the duplication of nodes leading to a @ compared to randomly generated genomes. Obtaia-
network with a random number of genes. ing a power-law-like distribution of the number of genes.

For an 8-bit promoter, the probability that it remains accompllishes this goal. That distribution is sufficientlys:
intact after one duplication event is only 66% at a mu- 'andomized so as not to resemble the case of 0% muta-
tation rate of 5%. Therefore, many of the genes copied tion while not being dominated by mutational effects (as:
during the duplication process will be subsequently de- Shown by its lack of similarity to the Gaussian-like diss«
stroyed (by disruption of the promoter) in later dupli- t_rlbutl_ons _shown irFigs. 6 and Y. With these con_3|dera- a5
cation steps. However, there will also be other genes tiONS in mind, the networks generated by 1% divergenee
which arise from this higher mutation rate. But, these May be examined with respect to their topologies. s
new genes will also be easily destroyed via mutation.

Genomes which start with very large numbers of genes 3.2. Scale-free and small-world topologies in the a4
are disrupted early on in the duplication process by muta- ARN model 349
tion, while those with few genes obtain additional genes

through mutation. The network of gene—protein interactions is paramso

To test this explanation, genomes of lendth were eterized by the threshold value leading to 32 possible
created completely at random without the use of duplica- networks for each genome (although the case of zetp
tion and divergence. The distribution of these completely connectivity and full connectivity are neglected). Thes
randomly generated networks are showifig. 7. This histograms of the vertex degree distribution were fittegh
distribution is quite similar to that generated fig. 6 to the equationP(k) = k™" for each threshold value, sss
lending additional support to the hypothesis that at 5% Using the sum of least squares method. The thresheld
mutation the network topology becomes effectively ran- Vvalue which produced @ value closest to 2.5 was keptss
domized. (alarge number of networks which have displayed scales

In the case of no mutations (O% probab|||ty of mu- free behavior exhibit values of 2 Yy =< 3 (GOh et aI., 359
tation) during the duplication process, a large number 2002). Values for the parametercharacterizing scale- s
of networks either have zero genes (where there are nofree networks were calculated for 200 genomes and ate
01010101 patterns in the original 32-bit starting string), shown inFigs. 8 and 9 362
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]
=~ 0.4}
-0.6+
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C"Crandom
Bamma: ' Fig. 11. Plot ofC/Crandomand Crandom— L)/ Lrandomfor each of the
randomly generated genomes (200 genomes) with a mutation rate of

Fig. 9. Distribution of values of for the best fit ofP(k) ~ k=7 with 1.0%.
a mutation rate of 5.0%.

_ There existmany genomes created by duplication and pe of small magnitude. In addition, from the distributions
divergence which may be considered to satisfy the defi- ot in Fig. 9, the majority of the networks created by 5%z
nition of a scale-free networkig. 10shows an example  yytation cannot be classified as scale-free. This again,
of one network’s vertex degree distribution fitto apower-  sinforces the previous finding that a mutation rate of:
law distribution. It does obey a distribution similar to a 5oy or higher during the duplication and divergence pras

power-law (scale-free) distribution. cess generates networks that are close to having randam
In Fig. 8, there is a large number of networks whose connectivity. s

coefficienty is close to 0, whichwould seemtobe atodds  1q test whether these networks could also be classi-
with the previous statement. However, itcan be attributed fieq as having small-world topology, the clustering coss
to the fact that with a low mutation rate the probability of efficient, C, and the characteristic path-length,were s
discovering new promoter patterns through subsequentca|cylated and compared to a randomly connected nei-
duplication and divergence steps is also low. Therefore, \y4rk of the same size and vertex degree distribution. The

ifthere were few promoters in the initial string, there will  {hreshold value that produced a network with the smallest
often be few genes in the overall genome. With a small gpsojyte difference], L — Lrandom|, that also satisfied ss:

number of genes, the scale-free coefficigntill often C > CrandomWere taken to be those most characteriss
tic of the Small-world network topology. The additionakss
0.09 — — — — y constraintL > 1.3, was also enforced to exclude graphsa
008l i that were close to being fully connected. 305
— PK) The distributions for the clustering coefficient andss
i ok T the characteristic path-length obtained from the 208
0.06 1 genomes for 1% mutation are shownHRig. 11 It can e
be derived from the figure, that a majority of genomess

0.05 A . . .
= : has a threshold at which the interaction network apw
® 004f ] proaches or satisfies the definition of a small-world net:
goal: i work topology. All graphs considered as having scales
free and small-world topology were found in the transios
02r 1 tion areas oFig. 4. 208
0.01} . Why does whole genome duplication create scale-free
" | ,\Iﬂ e ] AM R and small-world topologies? Part of the answer is that
0 20 40 60 80 100 120 140 160 180 200 the duplication process, despite being performed directly
k on the genetic string can be considered to be similar 4@
Fig. 10. Degree distribution of a network generated by duplicationand the mechanism of preferential attachment at the netwoek
divergence with 1% mutation. level. 410
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Fig. 12. An example of the effect of two duplication events. Highly connected (shaded) nodes become even more highly connected (preferenti:

attachment). Each node represents a gene protein pair; each edge represents an interaction between gene—protein pairs.

Consider the duplication process on a string which event. This can again be seen in the third part of the dis
contains multiple genes while neglecting the effects of agram which shows the result of a further duplication.
mutation. For simplicity, it is assumed that no additional event. As the number of duplication events increases,
genes are created from a duplication event by joining the difference in the number of connections between
the end of one genome and the beginning of its copy. highly connected nodes and less connected nodes .-
On the left ofFig. 12 a network of five gene—protein  creases. This can be thought of as a form of preferea-
pairs is shown that proceeds through a single duplica- tial attachment since nodes that are already highly coa-
tion event generating the network shown on the right nected will become even more so after subsequent du-
side. plication events. Preferential attachment has been shown

The more highly connected nodes on the left (the orig- to be a mechanism which can generate scale-free net-
inal nodes and their copies—all shown in grey) become works (Baralasi and Albert, 1999; Romualdo et al.4ss
even more highly connected after a single duplication 2003) a3
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Fig. 13. Decomposition of a six-node graph created by duplication. Demonstrates that any of the nodes in the original topology can be replacec

with its copy without changing the topology and vice versa. If we replace any node in the original graph (nodes 1, 2, and 3) with its copy (nodes 1
2, and 3) and its associated edges to the original graph, the overall topology remains identical.

However, this part of the answer neglects the mecha- happens because the duplication step effectively makes
nism of mutation. Mutation may be thought of as an op- a copy of all nodes and all edges simultaneously. It is
erator which reorganizes the network. If mutations occur self-evident that the maximum distance between any two
on a gene, this may either change the gene—protein pair'snodes in only the original graph and the copied portion e
binding site, or the generated protein thus reorganizing the network are the same (if we discount the edges whigh
a portion of the network. The other possibilities are that connect the original nodes with the copied nodes). Thus,
mutations may either disrupt the promoter pattern in ef- the path-length between any two nodes in the original
fect deleting a gene—protein pair from the network, cre- graph is the same as in the copy. 469
ate a new gene—protein pair by creating a new promoter  This shows that the maximum path-length is invariso
site, or are neutral. The topology of the network as mea- ant to duplication and thus generally remains small (see
sured by the number of genes in the system is dominatedFig. 13. Therefore, the average path-length will always:
by the effects of duplication, not divergence. Thus, the be bounded by the maximum path-length and will neves
scale-free distribution observed is due to the duplication increase. As the network grows via the duplication prar
mechanism, acting similar to preferential attachment.  cess, its characteristic path-length might only grow verys

How can the small-world topologies found in the slowly —if at all — due to mutations. 476
ARN model be explained? If we examine the definition The clustering coefficient of the network is quite high-
of a small-world network more closely, it colloquially again as a result of the duplication process. Because.ef
states that a network is highly clustered but that there the regularity of the connection patterns, nodesinthe net-
are many links between these clusters which effectively work remain highly connected and increase in connege
reduce the overall diameter of the network. Frequently, tivity with each duplication event. Mutation only servess:
hubs also appear in small-world netwo(kgatts, 2003) to perturb the topology partially randomizing some o
Hubs also appear in the ARN model through the dupli- the edges in the graph. Thus, the formation of smalks
cation process (analogous to preferential attachment toworld topologies is consistent with the network creation.
more highly connected nodes). However, because of themethod of whole genome duplication and divergence .ss
way the duplication process works (assuming no muta-
tion), the maximum distanéebetween any two nodes

S . . 3.3. Network motifs in the ARN model
before and after a duplication remains constant. This etwork motifs in the moae e

Tables A.1 (three-nodes), A.2 and Afdur-nodes) s
I The number of edges traversed to get from naded “b". show connection patterns in directed graphs including
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Fig. 16. Frequency of occurrence for subgraphs of size three in the
Fig. 14. Average frequency of occurrence for subgraphs of size three transcriptional network ofscherichia coli.
in 800 instances of the artificial regulatory network model generated

by a duplication and divergence procedure. .
yadup g P were generated randomly (by choosing the full numes

ber of bits at random). Results of applying the subgraph

list includes networks with auto-regulatory connections counting algorithm to the two cases are showfigs. s
(those which have edges which begin and end at the samet# and 15For both metho7ds of network genera_ltlor_1, thes
node) which have been previously ignored by others 9enome length was set at’2= 131,072 (12 duplication sor
(Milo et al., 2002, 2004; Wuchty et al., 2003; Yeger- events in the case of duplication and divergence). Fos

Lotem et al., 2004: Dobrin et al., 2004; Mangan and networks generated by duplication and divergence, the
Alon, 2003) \'Ne bel,ieve that such,conne,ctivity may be mutation rate was set at 1% since this creates netwoeks

important. dominated by duplication effects. s11
To detect alln-node subgraphs, a subgraph finding In both cases, the threshold had to be determined. The
algorithm similar to one devised l;\ﬁ”O et al. (2002) ratio of the number of edges to the number of vertices fas

was implemented. The algorithm was applied to 800 in- the two natural regulatory networks was approximateby:

stances ofthe artificial regulatory model generated by the 2 (© 1. Therefore, in the ARN framework, the thresholes
duplication and divergence process. As a control, it was was chosen by iteratively raising the value until the nets

additionally applied to 800 networks whose genomes work generated had a ratio that was equal to or less than
2to 1. 518

auto-regulatory connections up to isomorphism. This

250

9000 T T T T T ;

8000+ b
2001

7000+ 1

60001 b

50001 b

# of occurrences

100 4000 1

# of occurences

30001 1

50 2000} .

10001 b

0 . L aa mam

0 10 20 30 ID 5IO B‘U 7‘0 8IO 90 oL = . - - . - - -
Network Motif ID 0 10 20 30 40 50 60 70 80 90

Network Motif ID

Fig. 15. Average frequency of occurrence for subgraphs of size threein ) )
800 randomly generated instances of the artificial regulatory network Fig. 17. Frequency of occurrence for subgraphs of size three in the
model. transcriptional network aSaccharomyces cerevisiae.
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Fig. 18. Average frequency of occurrence for subgraphs of size four
in 200 instances of the artificial regulatory network model generated
by a duplication and divergence procedure.
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Fig. 19. Average frequency of occurrence for subgraphs of size four in
200 randomly generated instances of the artificial regulatory network
model.

This was then compared to the results of applying
the algorithm to two natural transcriptional netwdrks
E. coli (Shen-Or et al., 2002ndS. cerevisiae (Milo et
al., 2002) The results can be seenkigs. 16 and 17In
Figs. 14-17the most frequent natural subgraphs (ID-22
and ID-12) are both well represented in duplication and
divergence-generated artificial networks whereas only
one can be detected in fully random networks.

The subgraph counts for subgraphs of size three and
four for all types of regulatory networks investigated are
presented iTables A.1 and A.3For artificial networks,

2 Obtained fromhttp://www.weizmann.ac.il/mcb/UriAlon/

xxx (2006) xxx—xxx 11

x 10

# of occurrences
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1000

1500 2000 2500

Network Motif ID

3000

Fig. 20. Frequency of occurrence for subgraphs of size four in the
transcriptional network ofscherichia coli.

average numbers of counts are shown, whereas for nat-
ural regulatory systems only one network each is inves:
tigated.
Using the sum of square error (SSE) criterion, thes
similarity between the distributions of subgraphs for the.
four types of networks was calculated. The similaritys
is shown for both three and four node subgraphs ir
Table 1
The network distributions obtained from duplicationss
and divergence (D&D) are quite similar to thatotere-
visiae for subgraph sizes of both three and four according
to the SSE criterion. In contrast, the distributions of the:

532

537

539

x 10%
9

# of occurrences

1500 2000 2500

Network Motif ID

UD 500 1000 3000

Fig. 21. Frequency of occurrence for subgraphs of size four in the
transcriptional network aSaccharomyces cerevisiae.
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Table 1 How is the single-input module created by duplicaess
Sum of square error (SSE) between the distributions of subgraph countstign and divergence? We can examine the effect of dus
(for subgraph size three/four) for the four types of networks examined plication on the simplest of gene interactions, where ore

D&D Rand E. coli Yeast  gene has aregulatory influence on another. If these geres
D& 0 - - - and their connections are duplicated we can obtain the
Rand  1.5348/5.3093 0 - - so-called single input module network motif. 574

E. coli 1.0844/1.4227 2.2392/5.6148 O -

Yeast  0.0072/0.0984 1.4886/5.1497 1.1693/1.2356 0 Fig. 22 shows the effects of two duplications ons

—— : . the simplest of regulatory influences. As can be seesn
Each d.IStI"Il‘.')UtIOI‘l has been. normalized such that the maximum count two types of subgraphs should be created with equal
of any individual subgraph is 1.0. o . .

probability, the single-input module and the so-calleds
single-output module. However, from examining the mass
tif counts for both natural and artificial networks theso
counts yield asymmetrical number.lleier et al. (2005) se
we will show why this is a natural consequence of the.
duplication and divergence process. 583

randomly generated networks were not similar to any
of the three other network types investigated. Networks
created by duplication and divergence and the regulatory
networks ofE. coli andS. cerevisiae are all more similar
to each other than to the randomly generated networks.
Because gene duplication is considered a more im-
portant mechanism of evolution in eukaryotes than in
prokaryotes, it is interesting that the duplication and di-
vergence networks are more similar to the eukaryftic
cerevisiae rather than the prokaryotit. coli. This might
suggest that the topology has been shaped by duplicatio

4. Evolving dynamics in the ARN model s84

In the previous section, the topology of the ARNss
model was investigated. Topology, however, is only one
of the aspects of a genetic regulatory network. It is the

ndynamics of the network that gives rise to the myriad afs

evzntBs 'LS : cgge&sme S ev?ltitlc:nary hés(;g)/ryT;alchlr(nan nt' functions observed in natural systems. Here we examine
and Babu ( yuggest tha over =970 of eukaryotic g dynamics of our ARN model by attempting to evolve.
genes are created by gene duplication. Our observations

. . o . . simple time series.
support this argument: It is striking how similar the dis- P >

bt f sub h tor th th work If we try to evolve time series in the ARN model, the.:
ributions ot subgraphs are for tnese three networks asevolvability of the ARN model can be looked at withses
compared to the randomly created topologies.

. X L some possible relevance to the evolvability of naturak
We can further_ investigate the md'VIdl.Jal supgraphs systems. The types of analysis and search mechanisss
wel repres_ente_d in these networks. Fangs: 14 16 relevant to such processes could also be importantsio
gnd 17 motifs with IDs 12 gnd 22 are present IRgUbSJaN- the field of synthetic biology where synthetic genetie-
t'fal ““'.“bers- These motlfs correspond .to. the,so-Called regulatory networks have been evolved in vivo towards
single input modu_le{.Mno etal., 2002) Th|s S also_ fhe dynamics such as oscillatiofgokobayashi et al., 2002) s
case when examining supgraphs Of sizg TSuEgos. in silico (Mason et al., 2004and in numerdFran®is o
18-21where network m.Ot'f IDs 459 agd 3g2gre well and Hakim., 2004)Such an investigation also provides &
represented. Howeverz n cqunts of béhree and four framework in which we can begin to study the interplay.
node subgraphs, the single input modules were not well

. between network dynamics, evolution and topology (see
represented in randomly created graphs. alsoKuo et al. (2004)

duplication duplication

3

Fig. 22. The effect of whole genome duplication on the simplest possible interaction between two genes.
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4.1. Extracting a signal from the ARN model 1 ” H i §

o AT ETTTT

Simulation of the ARN model produces the dynam- i

ics of the protein concentrations in the system. However, 06 / — Case 1 |
the system has no assigned semantics—protein concen- 0.4 | o 822: 2
trations have no meaning outside the system (they per- .| |- /
form no cellular function other than regulation). Addi- ]

tionally, since the protein concentrations must sum to 1
(i.e.)_¢; = 1), certain functions are excluded (e.g. two
sinusoids with the same phase and frequency). _o4l
In order to use the ARN framework to obtain more
arbitrary dynamics, a mapping is required. We have cho-
sen to do this by adding an additional transcription fac- -08f
tor binding site to the genome. Remember that proteins _4 1 B
. L. . L 0 20 40 60 80 100
acting as transcription factors can bind to transcription time(s)
factor binding sites influencing the transcription of ad-
jacent genes. The rate of transcription of this new site
is taken to be similar to a protein concentration which

1
o

N o
T

=

-0.61

Fig. 23. Plot of the three time series.

has no other effects on the system. It is the dynamics of 4.2. Optimization and simulation details 654
this particular site that will be evolved toward specific
dynamics. A simple (50+ 100)-Evolutionary Strategy (ES) iSess

This is done by randomly choosing an additional 64- used to evolve the solution(r) (Beyer and Schwefel, es
bit sequence along the genome. The first 32-bits specify 2002) Genomes were generated by 10 duplication events
a transcription factor binding site representing an inhibi- Per genome subject to 1% mutation leading to individss
tion site while the second 32-bits specify a transcription Ual genomes of length = 32,768. Each generation, es
factor binding site for activation. The proteins in the sys- 100 new individuals are created from the current popw
tem are free to bind to these two additional regulatory Ulation using 1% single-point (bit-flip) mutation (i.e.ce.
sites (which can be thought of as a gene with no protein On average, 328 mutations per genome). The fitnesssaf
of its own or promoter). The levels of activation and in- these solutions was calculated and the best 50 of 150
hibition produced at these two sites are calculated in the (Parentst+ children) proceed to the next generation. The.
same way as in E¢2) and are modulated by the proteins ES was terminated when the best solution found was nat
in the system. However, instead of calculating a “con- improved upon for 250 generations. 666
centration” of a protein generated from this site (which The objective is to minimize the fitness function cales
generates no actual protein of its own) as is the case forculated as the mean square error (MSE) between the
a gene, the activity at this site is simply summed and desired function and the evolved function. The followess
used directly as an output functias(t) = 3";(e; — /). ing cases were examined and are showrFig. 23 e
Normalization ofs(r) between—1 and 1 generates the f(t) = sin() (Case#1)/(r) = 2 exp (-0.1r) — 1 (Case «n
dynamics of this site which are taken to be the dynamics #2) and f(r) = Trem oz — L (Case #3). Thesee
extracted from this network. Without this normalization cases represent oscillatory, decaying exponential asd
step, it is difficult to match the scaling of the desired sigmoidal dynamics which are all relatively simple yet.
dynamics. However, since the scaling is effectively arbi- biologically important. 675
trary, this is not a problem. All solutions were generated with a time step ofc

The additional binding sites added to the genome df = 0.1s. The constant step size facilitates the quick
are a method to extract dynamics from the changes comparison of dynamics between solutions. In additiogs
in protein concentrations of the ARN model. This can since the dynamics of the system do not change quickly
be visualized as a network like the ones presented with respect to this particular step size (i.e. the secord
in Figs. 2 and 3except where each protein is linked derivative of the function is small), it is an appropriates:
to an additional node representing the new inhibi- choice for the three cases. The initial protein concentra-
tion/activation site (that does not generate a protein of tions (the initial conditions for the differential equation}ss
its own). Additional inhibition/activation sites may also  are set t0zgrezrss In addition, the first 100 time steps
be added to the genome for the extraction of additional (10s) are ignored in order to exclude the startup dyss
signals. namics of the model. Thus, for calculation of the fithesss
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function, the normalized output generated by the ARN

model fromtime = 10, ..., 110 sis compared with the
time seriesf(¢) from timer =0, ..., 100s.
4.3. Results

Table 2summarizes the results of 10 evolutionary
runs for each of the 3 fitness cas€éfy. 24 shows the
progress of the best evolutionary run for each case.

The ARN model accurately generates dynamics ap

10’

L
73]
=

proximating the sinusoid, the exponential and the sig-

moid functions with good accuracy for all runs. In all
fitness cases and evolutionary runs, the MSE calculate

d 10

was less than 0.00588654. Additional support for the
success of these simulations can be seen in the final pop-_

ulation fitness averages shownTable 2 The average
population fithess values (MSE) are relatively small with
low standard deviation indicating that the population is

Fig. 24. Fitness plot of the best solutions and the average fithesses

P.D. Kuo et al. / BioSystems xxx (2006) xxx—xxx

4— Case #2

Case #1

Case #3

600 800
time(s)

200 400

using (50+ 100)-ES for each case.

such that all individuals generate solutions that closely

approximate the respective objective functions.

7000 1200

1400

Table 2

Results of 10 runs of (5@ 100)-ES on each case

Case-run Best MSE #Gens. #Genes Avg. MSE (Pop.) Avg. #Genes (Pop.)
1-1 0.001445217 731 a7 0.00287 (-4 4531(572)
1-2 0.001165628 381 74 0.00316 (7-88 7692(342)
1-3 0.000614281 1214 105 0.00114 (-39 11759(457)
1-4 0.000747053 835 234 0.00291 (8-%) 24400(132)
1-5 0.001861556 428 63 0.00326 (6-88 7508(934)
1-6 0.000640149 1077 101 0.00186 (3-2¢ 10249(408)
1-7 0.001561523 315 26 0.00440 (8-58 3278(555)
1-8 0.000151746 1040 124 0.00058 (-3¢ 13563(6.32)
1-9 0.000519559 933 71 0.00134 (34 9288(532)
1-10 0.000846462 858 55 0.00270 (439 4857(322)
2-1 0.00411971 708 133 0.00447 (138 14283(5.88)
2-2 0.00478168 642 166 0.00554 (2-58 18595(135)
2-3 0.00363873 354 27 0.00641 (558 5222(7.00)
2-4 0.00441011 359 20 0.00660 (6-14) 3195(7.38)
2-5 0.00381064 747 97 0.00505 (3-8 10681(571)
2-6 0.00402240 877 63 0.00464 (1-8% 5883(4.17)
2-7 0.00426413 501 128 0.00574 (3-58 11614(875)
2-8 0.00537858 287 176 0.00661 (4-68 16440(111)
2-9 0.00511630 466 58 0.00688 (5-68) 54.26(373)
2-10 0.00588654 519 45 0.00643 (1-4 4565(310)
3-1 0.00101533 1235 154 0.00150 (139 14759(206)
3-2 0.00035992 557 36 0.00068 (1-24) 3922(240)
3-3 0.00001843 758 100 0.00004 (1-8 10245(293)
3-4 0.00001732 721 96 0.00004 (1-08) 96.55(280)
3-5 0.00011328 617 97 0.00025 (6-08) 10278(402)
3-6 0.00002073 825 104 0.00013 (5-@ 10978(5.03)
3-7 0.00005429 465 108 0.00044 (1-88 11237(114)
3-8 0.00016598 879 177 0.00047 (2= 18602(9.87)
3-9 0.00005034 575 195 0.00031 (1-28 21216(957)
3-10 0.00002219 987 39 0.00006 (1-a8 3949(242)

The standard deviation is given in parenthesis.
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A wide variety of networks with differing numbers  which leads tor; = — sin(wr) andx; = — cosr). We 7
of genes were found to generate equivalent dynamics can take the vector to be the concentrations of gene-—:
for the three time series. The numbers of genes usedprotein pairs. 743

to obtain solutions was usually large, due to a lack of a  If this equation was to be implemented in the ARNus
penalty on the number of genes during evolution. The al- model how would it look? There would be two gene-s
gorithm was then reapplied with the addition of a penalty protein pairs represented by nodes, “1” and “2". Thes
on the number of genes. Because penalty functions arefirst equation {1 = wx2) can be implemented by noder.,
typically arbitrary and problem dependent (since they “2” having an inhibitory relationship with node “1”. The s
directly affect the search space), a simple approach wassecond equation, likewise, can be implemented with aa
taken. Instead of penalizing the number of genes in the excitatory relationship between node “1” and node “2"so
system, networks with more than 10 genes were setIn this way, the simple oscillator can be implementeds:
to have a fitness of 4.0. In this way, the fitness land- For the ARN dynamic model to extract this oscillatorys.
scape of each time series is not as directly impacted. dynamic, it would simply have to have higher connectiv:s:
Regions of the search space which have 10 or less genedty with one of the protein products of either node “1” Ofs4
are completely unaffected while regions with more than “2”. Therefore, the minimum possible number of geness
10 genes are equally penalized. In this way, we can berequired to generate an oscillator in the ARN modeds
sure that we have not drastically altered the entire searchis 2. 757
space when performing search. In other words, the solu-  The requirements to generate a decaying exponential
tions found using this new fitness function could also be in the ARN model are decidedly simpler. In the dynamess
found with the original fitness function and would have ical equations the effects of excitation and inhibition oro
the same fitness—which allows direct comparison of one gene are exponential in nature. Therefore, we simply
solutions. would need one gene in the system whose protein prog-
Results of 10 runs on each time series are shown uct binds with greater strength to the inhibitory rathess
in Table A.2 The algorithm was terminated when the than the excitatory site from which the dynamics are exs
best fithess obtained was less thaf % 102 rather tracted. So, one gene is required to create the dynamies
than after 250 generations of fitness stagnation. Use of of a decaying exponential. 766
the previous termination criterion can lead to algorithm The situation is somewhat more complicated in the
termination before a good solution has been obtained. case of the sigmoid-type function. A means of derivings
In all runs, networks were obtained which have 10 or the minimum requirements for this function to a canoriss
less genes and can generate the desired dynamics withical form as was done for the previous two types of dymo
MSE < 5.0 x 1073, namics was not found. However, it can be reasoned that
What would be the minimum number of genes re- the minimum number of genes required must be greater
quired to generate equivalent dynamics for each time se-than one since a network with only one gene leads to
ries? For the sinusoid, a simple oscillator can be written exponential-type dynamics. To show that the sigmoid:

in the matrix form: dynamics can be generated with two genes, the alge-
0 rithm was rerun such that networks with more than twes
w . .
x(t) = |: 0} x(t) genes had a fitness of 4.Big. 25shows examples of

Fig. 25. Three two-gene networks that generate sigmoid dynamics. The “O” node denotes the additional site used to extract the network dynamics
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three different network topologies which can generate It may be the case that the motif distributions in these:

the sigmoid dynamics. natural networks are to a large part also the result @f
Therefore, the minimum number of genes required to other organizing forces such as duplication and divess
generate a sigmoid is two. gence (although evolutionary pressures are certainly se-

In all of these cases, the number of genes actually sponsible for fine-tuning of distributions). Therefore, it
used by the ARN is far higher than the minimum re- may be more interesting to investigate transcriptionak
guirement. This has a bearing on evolvability. Provided regulatory network topology with regard to the methess
a large number of degrees of freedom is cheaply avail- ods of network creation. Efforts in this direction are jusk.
able to the system, AND provided that the overall in- beginning. 835
teraction of these degrees of freedom allows reaching a  Further, the evolution of the dynamics of this modeks
goal incrementally, a large number might have an ad- has been investigated. It was demonstrated that the ely-
vantage over a small number in terms of search effi- namics of this model can be evolved toward simple time
ciency and evolvability. We conjecture that in such a series behaviors such as the sinusoid, sigmoid and ee-
case that once a good solution has been found, a grad-caying exponential time series. Examining the networks
ual decline in the number of degrees of freedom with a generated in different genomes shows that many diffes:
simultaneous readjustment of the remaining degrees isent networks give good approximations to each of the
a far better strategy than employing parsimony from the prescribed behaviors. This indicates that within the ARM:

beginning. framework there exist an extensive number of functiofs
ally equivalent topologies which may be progressivelys
5. Conclusion evolved. 846

Due to the way in which genes are specified in the:

The ARN model first proposed yanzhaf (2003a)  model, there are plenty of opportunities for individuals iess
was studied from the perspective of network topology the population to acquire neutral mutations beneficial te
and the evolution of dynamics. We addressed questionstheir further evolutiorfOhta, 2002)Since extensive non- sso
raised in both artificial evolutionary processes and coding regions existin these genomes, neutral mutatioss
network biology. Specifically, the model was examined are free to accumulate new genes that might sudderly
from the perspective of the scale-free, small-world appear when a new promoter pattern has been created
and network motif topological properties when created through mutation. 854
using a whole genome duplication and divergence  An open question within this framework is how thess
process. This process was chosen since it has beemumber of genes affects the ability to generate functions
previously implicated as an important factor in the of a given type. From the results presented, we deduse
evolution of genomes and due to its simplicity. that it is quite easy to evolve the ARN model towareks

Networks generated from this processes can indeedsimple time series. Evolvability is helped in our case by
be classified as being scale-free and small-world. Al- more degrees of freedom. In addition, it was observed
though many researchers have claimed that the pres-that each solution evolved for any of the time series dife:
ence of scale-free and Small-world network topologies fered substantially from run to run. A huge number of:
are hallmarks of evolution, we believe that these prop- differenttopologies can generate equivalent dynamicssts
erties follow naturally from the processes of genera- this the trick nature used to provide good, yet individuai.
tion of the networks. In addition, these networks were solutions to organisms? 865
also found to have subgraph distributions similar to
those found in the transcriptional regulatory networks
of E. coli and S. cerevisiae unlike those of random
networks.

For the examination of static network topology, evo-
lution was not included among the processes. There-
fore, the topologies obtained are directly related to the
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bution outcomes are a reflection of the generation mech-

anism rather than the result of evolutionary pressures. See Figs. A.1-A.aindTables A.1-A.3 871
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Fig. A.2. Subgraphs of size four and their ID. Only motifs which were present in at least one of the four cases are shown. All other motifs have
been omitted.
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Table A.1
Subgraphs of size three and their distribution
Net. Count in Net. Countin
ID ID* D&D Rand E. coli S. cerv ID ID* D&D Rand E. coli S. cerv
0 6 2424 76 35 751 43 A 0 0 0 0
1 A 4 0 0 1 44 108 0 0 0 0
2 12 490 271 40 246 45 A 1 0 0 0
3 A 11 0 26 24 46 110 0 0 0 0
4 14 6 0 0 0 47 A 0 0 0 0
5 A 0 0 0 0 48 A 0 0 3 0
6 A 12 0 124 138 49 A 0 0 0 0
7 A 0 0 8 0 50 A 0 0 0 0
8 A 0 0 1 0 51 A 0 0 0 1
9 A 0 0 2 0 52 A 0 0 0 0
10 A 0 0 0 0 53 A 0 0 1 0
11 A 0 0 0 0 54 A 0 0 0 0
12 36 27659 0 587 8800 55 A 0 0 0 0
13 A 8 0 76 104 56 A 0 0 0 0
14 38 15 0 2 44 57 A 0 0 0 0
15 A 0 0 1 1 58 A 0 0 0 0
16 A 20 0 11 22 59 A 0 0 54 4
17 46 0 0 0 1 60 A 0 0 12 0
18 A 0 0 0 0 61 A 0 0 0 0
19 A 0 0 2 1 62 A 0 0 0 0
20 A 0 0 1 0 63 A 0 0 0 0
21 A 0 0 0 0 64 A 10 0 0 0
22 A 5016 0 3353 2987 65 A 0 0 0 0
23 74 36 0 0 18 66 A 0 0 0 0
24 A 5 0 0 0 67 A 0 0 0 0
25 78 3 0 0 0 68 238 0 0 0 0
26 A 0 0 0 0 69 A 0 0 0 0
27 A 6 0 53 25 70 A 0 0 0 0
28 A 0 0 32 0 71 A 0 0 0 0
29 A 0 0 0 0 72 A 0 0 0 0
30 A 0 0 0 0 73 A 0 0 6 0
31 A 14 0 713 0 74 A 0 0 3 0
32 A 0 0 0 0 75 A 0 0 0 0
33 A 3 0 0 0 76 A 0 0 46 0
34 A 0 0 0 0 77 A 0 0 0 0
35 A 0 0 0 0 78 A 0 0 0 0
36 A 0 0 0 0 79 A 0 0 0 0
37 A 0 0 0 0 80 A 0 0 0 0
38 98 0 0 0 0 81 A 0 0 0 0
39 A 0 0 0 0 82 A 0 0 0 0
40 102 0 0 0 0 83 A 0 0 0 0
41 A 0 0 0 0 84 A 0 0 0 0
42 A 6 0 14 3 85 A 0 0 0 0

D&D: Duplication and divergence genomes; Rand: Random genomes. ID* are the subgraph designations\dileetlay. (2002) IDs shown as
A are subgraphs with self-regulatory connections which do not have a designafitiio iet al. (2002)
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Table A.2

Results of 10 runs of (5@ 100)-ES on each case with a penalty function

Case-run Best MSE #Gens. #Genes Avg. MSE (Pop.) Avg. #Genes (Pop.)
1-1 0.00287157 89122 10 0.00734 (=13 9.73(054)
1-2 0.00444153 13643 8 0.00912 (8- 7.29(043)
1-3 0.00486211 401417 9 0.01027 (2-38 9.18(018)
1-4 0.00470516 133229 10 0.00707 (6-18 1020(0.20)
1-5 0.00356387 21205 10 0.01493 (4B 1020(0.20)
1-6 0.00493755 99553 10 0.00870 (-5 9.92(0.49)
1-7 0.00398828 11342 10 0.02751 (=3 1000(0.49)
1-8 0.00472991 23091 10 0.00989 (28 1020(0.20)
1-9 0.00480238 395 9 0.30263 (7-58) 9.47(0.56)
1-10 0.00281274 1664 8 0.20032 (7-58 9.59(0.89)
2-1 0.00484099 639 8 0.00811 (5-44) 7.02(208)
2-2 0.00492588 2799 9 0.00714 (6-26 9.02(0.98)
2-3 0.00418354 820 5 0.00659 (5-08) 6.32(169)
2-4 0.00478972 5336 9 0.00636 (4-9€ 9.33(102)
2-5 0.00497284 1676 9 0.00759 (4-28 9.31(0.71)
2-6 0.00490717 468 9 0.00810 (6-9¢) 8.82(101)
2-7 0.00430360 642 10 0.00785 (6-58) 851(149)
2-8 0.00472030 3529 10 0.00577 (268 9.67(0.73)
2-9 0.00467765 10112 10 0.00601 (2-68 1018(0.25)
2-10 0.00413019 241 5 0.00798 (-4 7.00(1.66)
3-1 0.00345716 35 6 0.05491 (1-82) 8.84(135)
3-2 0.00375144 61 9 0.04274 (1:52) 8.80(105)
3-3 0.00425317 8 6 0.13660 (748) 7.71(166)
3-4 0.00149893 15 8 0.10153 (4-12) 841(162)
3-5 0.00373932 21 10 0.07446 (3-52) 844(142)
3-6 0.00299901 208 8 0.01359 (4-08) 8.92(099)
3-7 0.00341115 32 7 0.03841 (1-42) 855(116)
3-8 0.00492678 109 10 0.01886 (6-7® 8.49(125)
3-9 0.00101274 4 6 0.39698 (1-8&) 7.73(184)
3-10 0.00423338 19 9 0.07139 (312 8.59(140)

The standard deviation is given in parenthesis.

Table A.3
Subgraphs of size four and their distribution
Net. Countin Net. Countin
IDs D&D Rand E. coli S. cerv IDs D&D Rand E. coli S. cerv
0 4137 43 4 843 462 2 0 8 23
2 56 125 10 116 463 1 0 0 1
3 0 1 0 5 465 1 0 46 346
4 1716 2 0 0 466 0 0 0 9
6 3 2 38 150 468 0 0 0 1
8 0 2 0 0 469 0 0 0 1
12 61 249 3 329 472 0 0 17 6
13 0 3 0 0 473 0 0 9 0
14 1531 247 510 16925 474 0 0 3 2
15 0 3 0 31 475 0 0 2 0
16 9 5 0 75 483 4 0 0 120
18 0 3 5 19 484 0 0 1 1
19 0 2 0 0 487 0 0 0 1
21 0 4 1 11 493 5 0 16 33
22 0 0 0 3 494 0 0 0 17
23 1 0 0 0 498 0 0 1 4
26 0 3 36 157 499 0 0 0 15
28 0 0 2 10 505 0 0 1 0
35 1337 1 8 1105 525 0 0 0 1
37 0 0 0 5 533 0 0 0 2
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Table A.3 Continued)
Net. Countin Net. Countin
IDs D&D Rand E. coli S. cerv IDs D&D Rand E. coli S. cerv
39 0 0 0 1 548 0 0 1 0
45 1451 123 118 1246 563 130570 0 45585 59569
46 0 1 72 81 564 521 2 0 121
47 10 4 0 0 565 34 0 0 0
49 530 0 0 0 566 11 0 0 0
51 0 4 58 4 568 54 0 0 0
55 0 3 1 0 570 16 2 191 129
56 0 0 6 0 571 0 0 103 0
63 10 245 0 92 576 161 0 19077 0
64 0 3 8 0 578 20 0 0 0
65 0 4 0 0 587 410 3 1606 150
67 0 4 0 0 588 8 4 0 0
69 1 0 0 0 590 24 2 0 32
71 0 5 0 11 594 3 4 0 0
77 1 0 0 0 602 1028 0 415 24
79 0 4 0 0 606 27 0 0 0
88 0 0 1 0 617 0 0 90 0
95 0 4 7 0 622 0 0 0 16
96 1 4 0 0 632 0 0 5 0
98 1293 246 188 3859 647 3 0 0 0
99 0 3 167 528 654 2 0 0 0
100 0 5 0 51 658 20 0 0 0
102 1 4 0 0 691 0 0 624 0
106 291 3 3569 4618 692 0 4 6 0
108 2 4 0 16 693 0 0 8 0
112 1 4 1 195 695 0 0 7 0
113 0 0 39 83 722 0 0 0 1
114 0 0 0 1 750 0 1 0 0
120 0 0 12 0 786 0 0 1950 118
123 0 3 18 43 787 2 0 96 3
124 0 0 1 0 788 0 0 11 0
125 0 0 0 5 801 167 0 659 0
126 0 0 1 0 803 75 0 0 0
131 0 0 259 0 804 0 0 0 1
137 0 0 1 0 974 0 0 18 0
145 1 4 10 27 978 0 0 15 0
150 2 4 0 10 979 0 0 9 0
154 1 0 0 0 987 0 0 2 0
158 10 0 7 14 988 0 0 202 0
164 0 0 0 1l 989 0 0 81 0
199 0 3 6 28 998 0 0 281 0
200 0 0 14 0 1001 0 0 1 0
201 0 0 5 3 1017 0 0 1 0
202 0 0 1 0 1025 0 0 1 0
207 0 0 5 0 1041 0 0 15 1
237 39 2 0 6 1053 0 0 9 1
273 0 0 40 2 1094 0 0 2710 0
274 0 0 6 0 1105 0 0 124 0
275 0 0 1 0 1145 0 0 61 0
279 0 0 9 0 1160 0 0 13 0
281 0 0 508 0 1521 44 0 26 3
282 0 0 30 0 1526 5 0 0 0
283 0 0 1 0 1531 0 0 9 0
289 0 0 1 0 1606 0 0 6 0
293 1 4 704 1261 1612 0 0 0 1
294 0 0 16 0 1618 0 0 5 0
295 0 0 0 2 1846 0 0 57 1
296 0 0 1 0 1847 43 0 7 0
298 0 0 1 0 1855 354 0 0 0
301 0 0 43 14 1897 0 0 14 0
302 0 0 3 0 1898 0 0 4 0
303 0 0 7 0 1957 0 0 208 0
306 0 0 1 0 1958 0 0 1 0
309 6 0 125 737 1968 0 0 929 0
310 0 0 5 0 2094 0 0 14 0
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Table A.3 Continued)

Net. Countin Net. Countin

IDs D&D Rand E. coli S. cerv IDs D&D Rand E. coli S. cerv
342 0 4 4 0 2339 0 0 1 0
343 0 0 11 0 2486 0 0 8 0
361 0 0 1 0 2579 1 0 0 0
362 0 0 1 0 2619 0 0 4 0
364 0 0 1 0 2623 0 0 30 0
459 301970 41 2052 88321 2634 0 0 1 0
460 8 1 391 1085 2643 0 0 18 0
461 157 4 25 729 2677 0 0 120 0

D&D: Duplication and divergence genomes; Rand: Random genomes. Only motifs which were present in at least one of the four cases are show
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Fig. A.3. Subgraphs of size four and their ID. Only motifs which were present in at least one of the four cases are shown. All other motifs have
been omitted.

BIO 2530 1-24



872

873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932

+ Model

P.D. Kuo et al. / BioSystems xxx (2006) xxx—xxx

References

Babu, M., Teichmann, S.A., 2003. Evolution of transcription factors
and the gene regulatory network iischerichia coli. Nucl. Acids
Res. 31 (4), 1234-1244.

Babu, M., Luscombe, N., Aravind, L., Gerstein, M., Teichmann, S.A,,
2004. Structure and evolution of transcriptional regulatory net-
works. Curr. Opin. Struct. Biol. 14, 283-292.

Banzhaf, W., 2003. On the dynamics of an artificial regulatory network.
In: Banzhaf, W., Christaller, T., Dittrich, P., Kim, J.T., Ziegler, J.
(Eds.), Advances in Artificial Life—Proceedings of the Seventh
European Conference on Atrtificial Life (ECAL), vol. 2801 of Lec-
ture Notes in Artificial Intelligence. Springer-Verlag, pp. 217-227.

Banzhaf, W., 2003. Artificial regulatory networks and genetic program-
ming. In: Riolo, R.L., Worzel, B. (Eds.), Genetic Programming
Theory and Practice. Kluwer, pp. 43-62 (Chapter 4).

Banzhaf, W., Kuo, P., 2004. Network motifs in artificial and natural
transcriptional regulatory networks. J. Biol. Phys. Chem. 4 (2),
85-92.

Baralasi, A.-L., Albert, R., 1999. Emergence of scaling in random
networks. Science 286, 509-512.

Beyer, H.-G., Schwefel, H.-P., 2002. Evolution strategies: a compre-
hensive introduction. Nat. Comput. 1 (1), 3-52.

Bower, J., Bolouri, H. (Eds.), 2001. Computational Modelling of Ge-
netic and Biochemical Networks. MIT Press, Cambridge, MA.

Davidson, E., 2001. Genomic Regulatory Systems. Academic Press,
San Diego, CA.

Dobrin, R., Beg, Q., Bardsi, A.-L., Olvai, Z., 2004. Aggregation of
topological motifs in the-. coli transcriptional regulatory network.
BMC Bioinformat. 5 (10).

Dujon, B., Sherman, D., Fischer, G., Durrens, P., Casaregola, S., La-
fontaine, 1., De Montigny, J., Marck, C., Neuveglise, C., Talla,
E., Goffard, N., Frangeul, L., Aigle, M., Anthouard, V., Babour,
A., Barbe, V., Barnay, S., Blanchin, S., Beckerich, J., Beyne, E.,
Bleykasten, C., Boisrame, A., Boyer, J., Cattolico, L., Confan-
ioleri, F., De Daruvar, A., Despons, L., Fabre, E., Fairhead, C.,
Ferry-Dumazet, H., Groppi, A., Hantraye, F., Hennequin, C., Jau-
niaux, N., Joyet, P., Kachouri, R., Kerrest, A., Koszul, R., Lemaire,
M., Lesur, 1., Ma, L., Muller, H., Nicaud, J., Nikolski, M., Oz-
tas, S., Ozier-Kalogeropoulos, O., Pellenz, S., Potier, S., Richard,
G., Straub, M., Suleau, A., Swennen, D., Tekaia, F., Wesolowski-
Louvel, M., Westhof, E., Wirth, B., Zeniou-Meyer, M., Zivanovic,

., Bolotin-Fukuhara, M., Thierry, A., Bouchier, C., Caudron, B.,
Scarpelli, C., Gaillardin, C., Weissenbach, J., Wincker, P., Souciet,
J., 2004. Genome evolution in yeasts. Nature 430 (6995), 35-44.

Franwis, P., Hakim, V., 2004. Design of genetic networks with speci-
fied functions by evolution in silico. Proc. Natl. Acad. Sci. 101 (2),
580-585.

Friedman, R., Hughes, A.L., 2001. Gene duplication and the structure
of eukaryotic genomes. Genome Res. 11 (3), 373-381.

Goh, K., Oh, E., Jeong, H., Kahng, B., Kim, D., 2002. Classification of
scale-free networks. Proc. Natl. Acad. Sci. 99 (20), 12583-12588.

Guelzim, N., Bottani, S., Bourgine, P.&ges, F., 2002. Topological
and causal structure of the yeast transcriptional regulatory network.
Nat. Genet. 31, 60—63.

Hood, L., Galas, D., 2003. The digital code of DNA. Nature 421 (6921),
444-448.

Hughes, A.L., 2005. Gene duplication and the origin of novel proteins.
Proc. Natl. Acad. Sci. 102 (25), 8791-8792.

Jeong, H., Tombor, B., Albert, R., Oltvai, Z., Ba&sh, A.-L., 2000.
The large-scale organization of metabolic networks. Nature 407,
651-654.

23

Kashtan, N., ltzkovitz, S., Milo, R., Alon, U., 2004. Topological gen-sss
eralizations of network motifs. Phys. Rev. E 70, 031909. 934
Kellis, M., Birren, B., Lander, E., 2004. Proof and evolutionary analsss
ysis of ancient genome duplication in the ye&8stcharomyces 936
cerevisiae. Nature 428, 617-624. 937
Kitano, H. (Ed.), 2001. Foundations of Systems Biology. MIT Pressss
Cambridge, MA. 939
Kuo, P., Banzhaf, W., 2004. Scale-free and small world network topoleso
gies in an artificial regulatory network model. Proceedings of the:
Ninth International Conference on the Simulation and Synthesis ab
Living Systems (ALIFE), pp. 404—409. 043
Kuo, P., Leier, A., Banzhaf, W., 2004. Evolving dynamics in an artificiadss
regulatory network model. In: Yao, X., Burke, E., Lozano, J., Smithus
J., Merelo-Guergs, J., Bullinaria, J., Rowe, J., Tino, P., Kah A., o6
Schwefel, H.-P. (Eds.), Proceedings of the Eighth Conference en
Parallel Problem Solving from Nature (PPSN), vol. 3242 of Lecturess
Notes in Computer Science, Springer-Verlag,s pp. 571-580. 949
Leier, A., Kuo, P., Banzhaf, W. Analysis of preferential network motibso
generation in an artificial regulatory network model created bys
duplication and divergence. Adv. Complex Syst., in preparation.ss2
Mangan, S., Alon, U., 2003. Structure and function of the feed-forwargs
loop network motif. Proc. Natl. Acad. Sci. 100 (21), 11980-11985%s4
Mason, J., Linsay, P., Collins, J., Glass, L., 2004. Evolving complexs
dynamics in electronic models of genetic networks. Chaos 14 (3)s
707-715. 957
Milo, R., Shen-Or, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon gss
U., 2002. Network motifs: simple building blocks of complex net-se
works. Science 298, 824-827. 960
Milo, R., ltzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshse:
tat, 1., Sheffer, M., Alon, U., 2004. Superfamilies of evolved ands2
designed networks. Nature 303, 1538-1542. 963
Nadeau, J., Sankoff, D., 1997. Comparable rates of gene loss and fusne-
tional divergence after genome duplications early in vertebrate evas
lution. Genetics 147, 1259-1266.
Ohno, S., 1970. Evolution by Gene Duplication. Springer, Berlin. 967
Ohta, T., 2002. Near-neutrality in evolution of genes and gene regulas
tion Proc. Natl. Acad. Sci. 99 (25) 16134-16137 969
Romualdo, P., Smith, E., Ssl R., 2003. Evolving protein interac- 7o
tion networks through gene duplication. J. Theor. Biol. 222, 19%s=1
210. 972
Shen-Or, S., Milo, R., Mangan, S., Alon, U., 2002. Network motifss
in the transcriptional regulation network Bfcherichia coli. Nat.
Genet. 31, 64-68. 975
Teichmann, S.A., Babu, M., 2004. Gene regulatory network growth lays
duplication. Nat. Genet. 36 (5), 492—-496. 977
Valverde, S., Ferrer Cancho, R., 8oR., 2002. scale-free networksors
from optimal design. Europhys. Lett. 60, 512-517. 979
van Noort, V., Snel, B., Huynen, M.A., 2004. The yeast coexpressiem
network has a small-world, scale-free architecture and can be ex:
plained by a simple model. EMBO Rep. 5 (3), 280-284. 982
Vazquez, A., Dobrin, R., Sergi, D., Eckmann, J.-P., Oltvai, Z.Ngs3
Barabasi, A.-L., 2004. The topological relationship betweesss
the large-scale attributes and local interaction patterns afs
complex networks. Proc. Natl. Acad. Sci. 101 (52), 17940sss
17945. 987
Watts, D., 2003. Small Worlds: The Dynamics of Networks betweess
Order and Randomness. Princeton University Press, Princeton, béd.
Wolfe, K., Shields, D., 1997. Molecular evidence for an ancient duwso
plication of the entire yeast genome. Nature 387 (6634), 708s1
713. 992
Wuchty, S., 2001. Scale-free behavior in protein domain networkss
Mol. Biol. Evol. 18 (9), 1694-1702. 994

966

974

BIO 2530 1-24



+ Model

24 P.D. Kuo et al. / BioSystems xxx (2006) xxx—xxx
95 Wuchty, S., Oltvai, Z., Bardisi, A.-L., 2003. Evolutionary conserva- protein interaction. Proc. Natl. Acad. Sci. 101 (16), 5934s00
996 tion of motif constituents in the yeast protein interaction network. 5939. 1001
997 Nat. Genet. 35 (2), 176-179. Yokobayashi, Y., Weiss, R., Arnold, F., 2002. Directed evolution ofis2
998 Yeger-Lotem, E., Sattath, S., Kashtan, N., ltzkovitz, S., Milo, R., Pin- genetic circuit. Proc. Natl. Acad. Sci. 99 (26), 16587—-16591. 1003
999 ter, R.Y., Alon, U., Margalit, H., 2004. Network motifs in inte-  Zhang, J., 2004. Evolution by gene duplication: an update. Trends Ecoh
grated cellular networks of transcription-regulation and protein— Evol. 18, 292-298. 1005

BIO 2530 1-24



	Network topology and the evolution of dynamics in an artificial genetic regulatory network model created by whole genome duplication and divergence
	Introduction
	Background
	Topological measures
	Scale-free network topologies
	Small-world network topologies
	Network motifs

	Artificial regulatory network model
	Whole genome duplication and divergence

	Network topologies in the ARN model
	Gene duplication and the ARN model
	Scale-free and small-world topologies in the ARN model
	Network motifs in the ARN model

	Evolving dynamics in the ARN model
	Extracting a signal from the ARN model
	Optimization and simulation details
	Results

	Conclusion
	Acknowledgements
	Appendix A Additional data
	References


