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bstract

Topological measures of large-scale complex networks are applied to a specific artificial regulatory network model created
hrough a whole genome duplication and divergence mechanism. This class of networks share topological features with natural
ranscriptional regulatory networks. Specifically, these networks display scale-free and small-world topology and possess subgraph
istributions similar to those of natural networks. Thus, the topologies inherent in natural networks may be in part due to their
ethod of creation rather than being exclusively shaped by subsequent evolution under selection.
The evolvability of the dynamics of these networks is also examined by evolving networks in simulation to obtain three simple

ypes of output dynamics. The networks obtained from this process show a wide variety of topologies and numbers of genes

ndicating that it is relatively easy to evolve these classes of dynamics in this model.

2006 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

Regulatory networks have become an important new
rea of research in the biological and biomedical sciences
Bower and Bolouri, 2001; Davidson, 2001; Kitano,
001). Specifically, the DNA information controlling
ene expression (i.e. regulation) is the key to under-
tanding differences between species and to evolution

Hood and Galas, 2003). Taking these regulatory inter-
ctions as a whole, a network of interactions (a so-called
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regulatory network) can be visualized where genes in-
teract by regulating other genes and their products to
produce and regulate a myriad of cellular processes and
functions. This allows nature to set up and control the
mechanisms of evolution, development and physiology.
Studying models of regulatory networks can help us to
understand some of these mechanisms providing valu-
able lessons for biology.

This contribution uses an artificial genetic regulatory
network model to pose questions regarding the topolog-
ical organization of regulatory networks. Specifically,
ensembles of this network model are investigated to de-

termine whether they may be classified as scale-free,
small-world and possess network motifs. In addition,
the networks are then evolved toward simple output
dynamics.

ed.
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2. Background

2.1. Topological measures

Since one of the most basic features of any complex
network is its structure, it is natural to investigate net-
work connectivity. The structure of networks is often
constrained and shaped by the growth processes that
create them (including evolution in the case of natural
networks). Studying the topology of natural networks
allows an understanding of the structures and dynamics
which have been exploited by nature. By comparing the
topologies of artificial networks with natural networks,
questions regarding the benefits of one topology over
another can be answered. In addition, some insights into
the growth processes which create particular topologies
may be gained.

Typically, nodes in such an abstraction represent in-
dividual genes and their associated proteins while the
directed edges which connect the nodes represent one
gene’s effect (excitatory or inhibitory) on another.

2.1.1. Scale-free network topologies
A topological feature often found in large complex

networks is the so-called “scale-free” topology. In net-
works of such a topology, the vertex degree distribution,
P(k), decays as a power-law. This has been shown for
a variety of biological systems (Wuchty, 2001; Watts,
2003; Jeong et al., 2000; Guelzim et al., 2002; van Noort
et al., 2004; Babu et al., 2004). A scale-free network
topology can emerge in the context of a growing net-
work with the addition of new vertices connecting pref-
erentially to vertices which are highly connected in the
network (Barabási and Albert, 1999), as well as through
explicit optimization (Valverde et al., 2002) and dupli-
cation and divergence (Romualdo et al., 2003; Kuo and
Banzhaf, 2004).

2.1.2. Small-world network topologies
Another topological feature found in large com-

plex networks is the so-called “Small-world” topol-
ogy. Watts (2003) defines a Small-world graph as any
graph with n vertices and average vertex degree k that
exhibits L ≈ Lrandom(n, k) ∼ ln (n)

ln (k) and C � Crandom ∼
k
n

for n � k � ln (n) � 1. C is the clustering coefficient
which is defined as follows: if vertex v has kv neigh-

bours, C = 2 ∑n
(

kv(kv−1)
)

, where L is the charac-

n v=1 2

teristic path-length of the network (average number of
links connecting two nodes). Lrandom and Crandom refer to
the characteristic path-length and clustering coefficient
for a random graph with the same k and n, respectively.
85 (2006) 177–200

Small-world topology has also been noted in biological
networks (Watts, 2003; van Noort et al., 2004).

2.1.3. Network motifs
The previous two topological measures characterize

networks at the global level. Local graph properties of
networks have also been investigated such as static net-
work motifs (Milo et al., 2002, 2004; Shen-Or et al.,
2002; Wuchty et al., 2003; Yeger-Lotem et al., 2004;
Dobrin et al., 2004; Mangan and Alon, 2003; Vazquez
et al., 2004; Banzhaf and Kuo, 2004).

Network motifs are defined as the structural elements
(subgraphs) which occur in statistically significant quan-
tities in the networks under consideration as compared
to random networks (Milo et al., 2002). The implica-
tion of having certain subgraphs being found in greater
abundance than would be expected in similar random
networks is that these local network motifs may convey
a functional advantage to the system. It is believed that
studying network motifs can lead to a better understand-
ing of the potential basic structural elements which make
up complex networks. Several motifs such as the bi-fan
(Kashtan et al., 2004), the feed-forward loop (Mangan
and Alon, 2003) and the feedback loop (Kashtan et al.,
2004) have been the subject of study.

Tables A.1 (three-nodes), A.2 and A.3 (four-nodes)
show connection patterns in directed graphs including
auto-regulatory connections. A presentation of all four-
node connection patterns is impractical due to space lim-
itations.

2.2. Artificial regulatory network model

The artificial regulatory network (ARN) model con-
sidered here (Banzhaf, 2003a,b; Banzhaf and Kuo, 2004;
Kuo and Banzhaf, 2004; Kuo et al., 2004) consists of
a bit string representing a genome with direction (i.e.
5′ → 3′ in DNA) and mobile “proteins” which interact
with the genome through their constituent bit patterns.
Proteins are able to interact with the genome, most no-
tably at “regulatory” sites located upstream from genes.
Attachment to these sites produces either inhibition or
activation of the corresponding protein. These interac-
tions may be interpreted as a regulatory network with
proteins acting as transcription factors.

A “promoter” signals the beginning of a gene on the
bit string analogous to an open reading frame (ORF) on
DNA—a long sequence of DNA that contains no “stop”

codon and therefore encodes all or part of a protein. Each
gene is set to a fixed length of lgene = 5 32-bit integers
which results in an expressed bit pattern of 160-bits. A
promoter bit sequence of 8-bits was arbitrarily selected
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o be “01010101”. By randomly choosing “0”s and “1”s
o generate a genome, any one-byte pattern can be ex-
ected to appear with probability 2−8 = 0.39%. Since
he promoter pattern itself is repetitive, overlapping pro-

oters or periodic extensions of the pattern are not al-
owed, i.e. a bit sequence of “0101010101” (10-bits) is
etected as a single promoter site starting at the first bit.
owever, regions associated with one gene may overlap
ith another should a promoter pattern also exist within
portion of the coding region of a gene. In such cases,

ach gene is treated independently.
Immediately upstream from the promoter exist two

dditional 32-bit segments which represent the enhancer
nd inhibitor sites. As previously mentioned, attachment
f proteins (transcription factors) to these sites results
n changes to protein production for the corresponding
enes (regulation). It is assumed that only one regulatory
ite exists for the increase of expression and one site for
he decrease of expression of a given protein. This is
radical simplification since natural genomes may have
–10 regulatory sites per gene that may even be occupied
y complexes of proteins (Banzhaf, 2003a).

Processes such as transcription, diffusion, spatial
ariations and elements such as introns, RNA-like mo-
ile elements and translation procedures resulting in a
ifferent alphabet for proteins are neglected. This last
echanism is replaced as follows. Each protein is a 32-

it sequence constructed by a many-to-one mapping of
ts corresponding gene which contains five 32-bit se-
uences. The protein sequence is created by performing
he majority rule on each bit position of these five se-
uences so as to arrive at a 32-bit protein. Ties (not pos-
ible with an odd number for lg) for a given bit position

re resolved by chance.

Proteins may then be examined to see how they
match” with the genome at the regulatory sites. This
omparison is implemented using the XOR operator

Fig. 1. Bit string for one gen
85 (2006) 177–200 179

which returns a “1” if bits on both patterns are com-
plementary. The degree of match between the genome
and the protein bit patterns is specified by the number
of bits set to “1” during an XOR operation. In general, a
Gaussian distribution results from measuring the match
between proteins and bit sequences in a randomly gen-
erated genome (Banzhaf, 2003a). By making the sim-
plifying assumption that the occupation of both of a
gene’s regulatory sites modulates the expression of its
corresponding protein, a gene–protein interaction net-
work may be deduced comprising the different genes
and proteins parameterized by strength of match. The
bit-string for one gene is shown in Fig. 1.

The rate at which protein i is produced is given by:

dci

dt
= δ(ei − hi)ci∑

j cj

(1)

ei, hi = 1

N

N∑
j

cj exp(β(uj − umax)) (2)

where ei and hi represent the excitation and inhibition
of the production of protein i, uj represents the number
of matching bits between protein j and activation or in-
hibition site i, umax represents the maximum match (in
this case, 32), β and δ are positive scaling factors, and
ci is the concentration of protein i at time t. The con-
centrations of the various proteins are required to sum
to 1. This ensures competition between binding sites for
proteins.

The effect of one gene’s products on another can be
investigated in the ARN model by looking at the degree
of match between one gene’s protein and another’s reg-
ulatory sites (one excitatory and one inhibitory site). At
e in the ARN model.

different matching strengths (thresholds), different net-
work topologies are obtained. An example is shown in
Figs. 2 and 3. Each node in the diagram represents a gene
found in the genome along with its corresponding pro-
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Fig. 2. Gene–protein interaction network for a random genome at a threshold of 21 bits.

for a r

in any ARN graph at threshold 0) goes from 1.0 to 0.0.
There is a sharp transition from full connectivity to no
connectivity.
Fig. 3. Gene–protein interaction network

tein forming a gene–protein pair. Edges in the diagram
represent a regulatory influence of one gene’s protein
on another gene. For the diagrams presented, the net-
work interaction diagrams at thresholds of 21 and 22 are
shown. Fig. 3 is in fact a subgraph of Fig. 2.

Although the actual genome has not changed, by sim-
ply changing the threshold parameter, different network
topologies are obtained. Figs. 2 and 3 also possess differ-
ent numbers of genes since only connected gene–protein
pairs are displayed. Should a change in the parameter-
ized threshold lead to the creation of an isolated node, it
is deleted from the diagram. Only the largest network of
interactions is displayed.

It is possible to have multiple clusters of gene–protein
interactions that are not interconnected. This is likely to
occur as the threshold level is increased. As connections
between gene–protein pairs are lost due to the threshold,
each cluster of gene–protein pairs becomes isolated from
the others. This often occurs abruptly indicating a phase
transition between sparse and full network connectivity.

The relationship between the number of edges in the
graph and the threshold is shown in Fig. 4 for a sample
of 200 networks. As the threshold increases from 0 to
32 (the x–axis), the fraction of edges in the graph over
andom genome at a threshold of 22 bits.

the number of edges in a fully connected network of
the same number of nodes (also the number of edges
Fig. 4. Diagram showing the fraction of edges in a graph at a given
threshold (x–axis) compared to a fully connected graph for 200 net-
works.
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by 12 duplication events per genome leading to individ-
ual genomes of length LG = 212 × 32 = 131,072. From
these genomes, the number of genes were then deter-
mined based on the number of promoter patterns present.
P.D. Kuo et al. / BioS

.3. Whole genome duplication and divergence

Whole genome duplication might be an important
volutionary mechanism for generating novelty in the
enome and additionally might give a reasonable expla-
ation for speciation (Ohno, 1970). When whole genome
uplication occurs, pairs of functionally redundant paral-
gous genes are created. Since only one gene of a pair of
aralogous genes is required to retain its original func-
ion, the second is free to diverge. This might lead to
he second gene being lost or acquiring a novel function
hrough subsequent mutations. A review of the role of
ene duplication in the creation of novel proteins can be
ound in Hughes (2005).

Evidence for either whole genome duplications or
ubstantial gene duplication events exist in the liter-
ture. Specifically, there has been evidence for gene
uplications in Saccharomyces cerevisiae (Wolfe and
hields, 1997; Friedman and Hughes, 2001; Teichmann
nd Babu, 2004; Dujon et al., 2004; Kellis et al., 2004)
and in simulation by van Noort et al. (2004)), Es-
herichia coli (Babu and Teichmann, 2003; Friedman
nd Hughes, 2001; Teichmann and Babu, 2004; Babu et
l., 2004), vertebrates (Nadeau and Sankoff, 1997) and
ther organisms. More generally, three quarters of the
ranscription factors in E. coli have arisen from gene du-
lication (Babu and Teichmann, 2003) and at least 50%
f prokaryotic genes and over 90% of eukaryotic genes
re created by gene duplication (Teichmann and Babu,
004). A review of the mechanisms facilitating gene du-
lications can be found in Zhang (2004).

. Network topologies in the ARN model

With the ARN, duplication and divergence can be
ore directly investigated due to its implementation on

he genetic string as opposed to an examination at the
etwork level (i.e. where gene duplication happens on
he genome level in nature) as is the case in other ab-
tract regulatory network models (i.e. differential equa-
ion models, Boolean models). In addition, topological
elationships can be easily investigated by parameteriza-
ion of the threshold. Specifically, the presence of scale-
ree, Small-world and network motif topologies can be
bserved in the ARN model. In Sections 3.1–3.3, we
ummarize our findings previously published in parts in
anzhaf and Kuo (2004) and Kuo and Banzhaf (2004).
.1. Gene duplication and the ARN model

The ARN genome is created through a series of whole
ength duplication and divergence events. First, a random
Fig. 5. Histogram of the number of genes in each genome (200
genomes) fitted to a power-law: P(g) ∼ g−γ for a mutation rate of
1.0%. γ was calculated to be 0.9779.

32-bit string is generated. This string is then used in a se-
ries of whole length duplications followed by mutations
to generate a genome of length LG.

To generate such networks, a divergence (or muta-
tion) rate for the duplication and divergence mechanism
must be chosen. First, mutation rates of 1% and 5%
were examined. Two-hundred genomes were generated
Fig. 6. Histogram of the number of genes in each genome (200
genomes) fitted to a power-law: P(g) ∼ g−γ for a mutation rate of
5.0%.
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Fig. 7. Histogram of the number of genes in 200 genomes whose bits
have been chosen at random.

The distribution of the number of genes present in the
genome of size LG is shown in Figs. 5 and 6.

The distribution of the number of genes in Fig. 5 fol-
lows a power-law-like distribution. However, in Fig. 6
the distribution is disrupted. This is attributed to the
higher rate of mutation. At such a mutation rate, the
disruption of the network becomes so prevalent that it
begins to disrupt the duplication of nodes leading to a
network with a random number of genes.

For an 8-bit promoter, the probability that it remains
intact after one duplication event is only 66% at a mu-
tation rate of 5%. Therefore, many of the genes copied
during the duplication process will be subsequently de-
stroyed (by disruption of the promoter) in later dupli-
cation steps. However, there will also be other genes
which arise from this higher mutation rate. But, these
new genes will also be easily destroyed via mutation.
Genomes which start with very large numbers of genes
are disrupted early on in the duplication process by muta-
tion, while those with few genes obtain additional genes
through mutation.

To test this explanation, genomes of length LG were
created completely at random without the use of duplica-
tion and divergence. The distribution of these completely
randomly generated networks are shown in Fig. 7. This
distribution is quite similar to that generated in Fig. 6
lending additional support to the hypothesis that at 5%
mutation the network topology becomes effectively ran-
domized.
In the case of no mutations (0% probability of mu-
tation) during the duplication process, a large number
of networks either have zero genes (where there are no
01010101 patterns in the original 32-bit starting string),
Fig. 8. Distribution of values of γ for the best fit of P(k) ∼ k−γ with
a mutation rate of 1.0%.

or have 2(# of duplications) genes (due to the presence of a
01010101 pattern in the original 32-bit starting string).
We wish to obtain a network which shows a topology
primarily due to the effects of duplication. Therefore,
the distribution of the number of genes in networks gen-
erated by duplication and divergence may be used as an
estimate of the effect of mutation rate on the network
as compared to randomly generated genomes. Obtain-
ing a power-law-like distribution of the number of genes
accomplishes this goal. That distribution is sufficiently
randomized so as not to resemble the case of 0% muta-
tion while not being dominated by mutational effects (as
shown by its lack of similarity to the Gaussian-like dis-
tributions shown in Figs. 6 and 7). With these considera-
tions in mind, the networks generated by 1% divergence
may be examined with respect to their topologies.

3.2. Scale-free and small-world topologies in the
ARN model

The network of gene–protein interactions is param-
eterized by the threshold value leading to 32 possible
networks for each genome (although the case of zero
connectivity and full connectivity are neglected). The
histograms of the vertex degree distribution were fitted
to the equation P(k) = αk−γ for each threshold value,
using the sum of least squares method. The threshold
value which produced a γ value closest to 2.5 was kept
(a large number of networks which have displayed scale-

free behavior exhibit values of 2 < γ ≤ 3 (Goh et al.,
2002)). Values for the parameter γ characterizing scale-
free networks were calculated for 200 genomes and are
shown in Figs. 8 and 9.
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Fig. 11. Plot of C/Crandom and (Lrandom − L)/Lrandom for each of the
ig. 9. Distribution of values of γ for the best fit of P(k) ∼ k−γ with
mutation rate of 5.0%.

There exist many genomes created by duplication and
ivergence which may be considered to satisfy the defi-
ition of a scale-free network. Fig. 10 shows an example
f one network’s vertex degree distribution fit to a power-
aw distribution. It does obey a distribution similar to a
ower-law (scale-free) distribution.

In Fig. 8, there is a large number of networks whose
oefficient γ is close to 0, which would seem to be at odds
ith the previous statement. However, it can be attributed

o the fact that with a low mutation rate the probability of
iscovering new promoter patterns through subsequent

uplication and divergence steps is also low. Therefore,
f there were few promoters in the initial string, there will
ften be few genes in the overall genome. With a small
umber of genes, the scale-free coefficient γ will often

ig. 10. Degree distribution of a network generated by duplication and
ivergence with 1% mutation.
randomly generated genomes (200 genomes) with a mutation rate of
1.0%.

be of small magnitude. In addition, from the distribution
of γ in Fig. 9, the majority of the networks created by 5%
mutation cannot be classified as scale-free. This again,
reinforces the previous finding that a mutation rate of
5% or higher during the duplication and divergence pro-
cess generates networks that are close to having random
connectivity.

To test whether these networks could also be classi-
fied as having small-world topology, the clustering co-
efficient, C, and the characteristic path-length, L, were
calculated and compared to a randomly connected net-
work of the same size and vertex degree distribution. The
threshold value that produced a network with the smallest
absolute difference, | L − Lrandom |, that also satisfied
C � Crandom were taken to be those most characteris-
tic of the Small-world network topology. The additional
constraint, L > 1.3, was also enforced to exclude graphs
that were close to being fully connected.

The distributions for the clustering coefficient and
the characteristic path-length obtained from the 200
genomes for 1% mutation are shown in Fig. 11. It can
be derived from the figure, that a majority of genomes
has a threshold at which the interaction network ap-
proaches or satisfies the definition of a small-world net-
work topology. All graphs considered as having scale-
free and small-world topology were found in the transi-
tion areas of Fig. 4.

Why does whole genome duplication create scale-free
and small-world topologies? Part of the answer is that
the duplication process, despite being performed directly

on the genetic string can be considered to be similar to
the mechanism of preferential attachment at the network
level.
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connect
esents a

self-evident that the maximum distance between any two
nodes in only the original graph and the copied portion of
Fig. 12. An example of the effect of two duplication events. Highly
attachment). Each node represents a gene protein pair; each edge repr

Consider the duplication process on a string which
contains multiple genes while neglecting the effects of
mutation. For simplicity, it is assumed that no additional
genes are created from a duplication event by joining
the end of one genome and the beginning of its copy.
On the left of Fig. 12, a network of five gene–protein
pairs is shown that proceeds through a single duplica-
tion event generating the network shown on the right
side.

The more highly connected nodes on the left (the orig-
inal nodes and their copies—all shown in grey) become
even more highly connected after a single duplication
event. This can again be seen in the third part of the di-
agram which shows the result of a further duplication
event. As the number of duplication events increases,
the difference in the number of connections between
highly connected nodes and less connected nodes in-
creases. This can be thought of as a form of preferen-
tial attachment since nodes that are already highly con-
nected will become even more so after subsequent du-
plication events. Preferential attachment has been shown
to be a mechanism which can generate scale-free net-
works (Barabási and Albert, 1999; Romualdo et al.,
2003).

However, this part of the answer neglects the mecha-
nism of mutation. Mutation may be thought of as an op-

erator which reorganizes the network. If mutations occur
on a gene, this may either change the gene–protein pair’s
binding site, or the generated protein thus reorganizing
a portion of the network. The other possibilities are that
ed (shaded) nodes become even more highly connected (preferential
n interaction between gene–protein pairs.

mutations may either disrupt the promoter pattern in
effect deleting a gene–protein pair from the network,
create a new gene–protein pair by creating a new pro-
moter site, or are neutral. The topology of the network
as measured by the number of genes in the system is
dominated by the effects of duplication, not divergence.
Thus, the scale-free distribution observed is due to the
duplication mechanism, acting similar to preferential
attachment.

How can the small-world topologies found in the
ARN model be explained? If we examine the definition
of a small-world network more closely, it colloquially
states that a network is highly clustered but that there
are many links between these clusters which effectively
reduce the overall diameter of the network. Frequently,
hubs also appear in small-world networks (Watts, 2003).
Hubs also appear in the ARN model through the dupli-
cation process (analogous to preferential attachment to
more highly connected nodes). However, because of the
way the duplication process works (assuming no muta-
tion), the maximum distance1 between any two nodes
before and after a duplication remains constant. This
happens because the duplication step effectively makes
a copy of all nodes and all edges simultaneously. It is
the network are the same (if we discount the edges which

1 The number of edges traversed to get from node “a” to “b”.
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Fig. 13. Decomposition of a six-node graph created by duplication. Demonstrates that any of the nodes in the original topology can be replaced
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ith its copy without changing the topology and vice versa. If we repl
′, and 3′) and its associated edges to the original graph, the overall to

onnect the original nodes with the copied nodes). Thus,
he path-length between any two nodes in the original
raph is the same as in the copy.

This shows that the maximum path-length is invari-
nt to duplication and thus generally remains small (see
ig. 13). Therefore, the average path-length will always
e bounded by the maximum path-length and will never
ncrease. As the network grows via the duplication pro-
ess, its characteristic path-length might only grow very
lowly – if at all – due to mutations.

The clustering coefficient of the network is quite high
gain as a result of the duplication process. Because of
he regularity of the connection patterns, nodes in the net-
ork remain highly connected and increase in connec-

ivity with each duplication event. Mutation only serves
o perturb the topology partially randomizing some of
he edges in the graph. Thus, the formation of small-
orld topologies is consistent with the network creation
ethod of whole genome duplication and divergence.

.3. Network motifs in the ARN model

Tables A.1 (three-nodes), A.2 and A.3 (four-nodes)
how connection patterns in directed graphs including
uto-regulatory connections up to isomorphism. This

ist includes networks with auto-regulatory connections
those which have edges which begin and end at the same
ode) which have been previously ignored by others
Milo et al., 2002, 2004; Wuchty et al., 2003; Yeger-
node in the original graph (nodes 1, 2, and 3) with its copy (nodes 1 ,
remains identical.

Lotem et al., 2004; Dobrin et al., 2004; Mangan and
Alon, 2003). We believe that such connectivity may be
important.

To detect all n-node subgraphs, a subgraph finding
algorithm similar to one devised by Milo et al. (2002)
was implemented. The algorithm was applied to 800
instances of the artificial regulatory model generated
by the duplication and divergence process. As a con-
trol, it was additionally applied to 800 networks whose
genomes were generated randomly (by choosing the
full number of bits at random). Results of applying
the subgraph counting algorithm to the two cases are
shown in Figs. 14 and 15. For both methods of net-
work generation, the genome length was set at 217 =
131,072 (12 duplication events in the case of duplica-
tion and divergence). For networks generated by dupli-
cation and divergence, the mutation rate was set at 1%
since this creates networks dominated by duplication ef-
fects.

In both cases, the threshold had to be determined. The
ratio of the number of edges to the number of vertices for
the two natural regulatory networks was approximately
2 to 1. Therefore, in the ARN framework, the threshold
was chosen by iteratively raising the value until the net-
work generated had a ratio that was equal to or less than

2 to 1.

This was then compared to the results of applying
the algorithm to two natural transcriptional networks, E.
coli (Shen-Or et al., 2002) and S. cerevisiae (Milo et al.,
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Fig. 14. Average frequency of occurrence for subgraphs of size three
in 800 instances of the artificial regulatory network model generated
by a duplication and divergence procedure.

2002). The results can be seen in Figs. 16 and 17. In
Figs. 14–17, the most frequent natural subgraphs (ID-22
and ID-12) are both well represented in duplication and
divergence-generated artificial networks whereas only
one can be detected in fully random networks.

The subgraph counts for subgraphs of size three and
four for all types of regulatory networks investigated are
presented in Tables A.1 and A.3. For artificial networks,
average numbers of counts are shown, whereas for nat-

ural regulatory systems only one network each is inves-
tigated.

Using the sum of square error (SSE) criterion, the
similarity between the distributions of subgraphs for the

Fig. 15. Average frequency of occurrence for subgraphs of size three in
800 randomly generated instances of the artificial regulatory network
model.
Fig. 16. Frequency of occurrence for subgraphs of size three in the
transcriptional network of Escherichia coli.

four types of networks was calculated. The similarity
is shown for both three and four node subgraphs in
Table 1.

The network distributions obtained from duplication
and divergence (D&D) are quite similar to that of S. cere-
visiae for subgraph sizes of both three and four according
to the SSE criterion. In contrast, the distributions of the
randomly generated networks were not similar to any
of the three other network types investigated. Networks
created by duplication and divergence and the regula-
tory networks of E. coli and S. cerevisiae are all more
similar to each other than to the randomly generated

networks.

Because gene duplication is considered a more im-
portant mechanism of evolution in eukaryotes than in

Fig. 17. Frequency of occurrence for subgraphs of size three in the
transcriptional network of Saccharomyces cerevisiae.
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Fig. 18. Average frequency of occurrence for subgraphs of size four
in 200 instances of the artificial regulatory network model generated
by a duplication and divergence procedure.

Fig. 19. Average frequency of occurrence for subgraphs of size four in
200 randomly generated instances of the artificial regulatory network
model.

Table 1
Sum of square error (SSE) between the distributions of subgraph counts
(for subgraph size three/four) for the four types of networks examined

D&D Rand E. coli Yeast

D&D 0 – – –
Rand 1.5348/5.3093 0 – –
E. coli 1.0844/1.4227 2.2392/5.6148 0 –
Yeast 0.0072/0.0984 1.4886/5.1497 1.1693/1.2356 0

Each distribution has been normalized such that the maximum count
of any individual subgraph is 1.0.
Fig. 20. Frequency of occurrence for subgraphs of size four in the
transcriptional network of Escherichia coli.

prokaryotes, it is interesting that the duplication and di-
vergence networks are more similar to the eukaryotic S.
cerevisiae rather than the prokaryotic E. coli. This might
suggest that the topology has been shaped by duplication
events in S. cerevisiae’s evolutionary history. Teichmann
and Babu (2004) suggest that over 90% of eukaryotic
genes are created by gene duplication. Our observations
support this argument: It is striking how similar the dis-
tributions of subgraphs are for these three networks as

compared to the randomly created topologies.

We can further investigate the individual subgraphs
well represented in these networks. From Figs. 14,

Fig. 21. Frequency of occurrence for subgraphs of size four in the
transcriptional network of Saccharomyces cerevisiae.
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on the
Fig. 22. The effect of whole genome duplication

16 and 17, motifs with IDs 12 and 22 are present in
substantial numbers. These motifs correspond to the so-
called single input module (Milo et al., 2002). This is
also the case when examining subgraphs of size four in
Figs. 18–21 where network motif IDs 459 and 563 are
well represented. However, in counts of both three and
four node subgraphs, the single input modules were not
well represented in randomly created graphs.

How is the single-input module created by duplica-
tion and divergence? We can examine the effect of du-
plication on the simplest of gene interactions, where one
gene has a regulatory influence on another. If these genes
and their connections are duplicated we can obtain the
so-called single input module network motif.

Fig. 22 shows the effects of two duplications on
the simplest of regulatory influences. As can be seen
two types of subgraphs should be created with equal
probability, the single-input module and the so-called
single-output module. However, from examining the mo-
tif counts for both natural and artificial networks the
counts yield asymmetrical number. In Leier et al. (2005)
we will show why this is a natural consequence of the
duplication and divergence process.

4. Evolving dynamics in the ARN model

In the previous section, the topology of the ARN
model was investigated. Topology, however, is only one
of the aspects of a genetic regulatory network. It is the
dynamics of the network that gives rise to the myriad of
functions observed in natural systems. Here we examine
the dynamics of our ARN model by attempting to evolve

simple time series.

If we try to evolve time series in the ARN model, the
evolvability of the ARN model can be looked at with
some possible relevance to the evolvability of natural
simplest possible interaction between two genes.

systems. The types of analysis and search mechanisms
relevant to such processes could also be important to
the field of synthetic biology where synthetic genetic
regulatory networks have been evolved in vivo toward
dynamics such as oscillations (Yokobayashi et al., 2002)
in silico (Mason et al., 2004) and in numero (François
and Hakim., 2004). Such an investigation also provides a
framework in which we can begin to study the interplay
between network dynamics, evolution and topology (see
also Kuo et al. (2004)).

4.1. Extracting a signal from the ARN model

Simulation of the ARN model produces the dynam-
ics of the protein concentrations in the system. However,
the system has no assigned semantics—protein concen-
trations have no meaning outside the system (they per-
form no cellular function other than regulation). Addi-
tionally, since the protein concentrations must sum to 1
(i.e.

∑
ci = 1), certain functions are excluded (e.g. two

sinusoids with the same phase and frequency).
In order to use the ARN framework to obtain more

arbitrary dynamics, a mapping is required. We have cho-
sen to do this by adding an additional transcription fac-
tor binding site to the genome. Remember that proteins
acting as transcription factors can bind to transcription
factor binding sites influencing the transcription of ad-
jacent genes. The rate of transcription of this new site
is taken to be similar to a protein concentration which
has no other effects on the system. It is the dynamics of
this particular site that will be evolved toward specific
dynamics.
This is done by randomly choosing an additional 64-
bit sequence along the genome. The first 32-bits specify
a transcription factor binding site representing an inhibi-
tion site while the second 32-bits specify a transcription
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actor binding site for activation. The proteins in the sys-
em are free to bind to these two additional regulatory
ites (which can be thought of as a gene with no protein
f its own or promoter). The levels of activation and in-
ibition produced at these two sites are calculated in the
ame way as in Eq. (2) and are modulated by the proteins
n the system. However, instead of calculating a “con-
entration” of a protein generated from this site (which
enerates no actual protein of its own) as is the case for
gene, the activity at this site is simply summed and

sed directly as an output function, s(t) = ∑
i(ei − hi).

ormalization of s(t) between −1 and 1 generates the
ynamics of this site which are taken to be the dynamics
xtracted from this network. Without this normalization
tep, it is difficult to match the scaling of the desired
ynamics. However, since the scaling is effectively arbi-
rary, this is not a problem.

The additional binding sites added to the genome
re a method to extract dynamics from the changes
n protein concentrations of the ARN model. This can
e visualized as a network like the ones presented
n Figs. 2 and 3 except where each protein is linked
o an additional node representing the new inhibi-
ion/activation site (that does not generate a protein of
ts own). Additional inhibition/activation sites may also
e added to the genome for the extraction of additional
ignals.

.2. Optimization and simulation details

A simple (50 + 100)-Evolutionary Strategy (ES) is
sed to evolve the solution, s(t) (Beyer and Schwefel,
002). Genomes were generated by 10 duplication events
er genome subject to 1% mutation leading to individ-
al genomes of length LG = 32,768. Each generation,
00 new individuals are created from the current pop-
lation using 1% single-point (bit-flip) mutation (i.e.
n average, 328 mutations per genome). The fitness of
hese solutions was calculated and the best 50 of 150
parents + children) proceed to the next generation. The
S was terminated when the best solution found was not

mproved upon for 250 generations.
The objective is to minimize the fitness function cal-

ulated as the mean square error (MSE) between the
esired function and the evolved function. The follow-
ng cases were examined and are shown in Fig. 23:
(t) = sin(t) (Case #1), f (t) = 2 exp (−0.1t) − 1 (Case

2) and f (t) = 2

1+exp (−0.2t+10) − 1 (Case #3). These
ases represent oscillatory, decaying exponential and
igmoidal dynamics which are all relatively simple yet
iologically important.
Fig. 23. Plot of the three time series.

All solutions were generated with a time step of
dt = 0.1 s. The constant step size facilitates the quick
comparison of dynamics between solutions. In addition,
since the dynamics of the system do not change quickly
with respect to this particular step size (i.e. the second
derivative of the function is small), it is an appropriate
choice for the three cases. The initial protein concentra-
tions (the initial conditions for the differential equation)
are set to 1

# of genes . In addition, the first 100 time steps
(10 s) are ignored in order to exclude the startup dy-
namics of the model. Thus, for calculation of the fitness
function, the normalized output generated by the ARN
model from time t = 10, . . . , 110 s is compared with the
time series f (t) from time t = 0, . . . , 100 s.

4.3. Results

Table 2 summarizes the results of 10 evolutionary
runs for each of the 3 fitness cases. Fig. 24 shows the
progress of the best evolutionary run for each case.

The ARN model accurately generates dynamics ap-
proximating the sinusoid, the exponential and the sig-
moid functions with good accuracy for all runs. In all
fitness cases and evolutionary runs, the MSE calculated
was less than 0.00588654. Additional support for the
success of these simulations can be seen in the final pop-
ulation fitness averages shown in Table 2. The average
population fitness values (MSE) are relatively small with
low standard deviation indicating that the population is
such that all individuals generate solutions that closely

approximate the respective objective functions.

A wide variety of networks with differing numbers
of genes were found to generate equivalent dynamics
for the three time series. The numbers of genes used
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Table 2
Results of 10 runs of (50 + 100)-ES on each case

Case-run Best MSE #Gens. #Genes Avg. MSE (Pop.) Avg. #Genes (Pop.)

1-1 0.001445217 731 47 0.00287 (7.7e−4) 45.31(5.72)
1-2 0.001165628 381 74 0.00316 (7.8e−4) 76.92(3.42)
1-3 0.000614281 1214 105 0.00114 (1.5e−4) 117.59(4.57)
1-4 0.000747053 835 234 0.00291 (8.2e−4) 244.00(13.2)
1-5 0.001861556 428 63 0.00326 (6.8e−4) 75.08(9.34)
1-6 0.000640149 1077 101 0.00186 (3.5e−4) 102.49(4.08)
1-7 0.001561523 315 26 0.00440 (8.5e−4) 32.78(5.55)
1-8 0.000151746 1040 124 0.00058 (1.3e−4) 135.63(6.32)
1-9 0.000519559 933 71 0.00134 (3.4e−4) 92.88(53.2)
1-10 0.000846462 858 55 0.00270 (4.5e−4) 48.57(3.22)

2-1 0.00411971 708 133 0.00447 (1.3e−4) 142.83(5.88)
2-2 0.00478168 642 166 0.00554 (2.5e−4) 185.95(13.5)
2-3 0.00363873 354 27 0.00641 (5.5e−4) 52.22(7.00)
2-4 0.00441011 359 20 0.00660 (6.1e−4) 31.95(7.38)
2-5 0.00381064 747 97 0.00505 (3.0e−4) 106.81(5.71)
2-6 0.00402240 877 63 0.00464 (1.8e−4) 58.83(4.17)
2-7 0.00426413 501 128 0.00574 (3.5e−4) 116.14(8.75)
2-8 0.00537858 287 176 0.00661 (4.6e−4) 164.40(11.1)
2-9 0.00511630 466 58 0.00688 (5.6e−4) 54.26(3.73)
2-10 0.00588654 519 45 0.00643 (1.7e−4) 45.65(3.10)

3-1 0.00101533 1235 154 0.00150 (1.3e−4) 147.59(20.6)
3-2 0.00035992 557 36 0.00068 (1.2e−4) 39.22(2.40)
3-3 0.00001843 758 100 0.00004 (1.0e−5) 102.45(2.93)
3-4 0.00001732 721 96 0.00004 (1.0e−5) 96.55(2.80)
3-5 0.00011328 617 97 0.00025 (6.0e−5) 102.78(4.02)
3-6 0.00002073 825 104 0.00013 (5.0e−5) 109.78(5.03)
3-7 0.00005429 465 108 0.00044 (1.8e−4) 112.37(11.4)
3-8 0.00016598 879 177 0.00047 (2.2e−4) 186.02(9.87)
3-9 0.00005034 575 195 0.00031 (1.2e−4) 212.16(9.57)
3-10 0.00002219 987 39 0.00006 (1.0e−5) 39.49(2.42)

The standard deviation is given in parenthesis.

Fig. 24. Fitness plot of the best solutions and the average fitnesses
using (50 + 100)-ES for each case.
to obtain solutions was usually large, due to a lack of a
penalty on the number of genes during evolution. The al-
gorithm was then reapplied with the addition of a penalty
on the number of genes. Because penalty functions are
typically arbitrary and problem dependent (since they
directly affect the search space), a simple approach was
taken. Instead of penalizing the number of genes in the
system, networks with more than 10 genes were set
to have a fitness of 4.0. In this way, the fitness land-
scape of each time series is not as directly impacted.
Regions of the search space which have 10 or less genes
are completely unaffected while regions with more than
10 genes are equally penalized. In this way, we can be
sure that we have not drastically altered the entire search
space when performing search. In other words, the solu-

tions found using this new fitness function could also be
found with the original fitness function and would have
the same fitness—which allows direct comparison of
solutions.
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required to generate an oscillator in the ARN model
is 2.

The requirements to generate a decaying exponential
in the ARN model are decidedly simpler. In the dynam-

Fig. 25. Three two-gene networks that generate sigmoid dynamics. The “O” n
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ical equations the effects of excitation and inhibition on
one gene are exponential in nature. Therefore, we simply
would need one gene in the system whose protein prod-
uct binds with greater strength to the inhibitory rather
than the excitatory site from which the dynamics are ex-
tracted. So, one gene is required to create the dynamics
of a decaying exponential.

The situation is somewhat more complicated in the
case of the sigmoid-type function. A means of deriving
the minimum requirements for this function to a canon-
ical form as was done for the previous two types of dy-
namics was not found. However, it can be reasoned that
the minimum number of genes required must be greater
than one since a network with only one gene leads to
exponential-type dynamics. To show that the sigmoid
dynamics can be generated with two genes, the algo-
rithm was rerun such that networks with more than two
genes had a fitness of 4.0. Fig. 25 shows examples of
three different network topologies which can generate
the sigmoid dynamics.

Therefore, the minimum number of genes required to
generate a sigmoid is two.

In all of these cases, the number of genes actually
used by the ARN is far higher than the minimum re-
quirement. This has a bearing on evolvability. Provided
a large number of degrees of freedom is cheaply avail-
able to the system, AND provided that the overall in-
teraction of these degrees of freedom allows reaching a
goal incrementally, a large number might have an ad-
vantage over a small number in terms of search effi-
ciency and evolvability. We conjecture that in such a
case that once a good solution has been found, a grad-
P.D. Kuo et al. / BioSy

Results of 10 runs on each time series are shown
in Table A.2. The algorithm was terminated when the
best fitness obtained was less than 5.0 × 10−3 rather
than after 250 generations of fitness stagnation. Use of
the previous termination criterion can lead to algorithm
termination before a good solution has been obtained.
In all runs, networks were obtained which have 10 or
less genes and can generate the desired dynamics with
MSE < 5.0 × 10−3.

What would be the minimum number of genes re-
quired to generate equivalent dynamics for each time se-
ries? For the sinusoid, a simple oscillator can be written
in the matrix form:

ẋ(t) =
[

0 ω

−ω 0

]
x(t)

which leads to x1 = − sin(ωt) and x2 = − cos(ωt). We
can take the vector x to be the concentrations of gene–
protein pairs.

If this equation was to be implemented in the ARN
model how would it look? There would be two gene–
protein pairs represented by nodes, “1” and “2”. The
first equation (ẋ1 = ωx2) can be implemented by node
“2” having an inhibitory relationship with node “1”. The
second equation, likewise, can be implemented with an
excitatory relationship between node “1” and node “2”.
In this way, the simple oscillator can be implemented.
For the ARN dynamic model to extract this oscillatory
dynamic, it would simply have to have higher connectiv-
ity with one of the protein products of either node “1” or
“2”. Therefore, the minimum possible number of genes
ode denotes the additional site used to extract the network dynamics.

ual decline in the number of degrees of freedom with a
simultaneous readjustment of the remaining degrees is
a far better strategy than employing parsimony from the
beginning.
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5. Conclusion

The ARN model first proposed by Banzhaf (2003a)
was studied from the perspective of network topology
and the evolution of dynamics. We addressed questions
raised in both artificial evolutionary processes and
network biology. Specifically, the model was examined
from the perspective of the scale-free, small-world
and network motif topological properties when created
using a whole genome duplication and divergence
process. This process was chosen since it has been
previously implicated as an important factor in the
evolution of genomes and due to its simplicity.

Networks generated from this processes can indeed
be classified as being scale-free and small-world. Al-
though many researchers have claimed that the presence
of scale-free and Small-world network topologies are
hallmarks of evolution, we believe that these properties
follow naturally from the processes of generation of the
networks. In addition, these networks were also found
to have subgraph distributions similar to those found in
the transcriptional regulatory networks of E. coli and S.
cerevisiae unlike those of random networks.

For the examination of static network topology, evo-
lution was not included among the processes. Therefore,
the topologies obtained are directly related to the method
of construction. This might indicate that such topologies
in natural networks may be a result of the way they are
created rather than being explicitly molded by evolu-
tion. In other words, the node and vertex distribution
outcomes are a reflection of the generation mechanism
rather than the result of evolutionary pressures. It may
be the case that the motif distributions in these natural
networks are to a large part also the result of other
organizing forces such as duplication and divergence
(although evolutionary pressures are certainly responsi-

ble for fine-tuning of distributions). Therefore, it may be
more interesting to investigate transcriptional regulatory
network topology with regard to the methods of network
creation. Efforts in this direction are just beginning.
85 (2006) 177–200

Further, the evolution of the dynamics of this model
has been investigated. It was demonstrated that the
dynamics of this model can be evolved toward simple
time series behaviors such as the sinusoid, sigmoid
and decaying exponential time series. Examining the
networks generated in different genomes shows that
many different networks give good approximations to
each of the prescribed behaviors. This indicates that
within the ARN framework there exist an extensive
number of functionally equivalent topologies which
may be progressively evolved.

Due to the way in which genes are specified in the
model, there are plenty of opportunities for individuals in
the population to acquire neutral mutations beneficial to
their further evolution (Ohta, 2002). Since extensive non-
coding regions exist in these genomes, neutral mutations
are free to accumulate new genes that might suddenly
appear when a new promoter pattern has been created
through mutation.

An open question within this framework is how the
number of genes affects the ability to generate functions
of a given type. From the results presented, we deduce
that it is quite easy to evolve the ARN model toward
simple time series. Evolvability is helped in our case by
more degrees of freedom. In addition, it was observed
that each solution evolved for any of the time series dif-
fered substantially from run to run. A huge number of
different topologies can generate equivalent dynamics. Is
this the trick nature used to provide good, yet individual
solutions to organisms?
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Appendix A. Additional data

See Figs. A.1–A.3 and Tables A.1–A.3.
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Fig. A.1. Network motifs of s
ize three and their ID.
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Fig. A.2. Subgraphs of size four and their ID. Only motifs which were present in at least one of the four cases are shown. All other motifs have
been omitted.



P.D. Kuo et al. / BioSystems 85 (2006) 177–200 195

Table A.1
Subgraphs of size three and their distribution

Net. Count in Net. Count in

ID ID* D&D Rand E. coli S. cerv ID ID* D&D Rand E. coli S. cerv

0 6 2424 76 35 751 43 A 0 0 0 0
1 A 4 0 0 1 44 108 0 0 0 0
2 12 490 271 40 246 45 A 1 0 0 0
3 A 11 0 26 24 46 110 0 0 0 0
4 14 6 0 0 0 47 A 0 0 0 0
5 A 0 0 0 0 48 A 0 0 3 0
6 A 12 0 124 138 49 A 0 0 0 0
7 A 0 0 8 0 50 A 0 0 0 0
8 A 0 0 1 0 51 A 0 0 0 1
9 A 0 0 2 0 52 A 0 0 0 0

10 A 0 0 0 0 53 A 0 0 1 0
11 A 0 0 0 0 54 A 0 0 0 0
12 36 27659 0 587 8800 55 A 0 0 0 0
13 A 8 0 76 104 56 A 0 0 0 0
14 38 15 0 2 44 57 A 0 0 0 0
15 A 0 0 1 1 58 A 0 0 0 0
16 A 20 0 11 22 59 A 0 0 54 4
17 46 0 0 0 1 60 A 0 0 12 0
18 A 0 0 0 0 61 A 0 0 0 0
19 A 0 0 2 1 62 A 0 0 0 0
20 A 0 0 1 0 63 A 0 0 0 0
21 A 0 0 0 0 64 A 10 0 0 0
22 A 5016 0 3353 2987 65 A 0 0 0 0
23 74 36 0 0 18 66 A 0 0 0 0
24 A 5 0 0 0 67 A 0 0 0 0
25 78 3 0 0 0 68 238 0 0 0 0
26 A 0 0 0 0 69 A 0 0 0 0
27 A 6 0 53 25 70 A 0 0 0 0
28 A 0 0 32 0 71 A 0 0 0 0
29 A 0 0 0 0 72 A 0 0 0 0
30 A 0 0 0 0 73 A 0 0 6 0
31 A 14 0 713 0 74 A 0 0 3 0
32 A 0 0 0 0 75 A 0 0 0 0
33 A 3 0 0 0 76 A 0 0 46 0
34 A 0 0 0 0 77 A 0 0 0 0
35 A 0 0 0 0 78 A 0 0 0 0
36 A 0 0 0 0 79 A 0 0 0 0
37 A 0 0 0 0 80 A 0 0 0 0
38 98 0 0 0 0 81 A 0 0 0 0
39 A 0 0 0 0 82 A 0 0 0 0
40 102 0 0 0 0 83 A 0 0 0 0
41 A 0 0 0 0 84 A 0 0 0 0

A 6 0 14 3 A 0 0 0 0

D
A

42
&D: Duplication and divergence genomes; Rand: Random genomes. ID* ar
are subgraphs with self-regulatory connections which do not have a design
85
e the subgraph designations given by Milo et al. (2002). IDs shown as
ation in Milo et al. (2002).
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Table A.2
Results of 10 runs of (50 + 100)-ES on each case with a penalty function

Case-run Best MSE #Gens. #Genes Avg. MSE (Pop.) Avg. #Genes (Pop.)

1-1 0.00287157 89122 10 0.00734 (1.1e−3) 9.73(0.54)
1-2 0.00444153 13643 8 0.00912 (8.1e−4) 7.29(0.43)
1-3 0.00486211 401417 9 0.01027 (2.3e−4) 9.18(0.18)
1-4 0.00470516 133229 10 0.00707 (6.1e−4) 10.20(0.20)
1-5 0.00356387 21205 10 0.01493 (4.7e−3) 10.20(0.20)
1-6 0.00493755 99553 10 0.00870 (1.5e−3) 9.92(0.49)
1-7 0.00398828 11342 10 0.02751 (1.3e−2) 10.00(0.49)
1-8 0.00472991 23091 10 0.00989 (2.4e−3) 10.20(0.20)
1-9 0.00480238 395 9 0.30263 (7.5e−2) 9.47(0.56)
1-10 0.00281274 1664 8 0.20032 (7.5e−2) 9.59(0.89)

2-1 0.00484099 639 8 0.00811 (5.4e−4) 7.02(2.08)
2-2 0.00492588 2799 9 0.00714 (6.2e−4) 9.02(0.98)
2-3 0.00418354 820 5 0.00659 (5.0e−4) 6.32(1.69)
2-4 0.00478972 5336 9 0.00636 (4.9e−4) 9.33(1.02)
2-5 0.00497284 1676 9 0.00759 (4.2e−4) 9.31(0.71)
2-6 0.00490717 468 9 0.00810 (6.9e−4) 8.82(1.01)
2-7 0.00430360 642 10 0.00785 (6.5e−4) 8.51(1.49)
2-8 0.00472030 3529 10 0.00577 (2.6e−4) 9.67(0.73)
2-9 0.00467765 10112 10 0.00601 (2.6e−4) 10.18(0.25)
2-10 0.00413019 241 5 0.00798 (9.1e−4) 7.00(1.66)

3-1 0.00345716 35 6 0.05491 (1.8e−2) 8.84(1.35)
3-2 0.00375144 61 9 0.04274 (1.5e−2) 8.80(1.05)
3-3 0.00425317 8 6 0.13660 (7.1e−2) 7.71(1.66)
3-4 0.00149893 15 8 0.10153 (4.1e−2) 8.41(1.62)
3-5 0.00373932 21 10 0.07446 (3.5e−2) 8.44(1.42)
3-6 0.00299901 208 8 0.01359 (4.0e−3) 8.92(0.99)
3-7 0.00341115 32 7 0.03841 (1.1e−2) 8.55(1.16)
3-8 0.00492678 109 10 0.01886 (6.7e−3) 8.49(1.25)
3-9 0.00101274 4 6 0.39698 (1.8e−1) 7.73(1.84)
3-10 0.00423338 19 9 0.07139 (3.1e−2) 8.59(1.40)

The standard deviation is given in parenthesis.

Table A.3
Subgraphs of size four and their distribution

Net. Count in Net. Count in
IDs D&D Rand E. coli S. cerv IDs D&D Rand E. coli S. cerv

0 4137 43 4 843 462 2 0 8 23
2 56 125 10 116 463 1 0 0 1
3 0 1 0 5 465 1 0 46 346
4 1716 2 0 0 466 0 0 0 9
6 3 2 38 150 468 0 0 0 1
8 0 2 0 0 469 0 0 0 1

12 61 249 3 329 472 0 0 17 6
13 0 3 0 0 473 0 0 9 0
14 1531 247 510 16925 474 0 0 3 2
15 0 3 0 31 475 0 0 2 0
16 9 5 0 75 483 4 0 0 120
18 0 3 5 19 484 0 0 1 1
19 0 2 0 0 487 0 0 0 1
21 0 4 1 11 493 5 0 16 33
22 0 0 0 3 494 0 0 0 17
23 1 0 0 0 498 0 0 1 4
26 0 3 36 157 499 0 0 0 15
28 0 0 2 10 505 0 0 1 0
35 1337 1 8 1105 525 0 0 0 1
37 0 0 0 5 533 0 0 0 2
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Table A.3 (Continued )

Net. Count in Net. Count in
IDs D&D Rand E. coli S. cerv IDs D&D Rand E. coli S. cerv

39 0 0 0 1 548 0 0 1 0
45 1451 123 118 1246 563 130570 0 45585 59569
46 0 1 72 81 564 521 2 0 121
47 10 4 0 0 565 34 0 0 0
49 530 0 0 0 566 11 0 0 0
51 0 4 58 4 568 54 0 0 0
55 0 3 1 0 570 16 2 191 129
56 0 0 6 0 571 0 0 103 0
63 10 245 0 92 576 161 0 19077 0
64 0 3 8 0 578 20 0 0 0
65 0 4 0 0 587 410 3 1606 150
67 0 4 0 0 588 8 4 0 0
69 1 0 0 0 590 24 2 0 32
71 0 5 0 11 594 3 4 0 0
77 1 0 0 0 602 1028 0 415 24
79 0 4 0 0 606 27 0 0 0
88 0 0 1 0 617 0 0 90 0
95 0 4 7 0 622 0 0 0 16
96 1 4 0 0 632 0 0 5 0
98 1293 246 188 3859 647 3 0 0 0
99 0 3 167 528 654 2 0 0 0

100 0 5 0 51 658 20 0 0 0
102 1 4 0 0 691 0 0 624 0
106 291 3 3569 4618 692 0 4 6 0
108 2 4 0 16 693 0 0 8 0
112 1 4 1 195 695 0 0 7 0
113 0 0 39 83 722 0 0 0 1
114 0 0 0 1 750 0 1 0 0
120 0 0 12 0 786 0 0 1950 118
123 0 3 18 43 787 2 0 96 3
124 0 0 1 0 788 0 0 11 0
125 0 0 0 5 801 167 0 659 0
126 0 0 1 0 803 75 0 0 0
131 0 0 259 0 804 0 0 0 1
137 0 0 1 0 974 0 0 18 0
145 1 4 10 27 978 0 0 15 0
150 2 4 0 10 979 0 0 9 0
154 1 0 0 0 987 0 0 2 0
158 10 0 7 14 988 0 0 202 0
164 0 0 0 1 989 0 0 81 0
199 0 3 6 28 998 0 0 281 0
200 0 0 14 0 1001 0 0 1 0
201 0 0 5 3 1017 0 0 1 0
202 0 0 1 0 1025 0 0 1 0
207 0 0 5 0 1041 0 0 15 1
237 39 2 0 6 1053 0 0 9 1
273 0 0 40 2 1094 0 0 2710 0
274 0 0 6 0 1105 0 0 124 0
275 0 0 1 0 1145 0 0 61 0
279 0 0 9 0 1160 0 0 13 0
281 0 0 508 0 1521 44 0 26 3
282 0 0 30 0 1526 5 0 0 0
283 0 0 1 0 1531 0 0 9 0
289 0 0 1 0 1606 0 0 6 0
293 1 4 704 1261 1612 0 0 0 1
294 0 0 16 0 1618 0 0 5 0
295 0 0 0 2 1846 0 0 57 1
296 0 0 1 0 1847 43 0 7 0
298 0 0 1 0 1855 354 0 0 0
301 0 0 43 14 1897 0 0 14 0
302 0 0 3 0 1898 0 0 4 0
303 0 0 7 0 1957 0 0 208 0
306 0 0 1 0 1958 0 0 1 0
309 6 0 125 737 1968 0 0 99 0
310 0 0 5 0 2094 0 0 14 0
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Table A.3 (Continued )

Net. Count in Net. Count in
IDs D&D Rand E. coli S. cerv IDs D&D Rand E. coli S. cerv

342 0 4 4 0 2339 0 0 1 0
343 0 0 11 0 2486 0 0 8 0
361 0 0 1 0 2579 1 0 0 0
362 0 0 1 0 2619 0 0 4 0
364 0 0 1 0 2623 0 0 30 0
459 301970 41 2052 88321 2634 0 0 1 0
460 8 1 391 1085 2643 0 0 18 0
461 157 4 25 729 2677 0 0 120 0

D&D: Duplication and divergence genomes; Rand: Random genomes. Only motifs which were present in at least one of the four cases are shown.

Fig. A.3. Subgraphs of size four and their ID. Only motifs which were present in at least one of the four cases are shown. All other motifs have
been omitted.
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