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Abstract. We employ a special combination of differ-
ent networks in order to process (transient) spatio-
temporal patterns. In a first layer, feature analyzing
cells translate instantaneous spatial patterns into activ-
ities of cells symbolizing the presence of certain feature
values. A second layer maps the time sequence of
symbols into a spatial activity pattern of the so-called
TIM-cells. A third layer recognizes predefined activity
patterns. We demonstrate the behaviour of the net-
work using gaussian patterns in (| + 1) space-time
dimensions.

1 Introduction

The ability to process spatio-temporal patterns is ever
crucial for living beings. Patterns which are changing
dynamically over time constitute a major part of the
information flux to be processed by biological organ-
1sms. Moreover, a capacity to recognize and reproduce
transient trajectories must have been truly beneficial
within the framework of evolution. It was only with
these capabilities already developed that oral communi-
cation by speech could emerge between members of the
early human community.

In this contribution we shall concentrate on the
transient character of spatio-temporal patterns. We
shall apply a network consisting of three sub-networks
to the recognition of predefined spatio-temporal pat-
terns. As we shall see, the network is not only able to
recognize transient patterns by means of a special repre-
sentation of temporal sequences, but also, due to its
symmetrical design. to reproduce arbitrary sequences of
spatial patterns.

The core of the architecture is a mapping of tempo-
ral information into the space domain by the time-in-
tensity-mapping (TIM) subnetwork. It makes use of
populations of short term memory cells in order to
translate temporal correlations of patterns into spatial
correlations. Similar ideas were published in different
contexts in the past (Cohen and Grossherg 1987:

Hecht-Nielsen 1987: Wang and Arbib 1990). We tried
to overcome certain shortcomings in our design.

The temporal information which can be processed
by the TIM subnetwork must consist of a sequence of
symbols. Spatio-temporal patterns, however, are not
usally just a sequence of symbols. Therefore, before
entering the TIM-subnet, instantaneous spatial patterns
have to be translated into activities of cells representing
these symbols. In a previous paper (Banzhaf 1991),
each of these cells were grandmother cells, responsible
for one out of a finite number of patterns. This strategy
was suitable for an unbound pattern space with a small
and finite number of patterns. For a bound pattern
space with an infinite number of spatial patterns, how-
ever, another strategy must be adopted. It consists of
applying feature analyzing cells which independently
analyze different kinds of features present in the input
pattern. The results of this analysis are relayed to
corresponding TIM cells. After mapping into firing
intensities of TIM-cells, a set of grandmother cells is
used to recognize certain intensity distributions among
the TIM cells as different spatio-temporal patterns.

The TIM-cells themselves are organized in popula-
tions. Entire populations are weakly coupled to individ-
ual feature analyzing cells of the first layer. At certain
sampling times, the feature analyzing cells are forced to
compete for the presented input patterns. Their decision
which comes about as the result of their competition is
constantly monitored by the array of TIM-populations.
The activity of winning feature analyzing cells is suffi-
cient to trigger an individual cell within a correspond-
ing TIM-population. Due to a positive self-coupling
this starts an exponentially growing activity of TIM-
cells. Activity evolution continues even after the corre-
sponding feature has disappeared from the input. After
a TIM-cell reaches a certain activity limiting threshold,
its activity rapidly decays.

The cells in the third layer constantly renormalize
patterns in the TIM layer and (by the help of their
competition dynamics) make guesses as to what spatio-
temporal input pattern is presently fed mto the net-
work. Consequently the network computes at every
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sampling time step its expected pattern due to spatial
and temporal (intensity) knowledge 1t may have learned
over a long period of time.

2 The network

We consider the network architecture depicted in Fig.
i. Spatial patterns, one at a time, enter the network by
arriving at the feature analyzing units of the separate
subnets of a first layer.

These sub-networks independently analyze the in-
coming patterns for the presence of some predefined
features or feature combinations. In other words, they
measure features and perform competition for highest
activity in order to represent the features symbolically.
We can think of these cells as being (locally) tuned to
certain feature values much like Radial-Basis-Function
{RBF) cells (Nowlan 1990) in a corresponding signal
space would be. The sub-networks decide winners by
performing a (dynamical) competition of its mutually
inhibiting cells. We have chosen the network of Haken
{Haken 1987, 1988) as a realization of the Winner-
Take-All (WTA) function.

In order to make things more evident, in what
follows we shall concentrate on one feature x out of M
possible features all of which are analyzed at the same
time. Suppose now, there are a number of feature
analyzing cells, K, for feature o. Their initial activities
d} are a measure of the corresponding feature values
present in the input patterns q(¢,) at time ¢, which are
transmitted via connections 4, . Thus, for instance

d(t;) = Ne /v~ frie (H

where f(¢;) is the presented feature value and f,, 0. N
specify feature value as well as broadness and height of
response for a cell & (see Fig. 2). The best matching cell
is then found by performing the following dynamics
between sampling times ¢, and f;., (using d7(s;,) as
initial values):

zdk(t)zdk(t)<l +d(n)? =Y dk,(,)z__de,(,):) (2)

Kk #k k

By the lateral inhibition in (2) it is guaranteed that only
one cell remains active after the relaxation time 1,
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Ix <I;.;—t, has elapsed. The maximum initial activity
allowed by (1) is ¢f = N and we set N =0.5. Conse-
quently, due to the competition only one cell out of K
will enter the activity range of 0.9 <d,(#) < 1.0. Some-
where within this range the TIM cell population ¢, (cf.
Fig. 3) coupled to grandmother cell d; experiences a
threshold excess. Cells within this population which are
not yet active are susceptible to the threshold excess.
One cell is chosen either systematically or accidently to
store the presence of the feature value corresponding to
cell 4.

Activity ¢, of a TIM cell / in population k develops
according to the following evolution equation:

Elt) = ) - [B. Olelt) — ) = B_f(0] (3
Sy =e U000 — 1), (4

where ¢, ¢_ are threshold activities with 7, being the
moment in time ¢_ is reached, ¢ (fy) =c_, and
B..B_.B. are universal growth/decay parameters. @(x)
is the Heaviside function

, I forx =0
AU {O for x <0

and ¢, <c¢_ determine thresholds critical to the onset
of growth and decay respectively. This dynamics can be
achieved by an activity dependent feed-back connection
for each cell ¢,. In a way, cells ¢;, constitute a short
term memory of feature values symbolized by high
activities of cells d,.

As we said earlier, everything so far is done in
parallel and independently for all feature analyzing
sub-networks x. It is only in the last layer of cells that
signals are integrated into a unique representation of
spatio-temporal patterns passing through the network.
This strategy is advantageous in order to avoid combina-
torial explosion in the feature analyzing layer. If every
cell had to analyze an arbitrary combination of features
the number of cells required to cover a certain pattern
space would grow dramatically. An independent analysis
of single features on the other hand, with an integration
of signals at the latest stage possible, can exploit the
parallel nature of the network most efficiently.

The cells of the third layer are connected to all TIM
populations in Layer II via connections B,,. Again,
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Activity of feature analyzing cells

Fig. 2. Activity of feature analszing cells
varies according to (1), ¢ and N are equal
for all cells

Feature Value

Fig. 3. A population of TIM-cells ¢, with total activity ¢,, cooper-
ate to allow repetition of spatial patterns. Dashed connections
(only at two cells explicitly shown) extend to all other cells within
the population and are strongly inhibitory

their activities e/(f) are governed by competition
analogous to (2) with a relaxation time 7. Thus they
make use of the partial intensity representations gained
by various sub-networks in order to achieve an integrated
picture of what is happening. The WTA function imple-
mented in the third layer’s lateral connections guarantees
that one and only one cell will fire with high activity after
Ir has elapsed. The relaxation time of the third layer
should be well below the distance between sampling times
so that the network can arrive at a conclusion (which
is essentially a prediction) about the spatio-temporal
input pattern within each sampling period.

Inspection of Fig. | reveals that the network is nearly
symmetrical allowing for a reverse mode of operation.
The reverse mode starts out with the excitation of a cell
responsible for a certain spatial pattern which actually
represents a TIM-pattern. All other cells should be kept
silent during a stimulation. The excited cell generates its
corresponding spatial pattern which is relayed to a
reversely operating TIM-network. Activities of TIM
cells are again growing until they arrive at a certain
predefined maximum value. At the moment this
threshold is reached by a TIM cell, however, a corre-
sponding spatial pattern is evoked and the TIM cell is
reset to 0", Since no two activity values in the initial
TIM-pattern were identical, a sequence of spatial pat-
terns 1s produced as one after the other of the TIM cells
reaches the threshold. We will demonstrate this mode
of operation below in the latter part of our simulations.

3 Simulation

The patterns to be analyzed are superpositions of 2-di-
mensional gaussian patterns. They are generated on a
20 x 60 grid and can be interpreted as artificially gener-
ated sonograms. Intensities on 20 frequency channels
sampled over 60 time steps are computed by:

X' =xcosa+rsiny = -—xsina+1tcosx (5)
I(x' 1) =Y hPe v - xihilp
x hie =l = (6)

Thus we consider one dimension as being spatial, the
other as being temporal. The selection of sample patterns
is shown in Fig. 4, together with the parameters necessary
to generate them.

Three types of feature analyzing cells (see (1)) are
employed which analyze the spatial dimension of patterns
at every sampling time 1 =1, ..., 60. Specifically, they
analyze height, width and center of assumed gaussian
spatial patterns. Although this is an approximation, it
is the kind of knowledge feature analyzing cells must
possess in order to process input effectively. We assume
that these feature analyzing cells have divided their
respective feature space equally as can be achieved using
a competitive learning rule (Banzhaf and Haken 1990).
For our simulation we have simply set up 20 feature
analyzing cells in each feature between a minimum and
a maximum value with equal response width and max-
imum response distance (cf. Fig. 2).

By independently measuring height, width and center
of spatial gaussians with 20 cells each, we can effectively
code for the appearance of 20* = 8000 different spatial
gaussians. At each time step the feature analyzing cells
first measure their degree of matching with the input
pattern {see Fig. 5 for one instance). They then perform
a competition which resultsin 3 winning cells representing
the best matched cell in height, width and center for
spatial gaussian patterns. Winners are able to trigger TIM
cells as described in the preceding section.

The parameters of our network are;

¢, =10.2 ¢ =10
. =0.007 B =09 f.=009.

Figure 6 shows the combined intensity patterns consti-
tuting the input to the third layer WTA for the prototype
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Fig. 4. Sample patterns used in the simulation. Parameters
th, Xy 2, 1, 8 7, 1) are respectively for these patterns:
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Fig. 5. One instance of an initial matching measurement by gaussian
feature analyzing cells. The first 20 cells Gvlite backgroundy code for
the height. the next 20 cells (light gray backgrownd ) code for width,
the Last 20 cells (dark gray background y code for center of un assumed
spatial gaussian i the input. Inital firing intensities are shown as size
of black dots for 1 = 30 of pattern 3
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Fig. 6. Combined intensity patterns, i.c. input to the third layer WTA
for patterns | to 8 of Fig. 4

type patterns. 60 TIM cells have been employed for
every feature in order to allow an arbitrary repetition of
features in time. Table 1 compares the respective over-
laps of input patterns and time-intensity patterns with
each other. We can see immediately that a discrimina-
tion based on overlap is much easier with time depen-
dent patterns mapped to intensities.

A typical recognition example is shown in Fig. 7.
Figure 7a shows one of the prototype patterns in which
a delay was inserted after 1 = 20. In fact. from r = 20 to
1 =40 the signal was just identical with the original
signal of ¢ = 20, Then the development resumed with a
delay of 20 time-steps. As can be observed from a



Table 1. Average off-diagonal overlap between patterns before and
afler time-intensity mapping

~ Off-diagonal Overlap

’P‘atterr?rNr‘ 2-D patterns

’ 1 0577
2 0.669 0.328
3 0637 0359

¢ 0.700 0.248

| 5 . oess | 0s75 |

6 0.676 0394 |

7 L 062 0342

. t B— ,;‘

8 | 0501 0.234 ‘
.
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@ ' (5)
Fig. 7. a Distorted pattern sample. Between 7 = 20 and 1 = 40 the same

spatial pattern was repeated. Development of the original pattern
resumed after this delay of ¢ = 20 time steps. b Resulting TIM pattern

comparision of Fig. 7b and Fig. 6, the resulting TIM-
pattern does not differ greatly from the prototype TIM-
pattern. Table 2 summarizes these results in terms of
respective overlaps of the distorted pattern with all the
prototype patterns.

Our experiments on different kinds of distortion
have shown the following general tendencies:
(i) Distortions in time are generally easily removed by
time-intensity-mapping.
(ii) Multiplicative noise imposed on the patterns some-
times can be removed quite radically by the TIM-pro-
cess. In most cases, however, TIM-patterns are not as
resistant against noise than the original patterns are.
(iif) Global changes in the intensity of patterns are
removed by the normalization operation, even for the
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Table 2. Resuhiing overlaps for the distorted patterns of Fig, 7. In
TIM representation. the patiern is recognized correctly as pattern 7

Overlap with distorted pattern

4 Pattern Nr‘(: 2D i TIM
Yoo 0885 010
e e

RN

4. 0% o0
: 7” ! 0.362
8 } g0.411 3¢

original space-time patterns. Local variations of intensi-
ties, however, are more effectively removed by TIM-
patterns.

(iv) Although width invariance was not built into the
system, a tolerance against width variation of + 10%
was observed.

(v) Similarly, a tolerance against the maximum of the
spatial gaussian detected in the first layer of the net-
work of + 10% was observed.

Since the network was basically constructed to re-
move distortions in time, we concentrated in the statis-
tical part of our simulations on this kind of pattern
variation. Figure 8 shows a comparison of the original
2 dimensional patterns and TIM patterns with respect
to time delays. Time delays between 5 and 40 time steps
for the patterns of length T = 60 were applied and the
resuiting overlap to prototype patterns was calculated.
One observes a rapid deterioration for the original
patterns. Since other original patterns ususally show
overlap of around 0.5...0.8, time delays greater than
10 will nevitably lead to erroneous classification. On
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Fig. 8. Comparison of overlaps between distorted and original pat-
terns for 2-dimensional and TIM patterns. 100 randomly chosen local
time delays were used for each data point
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Fig. 9. Reconstructed patterns, lacking some smoothness due to the
reconstruction from spatial gaussians

Table 3. Average quadratic reproduction errors per component for
patterns 1--8 if number and resolution of feature detecting cells is
lowered

!
Ng:;ggi 2; i:ﬁtsu o Height Width Center All
20 0.0017 0.0017 0.0017 0.0017
18 0.0007 0.0018 0.0065 0.0628
M6 . 00016 | 00040 | 00194 | 00212
14 0.0039 0.0072 0.0410 0.0410
L1 0.0082 0.0136 0.0648 00561
10 0.0156 | 0.0160 0.0873 0.0644
8 | 0019 1 0.0212 0.0967 0.0670
6  ooers F 0.0288 01052 ' 00678
4 | 00549 0052 | 00987 | goe72
2  0.0549 ’ 00532 | 00987 | 00672

the other hand, TIM-patterns are very resistant against
time delays as shown by the 2% figure.

In the remaining part of this section we want to
address the reproduction abilities of the TIM network.
After setting all connections for the reverse mode of
operation of the former case, we can observe the forma-
tion of patterns in time which bear a close similarity to
the original patterns. Figure 9 shows the reproduced
patterns generated in the reverse mode which corre-
spond to original patterns of Fig. 4. Although the
smoothness of the original patterns could not be
reached, the overall ability is evident.

Table 3 gives the quadratic error of the reproduction,
averaged over all dimensions and all the dif-
ferent patterns for various resolutions of the network’s
feature detecting cells. One observes that good resolu-
tion in the detection of the center of the spatial gaussian
is more crucial for a good approximation than a good
resolution for either the width or height of the gaussian.

4 Discussion

We have shown a network capable of removing distor-
tions of patterns in time. The network’s abilities were
demonstrated using artificially constructed patterns
resembling sonograms. It was shown that by using the
Time-Intensity-Mapping method correlations between
distorted and original patterns were by far higher than
those generated using the prototype patterns directly.

Mapping time into intensity, which is effectively
employing a short term memory with appropriate read-
out, uses the constant and homogeneous activity growth
or decay rate of the TIM-cells (memory) to generate
patterns corresponding to transient spatio-temporal pat-
terns. Even after the momentaneous spatial patterns
have disappeared from the input, TIM-cells continue to
hold their effects dynamically. By applying constantly
normalizing WTA cells, patterns can be discerned ac-
cording to the spatial distribution of activities they
generated in the TIM populations. We introduced pop-
ulations of cells in order to allow for an arbitrary
repetition of spatial signals in the input.

Recognition of transient patterns is most obvious if
a continuous stream of input data is used, as was already
demonstrated in Banzhaf (1991). There, the prediction
capabilities of the network were shown by following the
expectations of the network about the spatio-temporal
patterns at the input using selected words of the English
language.

In this contribution we did not address the question
of choosing a suitable time frame for the recognition
process. As the network can output not only its present
expectation but also the present degree of matching
between stored prototype (TIM) patterns and newly
generated ones, this could provide a natural signal for
framing the data-stream. Local maxima of the degree of
matching would signal a successful identification of a
pattern which could reset the TIM cells to a quiet state.

Another problem only briefly mentioned was that of
learning. Once the general architecture is set up.



synapses could be subjected to learning rules. For fixing
the features which are detected in the first layer we
propose an unsupervised (competitive) learning rule
which should be able to equally distribute the feature
analyzing cells among the different feature. As far as
the connections between the TIM layer and the third
layer WTA are concerned. we imagine a supervised
learning rule telling the network which TIM pattern it
should devote a grandmother cell to. Connections
within the TIM layer should be kept fixed for the entire
learning process.

An appropriate extension to the network is to
use an entire hierarchy of networks of the kind
WTA = TIM = WTA = TIM = - - - . The first WTA
recognizes “instantaneous’ spatial patterns, the second
WTA recognizes spatial patterns relayed through a
very short TIM process, the third and subsequent
ones recognize TIM patterns of longer and longer
time-scales. In this way, patterns can be recognized
and reconstructed based on their internal time wise
structure.
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