Benchmarking The Generalization Capabilities Of A Compli-
ing Genetic Programming System Using Sparse Data Sets

Frank D. Francone
Law Office of Frank D. Francone
4806 Fountain Ave. #77
LA, California 90027
ytns65a@prodigy.com
213-953-8584

ABSTRACT

Compiling Genetic Programming Sys-
tems (‘CPGS)) are advanced evolution-
ary algorithms that directly evolve
RISC machine @de. In this paper we
compare the ability of CGPS to gener-
alize with that of other machine learn-
ing (‘ML’) paradigms.

This sdudy presents our results on
three dassfication problems. Our
study involved 720 complete CGPS
runs of population 3000 each, over 500
billi on fitness evaluations and 480 neu-
ral network runs as benchmarks. Our
results were as fdows:

1. When CGPS was trained on data
sets that were not too sparse, CGPS
performed very well, equaling the gen-
eralization capability of other ML sys-
tems quickly and consstently.

2. When CGPS was trained on very
gparse data sets, CGPS produced indi-
viduals that generalized almost as well
other ML systems trained on much
larger data sets.

3. As between CGPS and multi-
layer feadforward neural networks
trained on the same sparse data sets,
CGPS generalized as well (and often
better) than the neural network.

1. I ntroduction

Reseachers in Machine Leaning (‘ML’) frequently en-
counter problems of high dmensiondlity and too littl e data.
Anided ML system would, of course, be &le to generalize
well, even thoughit was trained onsparse data. This paper
compares the dfed of using sparse data sets onthe gener-

Peter Nordin
University of Dortmund,
Dept. of Computer Science
LS11 D-44221 Dortmund Germany LS11 D-44221 Dortmund Germany
nordin@ease.informatik.uni-
dortmund.de. +49 231 9700-956

Wolfgang Banzhaf
University of Dortmund,
Dept. of Computer Science

banzhaf@LS11.informatik.

alizaion cagpability of our Compili ng Genetic Programming
System (‘CGPS) with the generalizaion ability of a K-
Neaest Neighba classfier systems (‘KNN’) and Multi-
layer Fedforward Neural Networks (‘MFLN’).

We used three dasdsfication problems from the ELENA
database—two red world problems and ore difficult but
artificially generated data set. The data sets that we used
were the IRIS, the PHONEME and the GAUSSAN 3D
data sets [ELENA 1995].

ELENA provides a set of KNN benchmarks for ead of
these problems. The ELENA partners derived the KNN
benchmarks using the entire ELENA data sets—usually in
excess of 5000 training pdnts—and ogimized the KNN
performance by varying the value of K urtil the best per-
formance was had on the testing $d}.[

Our purpose in this paper was to test generalizaion per-
formance where the number of training instances was -
verely limited. So the ELENA KNN benchmark figures are
useful primarily to set the boundiries of what performance
might be expeded where we have the luxury of training on
an abundanceof data. Thus, thered question we aldressis
in this paper is, where the training set is arse, how close
can CGPSand MLFN come to the KNN benchmarks that
were derived on much larger data sets?

We performed 720 CGPS runs (240 onead problem)
and 480 rura network runs (240 onead o two of the
problems). Both the CGPS and MLFN runs were per-
formed wing a variety of parameters.

The results were gratifying. CGPSgenerated high qual-
ity solutions withou using any experimenter knowledge of
the problem domain. CGPS often produced solutions that
generalized almost as well as ELENA benchmarks that had
been trained onmuch larger data sets. Finaly, CGPS gen-
erdizaion performance was, by several diff erent measures,
superior to the performance of our 480 reural network
benchmark runs that were trained onthe same sparse data
sets as were the CGPS runs.

2. An Introduction to CGPS

CGPS is the dired evolution d binary macdine mde
throughthe use of evolutionary operators such as crossover
and mutation. It would be imposdble to describe the full
CGPS system in the space #otted. CGPS has, however,

uni-dortmund.de. +49 231 9700-953

been described in detail elsewhere [Nordin 1994 Nordin &
Banzhaf 1995, and Nordin, Francone & Banzhaf, 1996].

In ou description d CGPSbelow and in the works ref-
erenced, the reader will note that although CGPSiis, in a
very general sense, a ‘Genetic Programming’ system, it is
aso very different from ‘Genetic Programming as de-
scribed in [Koza 1997 or as that term is used in the litera-
ture. Among dher things, CGPSdoes naot evolve trees, has
no locd memory, the CGPS genome is linea, crossover
looks more like genetic dgorithm string based crossover
than like GP crosover, CGPS operates diredly on the
CPU'’s registers and CGPSuses only the CPU’s instruction
set. Thus, despite superficial similarities, CGPSshoud be
regarded as an evolutionary algorithm that is quite distinct
from canonical Genetic Bgramming.

21 Description of a CGPS Pogram

An evolved CGPS program is a sequence of binary ma
chine ingtructions. Thus, an evolved CGPSprogram might
be comprised of a sequence of threg 32 kit macine in-
structions. When exeauted, thase three instruction would
cause the CPU to perform three operations on the CPU’s
hardware registers. Here is an example of a smple, three
instruction CGPS program that uses three hardware regis-
ters:
register 2 = register 1 + register 2 (1)
register 3 = register 1 * 128 (2)
regider 3 = register 2 Div regier 3. (3)
One of the three hardware registers in this sample CGPS
program is Eleded as the output register. Once the output
register is sleded, a fitness evaluation for this smple
CGPS program would consist of the following steps:
1. Initialize the hardware registers with the input val-
ues for the fitness instance;
2. Exeaute the aove threeinstruction program {(1)-
(3)} on the hardware registers as initialized; and
3. Bvauate the valuein the seleded ouput register for
fithess against the fitness ftion.

While CGPS programs are gparently very simple, it is
adually posshle to evolve functions of grea complexity
using orly simple aithmetic functions on a register ma-
chine [Nordin & Banzhaf 1995a].

2.2 Protocol for Reporting CPU Time

While there ae many advantages to CGPS the most pro-
nourced advantage is probably speed [Nordin 1994. Sim-
ply put, evolving maciine @de diredly with no compila
tion is much faster than interpreted languages like LISP or
compiled languages like C.

We ondwted 720 runs with large popuations (3000
onead run. We completed the runsin well under 3 weeks
on a single Sun 20 Workstation. But this number grealy
understates the adua speed of CGPS On this projed, at
least 98% of the CPU time was occupied with a reseach
measurement we cdl ‘intron courting'. At the end o eadh
generation, ead individua in the popuation is evaluated
for introns by repladng ead instruction, one-by-one, with
a No-OP instruction and then evaluating the fitness of the
individual with the No-OP instruction included. If this re-

placement of an instruction hes no effed on the individ-
ua’s fitness we murt the instruction as an intron [Nordin,
Francone, & Banzhaf 1996].

Intron courting hes a huge effed on the time it takes to
evolve solutions. For example, an individual that is 100
instructions long requires 100 separate fitness cdculations
that are devoted solely to intron courting. Where the aver-
age sizeof anindividual is 100instructions, intron courting
increases the anourt of time to evolve apopuation by a
fador of 100. Applying this analysis to ou 720 runs, we
have cdculated that intron chedking in the first 20 genera
tions of our runs occupied approximately 98% of the total
CPU time in therun. Becaise the average size of individu-
as grew after generation 2Q the impad of intron courting
grew after generation 20—so a 98% figure adually under-
states the effect of intron counting substantially.

While intron courting yields useful research data [id], it
also has nothing to dowith the immediate job o evolving
high quality individuals—intron courting is purely a re-
seach tod. Had we used a ‘prodwction’ version d CGPS
stripped of intron courting, this entire projed—all 720runs
of 3000 individuals eat—would have been completed in
about eight hours on our Sun 20 workstation.

Henceforth, we will follow the pradice of reporting
CPU time figures for the production pation d the CGPS
system, withou including the ‘reseach’ overhead. This
approach has two advantages. To begin with, it gives con-
sistent performance figures from problem to problem and
from reseach projed to reseach projed—reseach over-
head varies on dfferent projeds. Further, although this
approach to CPU time reporting is approximate, it is more
representative of the time needed to evolve individuals than
the gross figures thatdlude research overhead.

A brief note here on the CPU time occupied by the
MLFN runsis appropriate. Onthe GAUSSAN 3D and the
PHONEME problems, the MLFN runs took abou 320
hours of CPU time on a 66 Megahertz 486 1BM compatible
PC with 20 megabytes of RAM runningin 32 bt DOS ex-
tended mode. Those same two problems occupied abou
4.5 hous of CPU time in the CGPSruns. Of course, the
Sun 20Workstation is a much more powerful machine than
the 486, even running in DOS extended mode. Any further
comparisons of time ae dfedively meaningless because
the plaforms are so radically different.

3. Generalization Issues

31 Measuring Genegalization

We evaluated the generalization o our CGPS and reural
network runs as follows. To begin with, we separated our
data into training and testing sets.

For CGPS runs, the best individual of ead generation
on the training set was evaluated on the testing set. The
results of that test were preserved. After completing the
CGPSrun, we used the data preserved duing the run, as
described abowve, to seled the best generalizing individual
from the run. (We seleded the best generalizing individual
by seleding the individual with the highest number of * hits

on the test data.)) We then used that best generalizing indi-
vidual to represent the generalization of the entire run.

Because the outputs available in the neura network
padkage used were diff erent than the outputs on oo CGPS
program, we had to chocse the best generalizing retwork in
a dightly different manner. For ead neura network run,
the network with the highest R” on the testing set was con-
sidered to be the best generalizer of the run. For compari-
son puposes with the CGPSsystem, we then cdculated the
number of ‘hits' of this best generalizing retwork as a per-
centage of the total testing set.

The foregoing is a decent (though no optimal) way to
test generalization [Masters 1995 Katz 1996. We did na
implement more optimal techniques such as the Jadknife
and Bootstrap methods [Masters 1995 becaise the CPU
timeto perform them on the neural network runs made such
techniques utterly impctical.

3.2 Improving The Measure of Gene-
alization With a Third and Off
Training Sample Data Set.

We a&nowledge one resped in which the @ove meth-
oddogy could have been improved. We docse which
individual (or network) from arun isthe ‘best’ generalizer
by asesdng its performance on the testing data. For exam-
ple, if the best CGPSindividua corredly clasdfied 83% of
the test casesin generation 10 bt in generation 11, the best
individual corredly clasdfied orly 80% of the test cases,
we used the 85% figure to represent the generalization per-
formance of that run.

But once we have dosen the best generalizer in the
above manner, the testing set is, strictly speging, nolonger
a testing set—it has become part of the training set. The
resson? The testing set was used to seled among dff erent
individuals.

The method that we used dces provide useful informa-
tion abou the generalizaion cgpabiliti es of an ML system.
In ou prior experience, we have foundthat there is a de-
cent correlation between generalization onthe testing set
and generalization onentirely new data. But to make our
asssament of generalization more rigorous, a third data set
ouglt to be added. So while our results here ae meaning-
ful, the aility of the best generalizer on the testing set to
generalize on yet a third data set would measure generali-
zdion more acarately. We plan to implement this cgpabil -
ity in our CGPS system in the neature.

33 No Free Lunches?

We a&nowledge the ongdng controversy over the ‘No
Free Lunches theorem and whether it is posdble to find
any algorithm that has any meaningful generalization cgpa-
biliti es [Compare Wolpert 1994 with Rao 199§. It is not
our purpose to add to that discusson here. We simply nate
that, at this paint, the theoreticd guidance offered by pa-
pers on this subjed abou how to judge problem ‘domains
is aifficiently vague that ML yet remains an experimental
science It isin that spirit that we present these findings.
Shoud it turn ou that learning is effedively impossble in
this universe, our work here will be for naught and ou re-

seach group shall have to lean to occupy its time with
pursuits other than experimental machinerizay.

We do, however, agreewith Rao’s emphasis onthe im-
portance of off-training-set error, as we discused above.
And we reped here Rao’s admonition that “[R]esearchers
shoud be caeful not to say that Algorithm A is better than
Algorithm B withou mentioning that this holds with re-
sped to the particular problem distribution.” [Id]. That
was goodadvice both before the ‘No Free Lunches Theo-
rem and emains so today.

4, Description of the CGPS Portion
of the Experiment

Our CGPSexperimental setup stayed mostly constant from
problem to problem. Table 1, contains the general experi-
mental specification [Koza 1992].

Table 1. Experimental Specifiation for CGPS Runs

Classification of data sets from
ELENA Database
Parsimony Factor 0,0.1,0r1

Explicitly Defined IntrongEnabled or Not Enabled
Crossover/Mutation Mix [95/5, 80/20, 50/50, or 20/80
Terminal Set Integer constants initialized
from 0 - 10. May be mutated
to the range, 0 - 255.
Addition, Multiplication, Sip-
traction, Division

Number of Hardware [One more than the number of
Registers classes in the data.

Number of Fitness Casef’5-100. Varies with problem
Number of Testing Caselg¥5-100. Varies with problem
Fitness Fuation Sum of Absolute Deviations.
Hits See discussion above.
Wrapper None

Population Size 3000

Selection for Genetic |Tournament. 4/2. Children
Operators replace the losing members ¢
the tournament.

200 Generations or Destructive
Crossover falls to less than
10% of the total crossover
events, whichever comes first.
Maximum Individual Sizg256 instructions.
Total Number of Runs |720

Objective

Function Set

=Y

Termination Criteria.

Some of the parameters mentioned in Table 1 merit sepa-

rate discssion.

41 Parameters That We Varied From
Run To Run

We varied three of the parameters from run to run. These
parameters were: Parsmony Fador, Explicitly Defined
Introns, and Cra®ver/Mutation Mix.

There were twenty-four different combinations of values
used for the &owve parameters (Table 1). Each of those
twenty-four combinations of parameters was run for eat
of our threeproblem sets onten dfferent randam seeds. As
aresult, we conducted a total of 240 runs per problem set.
On the three problems reported here, we cndwcted a total
of 720 runs.

42 Fitness Function

We had to define an appropriate fitnessfunction for class-
fication problems where the number of classes might vary
from problem to problem. We did that as follows. We
seleded ore hardware register as the output register. The
value in the output register was then evaluated for fitness
on a particular fithess case addws:

If aparticular fithesscase shoud have been classfied as
being a member of ClassO, then the fithessof the individ-
ual for that fitnesscase is the @solute value of the differ-
ence between the value in the output registerl&ed

If aparticular fithesscase shoud have been classfied as
being a member of Class1, then the fitnessof the individ-
ual for that fitnesscase is the @solute value of the differ-
ence between the value in the output register and 200, and
so forth where there are more classes.

43 Measuring Testing Set Hits

Table 2 is the lookup table that we used to determine the
meaning d avalue mntained in the Output Register of an
individual for a paticular fithess case.

If the Predicted ClassMembership determined by Table
2 for a particular fithesscase is corred, then that prediction
iscourted asa ‘Hit’ for that fitnesscase. The total number
of hits for an individual is then divided by the total number
of test cases. Where the testing set is 100 in size, and
where an individual gets 75 Hts on the test set, that indi-
vidual's Hit score would, therefore, be 75%.

Table 2. Class Membership Corresponding to Output
Register Values

Output Register Predicted Class
Value of . .. Membership
50 -149 Class 0
150 - 249 Class 1
250 - 350 Class 2

Table 2 was obviously designed arbitrarily. The effect of
that design is that researcher knowledge of the domain
space could not bias the results.

44 Function Set

We deliberately used a very simple function set—the
arithmetic operators. The purpose of using the same func-
tion set that we used for previous ymboalic regresson work
was to maintain as much independence & posshle from
experimenter knoledge of the problem domain.

45 Parsimony Factor

We used threediff erent values for the parsimony facdor—o0,
0.1, and 1 A value of n for the parssmony fador means
that the n times the length of the individual (measured by
the number of instructions that comprise the individua) is
subtraded, in the fitness function, from the fitness of the
individual. A value of 0.1 for the parsimony fador, there-
fore, means that 1/10 o the length of an individua is sub-
tracted from the fitness of thedividual.

4.6 Explicitly Defined Introns

Explicitly Defined Introns (‘EDI’S) were developed in our
previous work where we found that using EDI’s to alow
GP to vary the probability of crossover between instruc-
tions withou effeding the fitness cdculation d the indi-
vidual improved fitness generalization and speed. [Nordin,
Banzhaf & Francone 1996] We enabled EDI's in the
manner described in the dorementioned work for one half
of all runs.

47 Termination Crit erion.

The maximum number of generations that we dlowed the
system on any CGPSrun was 200 gnerations. However,
we have previously reported a strong correlation between
the exporentia growth of the size of programs and a de-
cline in the portion o total crossover events that can be
charaderized as destructive aossover [Nordin, Francone &
Banzhaf 1996. Infad, our ealier findings suggest that, at
the point where such exporential growth occurs, al effec
tive training is over [Id]. Accordingly, we monitored the
rate of destructive aosover during training. When de-
structive aosover fell to 10% of the total crosover events
in any gven generation, we terminated the run even if it
had not reached generation 200.

This ealy run termination approach saved a substantial
amourt of CPU time. Over 52% of our 720 runs were ter-
minated by generation 80because of the ealy termination
criterion. Had these runs not terminated ealy, they would
have @ntinued the full 200 gnerations. Had we not used
our ealy termination criterion, the total number of genera-
tions that our system would have needed to complete dl
720 runs would have been 144000 generations (720 runs
times 200 generations per run). Instead, our system needed
only 75134 generations to complete the entire 720 runs.
This savings was entirely due to ou ealy termination crite-
rion based on monitoring the destructive aossover rate
relative to the total crossover rate.

5. Description of the Multilayer
Fealforward Neural Network
Portion of the Experiment

51 Selection of the MLFN

We dedded to run the same sparse data that we used in our
CGPS runs on at leest one other established machine
leaning system. We spent some time dedading whether to
use aMultilayer Feedforward Neural Network or a Prob-

abili stic Neural Network (‘PNN’). Generally spe&ing, a
PNN is better for classfication problems and is much faster
than aMLFN. We had accessto MLFN and PNN software
from the same venda so we discussed with the vendor
which of the modues would work better on our sparse data
set problem. It was suggested that the MLFN modue
would be more dfedive where the number of training
samples were limited [Katz 1996. As aresult, we ran the
same sparse data used for our CGPSruns on the N-TRAIN
MLFN modue from version 102 d the N-TRAIN Neura
Network Development System [McCormick and Katz
1997. N-TRAIN uses the bakpropogation agorithm to
train multil ayer feedforward neural networks. N-TRAIN
runs in 32 bt DOS extended proteded mode. Thus, it is
very fast for a PC basedssym.

52 Neural Network Architectures

We used a fully conreded three layer MLFN with linea
neurons in the input layer and sigmoid neurons in the other
layers. We varied the number of hidden neurons acarding
to the following potocol, which we set in advance of
training and testing. For a network that has n independent
variables as inpus, we did 30training runs using 30differ-
ent randam sedls for eat network architedure that could
be constructed consistent with the following rules:
1. The network has an inpu layer consisting d n
linear neurons,
2. The network has one hidden layer consisting o k
sigmoid neurons wheme<=k <=n*2; and
3. Thenetwork has an ouput layer consisting o one
sigmoid neuron.
So where there were three inpus for a problem, we did a
set of 30 runs using 30randam seeds ead for three layer
architedure consisting o 3, 4, 5 and 6 hdden neurons, re-
spectively.

Based on ou past experience, this range of hidden neu-
rons usually gives a good coverage of the better network
structures. When the &owve runs were finished, we exam-
ined whether generalization performance gpeaed to be
improving at either the high a low end d the hidden neu-
ron architedures. If so, we performed runs for the next two
numbers of hidden neuronsin the diredion that the network
performance generalization was improving. By way of
example, if the generalizaion performance in the &owve
example gpeaed to be improving between 5and 6 hidden
neurons, we would do 30runs using 30random seeds for 7
and 8 hdden nreurons architedures. If the performance
continued to improve, would dotwo more hidden neurons
and so forth. {We note, in retrosped, that this procedure of
expanding the number of hidden neurons based onexisting
results probably biased the experiment in favor of the
MLFN architedure. No such interative procedure was fol-
lowed onthe CGPSportion d the experiment. Were we to
do this again, we would eliminate that portion d the e-
periment.}

After we finished the a&ove procedure, we performed
enoughextraruns on that problem using rew randam seeds
distributed evenly over all of the hidden neuron configura-
tions used in the @ove procedure so that the total number

of runs on that problem with the MLFN equaled 240runs.
Completing 240runs with the ML FN—the same number of
runs that we performed with the CGPS system—qgrealy
improves the usefulnessof the differencein means gatisti-
cd test between the MLFN and the CGPS which test we
will use later [Crow, Davis &axfield 1960].

Based onthis protocol, we performed 60runs ead with
3-6 hidden reurons on the GAUSSAN 3D problem, which
had 3inpus. We dso performed 30 runs ead with 3-10
hidden neurons for the PHONEME problem set, which had
5inpus. Therefore, the total number of runs we performed
on the GAUSSAN 3D problem set was 240 and the num-
ber on the PHONEME problem set was 240.

53 Data Preprocessing

Our CGPS runs required integer inpus. Neural networks
require that inpus be scded intherangeOto 1 a -1to 1
range. We scaled the inputs to the 0 to 1 range.

For reasons that are discussed below, we ran the MLFN
only onthe GAUSSAN 3D and PHONEME problem sets.
Each o those sets had orly two ouput classes. Therefore,
we gave the output data to the network as follows: All in-
stances that were Class0 were asdgned an ouput value of

0—all those of Class 1 were assigned an output value of 1.

54 MLFN Parameter Settings

For the most part, we used the default parameter settings
that come with the program—having found them in ou
previous work to be an effedive parameter set. There
were, however, three parameters that we changed from the
default setting, each of which is detailed below.

The reader will note that we made our changes in the
MLFN parameters using the suggestions of the proprietor
of the MLFN software. His suggestions were excdlent and
greatly improved the performance of the MLFN system.

55 Learning Rate and Neuron Type
Parameters

In ou initial MLFN runs, we used the N-TRAIN default
leaning rate and reuron type settings. The results from
those runs were unexpededly poa. The venda suggested
that a much lower leaning rate of 0.25 would be doser to
optimum for our problems. In addition, he suggested that
we use linea instead of sigmoid neurons on the input layer
[Katz 199. We made those two adjustments to the pa
rameters with greatly improved training results.

56 Error Tolerance Parameter Used to
Determine Testing Set Hits

In order to compare the CGPShits with MLFN hits, we had
to measure the hit rate of the MLFN. In order to measure
the MLFN hit rate, it is necessary to set a parameter cdled
‘error tolerance [McCormick and Katz 1997. This proved
to be the most difficult parameter to set in a principled
manner.

Simply put, the eror tolerance parameter determines
how close to 0 or 1 the network output must be in order to
be murnted as a ‘hit.” The program default setting d 0.10
meant that the network must output a value of less than

0.10 a greder than 0.90to be wurted as a ‘hit.” All out-
puts ketween 0.10 and 0.90 were counted as wrong.

This default setting caused very poa performance by
the MLFN because, the networks that had the best R” on the
testing set were generating a lot of ‘corred’ answers that
were between 0.10 and 090. (By ‘corred’, we mean that
the network output was closer to the mrred answer than it
was to the wrong answer.)

The solution onthis might initially seem to be to set the
error toleranceto 04999 This, however, forces the MLFN
to ‘guess. That is, where there ae only two classes, the
MLFN cannat do worse than 50% hits with an error toler-
ance of 0.4999 But the reader will note that the CGPS
system was st up so that it was not forced to guess So this
solution was also not acceptable.

We finally eleded to use an error tolerance of 0.25.
This ssemed to deliver good rformance but to prevent the
MLFN from using a range of outputs (between 0.25 and
0.75) where there was littl e or no relation between the net-
work output and the mrred answers. Thisisnot an entirely
satisfadory solution bu it was the best we could devise
given the differences between the paradigms.

5.7 Run Termination and Testing
Granulation

Run termination onthe MLFN problem was determined by
number of pases of the badkpropogdion agorithm through
the training set. We started ead run with 200runs through
the training set, tested and stored the results. Theredter,
we tested every 50 runs throughthe training set. Each run
comprised 10200 runs through the training set and was
then ended.

We examined the murse of training under this protocol
on abou 50 d the runs and satisfied ouselves in ead case
that: (1) the granularity of testingwas aufficient to cach the
best or very close to the best network in generalizing
cgpabiliti es; and (2) that we had performed enough runs
through the training set to asaure that the run hed indeed
locaed the best maximum generalizer for that random seed
and network configuration.

6. ThelRIS Dataset.

6.1 The Full Dataset.

The IRIS dataset contains three d¢asses and the total num-
ber of datainstancesis 150 Each of the dassesis atype of
IRIS plant [ELENA 1995 page 35]. This is a smple
problem domain and, given a large enough training set,
good results are to be expectéd].|

6.2 The KNN Bendimark.

The ELENA benchmark clasdfier for this problem is a
KNN clasdfier run wing the Leave-One-Out method with
K =7.A KNN (K-Neaest-Neighbas) classfier determines
the dassof a fithesscase by examining the dass member-
ship of its K neaest neighbas. Performance is optimized
by varying K for any particular problem domain Becaise
of the use of the leare-one-out method, the dataset for de-
riving the KNN benchmark was 149 instances. The result-

ing error rate for the KNN classfier was between 0% and
7.3% [ELENA 1995at 356]. We asume that the wide
range of the eror rate was due to a wide 95% confidence
interval onthisrelatively small sample size (149. In short,
a hit rate for CGPS of between 927% and 1004 on the
IRIS data would mean the CGPS result is datigticdly
equivalent to the KNN benchmark.

7. | RIS Generali zation Results

71 Sparse IRIS CGPS Training Set

Our training set sizewas 75, which is abou half the size of
the training set used in deriving the KNN benchmark. De-

spite the relatively sparse training set, CGPS did very well.

1.2 IRIS CGPS Results

Every IRIS CGPSrun yielded at least one individual that
generalized at a hit rate that was gatisticdly indistinguish-
able from the ELENA KNN benchmark.

92% of the IRIS runs resulted in individuals that gener-
alized better than or equal to 95% hits and 176 of the IRIS
runs resulted in individuals that generalized better than
96% hits. Furthermore, CGPSfoundits benchmark-quality
solutions quickly. In 78% of IRIS runs, our GP system had
ewlved anindividud that generalized as well as the KNN
benchmark by the end o generation ore of training. In
fad, our CGPS system generated at least one new bench-
mark quality solution approximately once every one half
second.

7.3 IRIS MLFN R esults.

Wedid nd runthe MLFN system onthe IRIS data because,
in discussons with the MLFN software vendar, he indi-
céted that he had runthe IRIS data and that his results were
in the range that made them likely to be statigticdly indis-
tingushable from our CGPS runs. Given ou time on
straints and what turned ou to be the simplicity of the IRIS
problem, we believe it safe to conclude that the MLFN
generalization would have been statisticdly indistinguish-
able from CGPS generdizaion onthis problem. Accord-
ingly, we did not run the IRIS problem on MLFN.

8. PHONEME Remgnition Dataset.

8.1 The Dataset.

The PHONEME reoogntion database mntains two classes
of data—nasal vowels (Class0) and aa vowels (Class 1)
from isolated syllables poken by different spedkers. “This
database is composed of two classes in 5 dimensions.
There ae 5404 tterns; 3919for class zero and 1586for
classone. . . . [T]his number of samples is just sufficient
for the database dimension.” [ELENA 1995at 30]. Note
that, while 150 dita points was sifficient for the IRIS
problem, 5404 dita pointsisregarded as ‘just sufficient’ for
the PHONEME Remgrition set because of its higher di-
mensionality and greaterféiculty [1d].

8.2 The KNN Benchmark

The benchmark onthis problem is a KNN classfier with K
set to 20 The benchmark was derived from 5404 training
instances. The mean misclassfication rate cdculated by
the KNN Benchmark is 14.2% [ELENA 1995 Page 31].
Therefore, any CGPSor MLFN run that has Hits that equal
or exceal 858% has generaized as well as the Bench-
mark.

0. Generalization Resultson the
PHONEME Dataset.

Sparse Training Set for CGPS and
MLFN on the PHONEME D ataset.

We gave our system only 100 dita points for training and
ancther 100 for testing rather than the 5404 dita points
used to derive the KNN Benchmark. Thus, we withheld
from the CGPS over 98% of the training instances that
were avail able to the Benchmark. Andwe did so ona data
set where ordinary statisticd analysis suggests that our
system ough to need those extra training samples to do a
good job [ELENA 1995. Page 30-1].

9.2 Relative Generalization Results of
CGPS and MLFN on Sparse PHD-
NEME Recognition Dataset.
Both CGPSand the MLFN did respedably at finding indi-
viduals that generalized well—many runs produced indi-
viduals that were of nea benchmark quality despite the
sparse training set. Table 3 contain the mean hit rates re-
sultsfor all, the best 25% and the best 10% of PHONEME
Recognition runs for both MLFN and CGPS.

9.1

Table 3. PHONEME Recognition Results. Mean Hits by ELENA
KNN Benchmark, by CGPS and by MLFN systems. All Runs, Best
25% Of Runs, Best 10% Of Runs, and Best Run.

System | AllRuns | Best25% [Best 10% Best Run
KNN 85.8%
CGPS 77.6% 80.5% 81.2% 85%
MLFEN 71.6% 79% 80.9% 82%

By any measure on this problem, CGPS outperformed
the MLFN in generalizaion. The differences in perform-
ance ae, for the most part statisticdly significant. To test
statisticd significance, we performed the test for a hypathe-
sized dfference between two means assuming urequal
variances. Table 4 setsforth ou results. P is the probabil -
ity that the adual difference between the CGPSand MLFN
means is less than the hypothesized difference.

Table 4. PHONEME Recognition Results. Statistical Significance
Level of Hypothesized Difference Between the CGPS Mean Hits and
The MLFN Mean Hits.

Measured in CPU time, CGPS generated a solution that
generalized at least 90% as well as the Benchmark figure
abou once every 1 minute. And, finally, CGPS generated
a solution that was almost identica to the Benchmark fig-
ure about once every 55 minutes.

10. TheGAUSSAN 3D Dataset

101 The Full Dataset.

GAUSSAN 3D is athreeinpu, two class database that is
generated artificialy. ClassO is a the set of points with a
normal distribution aaoss the three input axes with zero
mean and standard deviation d 1. Class1 isasimilar se-
ries of points except that the standard deviation is 2.
[ELENA 1995 Page 14.] Thisisan dfficult classficaion
problem because the dasss are linealy nonseparable and
because of overlap between the two classes [Figure 1].

102 The Benchmarks.

There are several benchmarks available on this problem:

1. The theoreticd Bayes confusion boundry is 21.4%.
It isnot possble to generalize better than this on this prob-
lem [ELENA 1995 Page 16]. Therefore a Hit rate of
78.6% shoud be the best posgble performance of any clas-
sifier on these data.

2. ELENA’s KNN clasdfier (K = 35) using the leave-
one-out method yields an error on 5000training samples of
22.2%. Therefore, a hit rate of 77.8% would be cmpeti-
tive with the KNN benchmark [ELENA 1995]

3. A Binary Boltzman Machine and A Leaning Vedor
Quantization system attained results virtually the same &
the Bayes minimum but had to use 4,500,000 and 100000
training samples respedively to attain that result [ELENA
1995].

103 Generalization Results On The

GAUSSIAN 3D Dataset.

The task we @dgned to CGPS and the MFLN on the
GAUSSAN Data set seemed daunting. We gave them only
100 training samples. In short, we withheld fully 98% of
the 5000 training samples that were available to the KNN
benchmark measure. Figure 1 is a projedion d 100 pants
from the GAUSSAN 3D data set into two dmensions.
CGPS andthe MLFN’sjobs were to dstingush the darker
diamonds (class 0) from the lighter dashes (class 1).
Again, both CGPS and the MLFN did respedably at
finding individuals that generalized well. Table 5 contains
the mean hit rates results for all, the best 25% and the best
10% of the GAUSSIAN 3D runs for MLFN and CGPS.

Table 5. GAUSSIAN 3D Results. Mean Hits by ELENA KNN
Benchmark, by CGPS and by MLFN systems. All Runs, Best 25% of
Runs, Best 10% of Runs and Best Run

Differences All Runs Best 25% Best 10%
Actual Diff. 6% 1.5% 0.3%
Hypothesizediff. 5% 0.9% 0.05%
P 0.0141 0.0341 0.0884

System | AllRuns | Best25% [Best 10% Best Run
KNN 77.8%
CGPS 57.4% 63.9% 67% 72%
MLEN 56.8% 62.4% 64.9% 68%

Once gyain CGPSoutperformed the MLFN in the over-
all mean and onthe upper tail of the generalizaion dstri-
bution. Again, the differences in are dtatisticdly signifi-
cant. Table 6 presents the same types of statisticd results
for the GAUSSAN 3D data set as did Table 4 for the
PHONEME recgnition data.

Table 6. GAUSSIAN 3D Results. Statistical Significance Level of
Hypothesized Difference Between the CGPS Mean Hits and The
MLFN Mean Hits.

Differences All Runs Best 25% Best 10%
Actual Diff. 0.6% 1.5% 2.14%
Hypothesizediff. 0.2% 0.5% 1%
P .0601 .0264% .0484

problem sets well and quckly. It did so somewhat more
effedively than the MLFN used here. CGPSdid well even
thoughwe used simple functions and made no adjustments
to help the system solve the particular problems presented.
In short, our solutions were & free from experimenter
knowledge of the solution space as we could make them.

CGPS ahility to generalize from sparse data sets was
quite mnsistent. From the time figures noted abowve, with
enoughCPU time, CGPSwas able to extrad good lkench-
mark or nea benchmark quality individuals using sparse
data. Of course, on the GAUSSAN 3D and PHONEME
problems, additional data was available—so in a sense, it
was nat necessry to utilize the extra CPU time to generate
solutions that generalized well. We oould just as well have
used larger training sets. But in the red world, thereis fre-

Measured in CPU time, CGPS generated an individual 909fuently toolittl e data for the dimensionelity of the problem.

as good as the KNN benchmark every 18utes.

Figure 1. Sparse GAUSSAN 3D Data Set Projeded
into Two Dimensions. 100 Data Points.

11. Discusson.

111 The Future of the IRIS Problem

The eaiest conclusion to draw from our data is that the
IRIS data set is probably nat a very good test of any
madine leaning system—it is too easy. CGPS evolved
programs by the end o Generation 1that were only a few
instructions long that did extremely well in classfying the
IRIS data. The ea&e of the problem is aso indicaed by
reported MLFN results [Katz 1996. Of course, a finding
that a machine leaning system could not do well on the
IRIS data would be quite asignificant finding. Other than
that, researchers shoud probably stop wsing the IRIS data
as being indicative of very much of anything.

112 CGPS and Generalization on
Sparse Data Sets.

For the most part, our other results ek for themselves.
CGPSgenerated solutions that generalized onthe other two

This suggests that CGPSmay be agoodchoicefor clasgfi-
cation problems where the available data is sparse.

113 Relative Distribution of Generaliza-
tion Results: MLFN vs. CGPS.

One of the most interesting comparisons between the
CGPS and MLFN paradigms comes from examining the
distribution d their relative generalizaion scores over all
runs. Figures 2 and 3 show those distributions for the
PHONEME and the GAUSSAN 3D data sets. What jumps
out isthat MLFN results are spread fairly uniformly over a
wide range—a normal or flattened namal distribution.
The CGPSresults are mncentrated very heavily aroundthe
mean, have avery short low endtail, and heve alongtail in
the upper end d the distribution. This longtail is the rea
son CGPSoutperformed MLFN in the high quality solution
regions [Tables 3-6]. Given CGPSgreder freedom of rep-
resentation than MLFN, this tightly burched distribution is,
intuitively, the opposite of what we expected.

More fundamentally, the relative uniformity in CGPS
results from run to run cccurred despite the rather radicd
set of parameter changes that we made anong runs. This
sugeests that mere repetition d runs with dfferent pa
rameters and randam seeds may na a particularly good
approach to using CGPS The same seach space ppeas
to keep being explored over and ower [See Mahoud 1995.
Thisimpliesthat recent reseach where information geaned
from one runis used to improve the performance on subse-
quent runs may well be avery important future diredion for
research\IVhigham 1995Zannoni & Renolds 1996].

Acknowledgments

We would like to thank the ELENA partners for assembling
the ELENA databases and the benchmark data.

We dso thank the reviewers and William Langdon
whose questions and comments were vergfakl

Figure 2. Phoneme Rewgnition Problem. Comparative
Histograms of all CGPS Runs (bars) and
MLFN Runs (lines) Sorted by Generalization
Performance.

Jeffrey Katz of Scientific Consulting, Inc. helped us
configure the parameters on his N-Train Neural Network
system for benchmarking purposes.

We would also like to acknowledge suppat from the
Ministerium fur Wissenschaft und Forschung des Landes
Nordrhein-Westfalen, under grant 1-A-4-6037.1.

Bibliography

Crow, E., Davis, F. and Maxfield, M. 196Q Statistics Man-
ual, NY, NY. Dover Publications, Inc.

ELENA Partners, The. Jutten, C., Projed Coordinator
1995 Esprit Basic Reseach Projed Number 6891,
Document Nmber R3-B1-P.

Katz, J. 1996 Designer and avner of Scientific Consultant
Services, Inc., proprietor of N-Train neural network
software. Personal oonunication.

Koza J. 1992 Genetic Programming, Cambridge, MA:
MIT Press.

Mahoud S. 1995 Niching Methods for Genetic Algorithms,
i GAL Technicd Report No 95001 University of |1-
linois. Dept. of General Engineering.

Masters, T. 1995 Advanced Algorithms for Neural Net-
works. NY, NY, JohnWiley and Sons Inc. Pages 335
376.

McCormick, D. and Katz, J. 1992 N-TRAIN Neural Net-
work Development System, Users Manual, V.1.02

Nordin, JP. 1994 A Compiling Genetic Programming
System that Diredly Manipulates the Machine Code.
In Advances in Genetic Programming, K. Kinnea, Jr.
(ed.), Cambridge MA: MIT Press.

Nordin, J.P., Francone, F. and Banzhaf, W. 1996 Explic-
itly Defined Introns and Destructive Crosover in Ge-
netic Programming. Advances in Genetic Program-
ming 2 K. Kinnea, Jr. (Editor), Cambridge MA: MIT
Press.

Nordin, J.P., Banzhaf W. 1995 Complexity Compresson
and Evolution. In Proceeadings of Sxth Internationd

Number of Runs

Figure 3. Gausdan 3D Problem. Comparative Histo-
grams of all CGPS Runs (bars) and MLFN
Runs (lines) Sorted by Generalization Per-
formance.

Conference of Genetic Algorithms, Morgan Kaufmann
Publiders, Inc.

Nordin, J.P., Banzhaf, W. 199%. Evolving Turing Com-
plete Programs for a Register Machine with Self Modi-
fying Code. In, Procealings of Sxth Internationd
Conference of Genetic Algorithms, Morgan Kaufmann
Publishers, Inc.

Rao, B, Gordon, D. & Speas, W. 1995 For Every Gener-
aization Action, Is There Redly an Equal and Oppo-
site Readion. Analysis of the Conservation Law for
Generdization Performance In Prieditis, A. and Rus-
sell, S. (editors). Procedalings of the Twelfth Interna-
tiond Conference on Machine Learning. San Fran-
cisco, CA: Morgan Kaufmann Publishers, Inc. Pages
471-9.

Whigham, P. 1995 Gramaticdly Based GP. In Rosca, J.
(editor). Procealings of the Genetic Programming
Workshop d the 12" Annud Machine Learning Con-
ference

Wolpert, D. H. 1994 Off-Training St Error And A Priori
Digtinctions Between Learning Algorithms, Technicd
Report, Santa Fe Institute, Santa Fe, N.M.

Zannorn, E. and Reynalds, R., Extrading Design Informa-
tion from Genetic Program Using Cultural Algorithms.
In Procedalings for the Fifth Annud Conference on
Evolutionary Programming1996.

