
Benchmarking The Generalization Capabilities Of A Compil-
ing Genetic Programming System Using Sparse Data Sets

Frank D. Francone
Law Office of Frank D. Francone

4806 Fountain Ave. #77
LA, California 90027
ytns65a@prodigy.com

213-953-8584

Peter Nordin
University of Dortmund,

Dept. of Computer Science
LS11 D-44221 Dortmund Germany

nordin@ease.informatik.uni-
dortmund.de.  +49 231 9700-956

Wolfgang Banzhaf
University of Dortmund,

Dept. of Computer Science
LS11 D-44221 Dortmund Germany

banzhaf@LS11.informatik.
uni-dortmund.de.  +49 231 9700-953

ABSTRACT
Compili ng Genetic Programming Sys-
tems (‘CPGS’) are advanced evolution-
ary algor ithms that directly evolve
RISC machine code.  In this paper we
compare the abili ty of CGPS to gener-
alize with that of other machine learn-
ing (‘ML’) paradigms.

This study presents our results on
three classification problems.  Our
study involved 720 complete CGPS
runs of population 3000 each, over 500
billi on fitness evaluations and 480 neu-
ral network runs as benchmarks.  Our
results were as follows:

1. When CGPS was trained on data
sets that were not too sparse, CGPS
performed very well , equaling the gen-
eralization capabili ty of other ML sys-
tems quickly and consistently.

2. When CGPS was trained on very
sparse data sets, CGPS produced indi-
viduals that generalized almost as well
other ML systems trained on much
larger data sets.

3.  As between CGPS and  multi-
layer feedforward neural networks
trained on the same sparse data sets,
CGPS generalized as well (and often
better) than the neural network.

1. Introduction
Researchers in Machine Learning (‘ML’) fr equently en-
counter problems of high dimensionality and too littl e data.
An ideal ML system would, of course, be able to generalize
well , even though it was trained on sparse data.  This paper
compares the effect of using sparse data sets on the  gener-

alization capabilit y of our Compili ng Genetic Programming
System (‘CGPS’) with the generalization abilit y of a K-
Nearest Neighbor classifier systems (‘KNN’) and Multi -
layer Feedforward Neural Networks (‘MFLN’).

We used three classification problems from the ELENA
database—two real world problems and one diff icult but
artificially generated data set.  The data sets that we used
were the IRIS, the PHONEME and the GAUSSIAN 3D
data sets [ELENA 1995].

ELENA provides a set of KNN benchmarks for each of
these problems.  The ELENA partners derived the KNN
benchmarks using the entire ELENA data sets—usually in
excess of 5000 training points—and optimized the KNN
performance by varying the value of K until the best per-
formance was had on the testing set [Id].

Our purpose in this paper was to test generalization per-
formance where the number of training instances was se-
verely limited.  So the ELENA KNN benchmark figures are
useful primarily to set the boundaries of what performance
might be expected where we have the luxury of training on
an abundance of data.  Thus, the real question we address is
in this paper is, where the training set is sparse, how close
can CGPS and MLFN come to the KNN benchmarks that
were derived on much larger data sets?

We performed 720 CGPS runs (240 on each problem)
and 480 neural network runs (240 on each of two of the
problems).  Both the CGPS and MLFN runs were per-
formed using a variety of parameters.

The results were gratifying.  CGPS generated high qual-
ity solutions without using any experimenter knowledge of
the problem domain. CGPS often produced solutions that
generalized almost as well as ELENA benchmarks that had
been trained on much larger data sets.  Finally, CGPS’ gen-
eralization performance was, by several different measures,
superior to the performance of our 480 neural network
benchmark runs that were trained on the same sparse data
sets as were the CGPS runs.

2. An Introduction to CGPS
CGPS is the direct evolution of binary machine code
through the use of evolutionary operators such as crossover
and mutation.  It would be impossible to describe the full
CGPS system in the space allotted.  CGPS has, however,



been described in detail elsewhere [Nordin 1994, Nordin &
Banzhaf 1995, and Nordin, Francone & Banzhaf, 1996].

In our description of CGPS below and in the works ref-
erenced, the reader will note that although CGPS is, in a
very general sense, a ‘Genetic Programming’ system, it is
also very different from ‘Genetic Programming’ as de-
scribed in [Koza 1992] or as that term is used in the litera-
ture.  Among other things, CGPS does not evolve trees, has
no local memory, the CGPS genome is linear, crossover
looks more like genetic algorithm string based crossover
than like GP crossover, CGPS operates directly on the
CPU’s registers and CGPS uses only the CPU’s instruction
set.  Thus, despite superficial similarities, CGPS should be
regarded as an evolutionary algorithm that is quite distinct
from canonical Genetic Programming.

2.1 Description of a CGPS Program
An evolved CGPS program is a sequence of binary ma-
chine instructions.  Thus, an evolved CGPS program might
be comprised of a sequence of three, 32 bit machine in-
structions.  When executed, those three instruction would
cause the CPU to perform three operations on the CPU’s
hardware registers.   Here is an example of a simple, three
instruction CGPS program that uses three hardware regis-
ters:

register 2 = register 1 + register 2 (1)
register 3 = register 1 * 128 (2)
register 3 = register 2 Div register 3. (3)

One of the three hardware registers in this sample CGPS
program is selected as the output register. Once the output
register is selected, a fitness evaluation for this sample
CGPS program would consist of the following steps:

1.   Initialize the hardware registers with the input val-
ues for the fitness instance;

2.   Execute the above three instruction program { (1)-
(3)} on the hardware registers as initialized; and

3.   Evaluate the value in the selected output register for
fitness against the fitness function.

While CGPS programs are apparently very simple, it is
actually possible to evolve functions of great complexity
using only simple arithmetic functions on a register ma-
chine  [Nordin & Banzhaf 1995a].

2.2 Protocol for Reporting CPU Time
While there are many advantages to CGPS, the most pro-
nounced advantage is probably speed [Nordin 1994].  Sim-
ply put, evolving machine code directly with no compila-
tion is much faster than interpreted languages like LISP or
compiled languages like C.

We conducted 720 runs with large populations (3000)
on each run.  We completed the runs in well under 3 weeks
on a single Sun 20 Workstation.  But this number greatly
understates the actual speed of  CGPS.  On this project, at
least 98% of the CPU time was occupied with a research
measurement we call ‘ intron counting’ .  At the end of each
generation, each individual in the population is evaluated
for introns by replacing each instruction, one-by-one, with
a No-OP instruction and then evaluating the fitness of the
individual with the No-OP instruction included.  If this re-

placement of an instruction has no effect on the individ-
ual’s  fitness, we count the instruction as an intron [Nordin,
Francone, & Banzhaf 1996].

Intron counting has a huge effect on the time it takes to
evolve solutions.  For example, an individual that is 100
instructions long requires 100 separate fitness calculations
that are devoted solely to intron counting.  Where the aver-
age size of an individual is 100 instructions, intron counting
increases the amount of time to evolve a population by a
factor of 100.  Applying this analysis to our 720 runs, we
have calculated that intron checking in the first 20 genera-
tions of our runs occupied approximately 98% of the total
CPU time in the run.  Because the average size of individu-
als grew after generation 20, the impact of intron counting
grew after generation 20—so a 98% figure actually under-
states the effect of intron counting substantially.

While intron counting yields useful research data [id], it
also has nothing to do with the immediate job of evolving
high quality individuals—intron counting is purely a re-
search tool.  Had we used a ‘production’ version of CGPS
stripped of intron counting, this entire project—all 720 runs
of 3000 individuals each—would have been completed in
about eight hours on our Sun 20 workstation.

Henceforth, we will follow the practice of reporting
CPU time figures for the production portion of the CGPS
system, without including the ‘research’ overhead.  This
approach has two advantages.  To begin with, it gives con-
sistent performance figures from problem to problem and
from research project to research project—research over-
head varies on different projects.  Further, although this
approach to CPU time reporting is approximate, it is more
representative of the time needed to evolve individuals than
the gross figures that include research overhead.

A brief note here on the CPU time occupied by the
MLFN runs is appropriate.  On the GAUSSIAN 3D and the
PHONEME problems, the MLFN runs took about 320
hours of CPU time on a 66 Megahertz 486 IBM compatible
PC with 20 megabytes of RAM running in 32 bit DOS ex-
tended mode.  Those same two problems occupied about
4.5 hours of CPU time in the CGPS runs.  Of course, the
Sun 20 Workstation is a much more powerful machine than
the 486, even running in DOS extended mode.  Any further
comparisons of time are effectively meaningless because
the platforms are so radically different.

3. Generalization Issues

3.1 Measuring Generalization
We evaluated the generalization of our CGPS and neural
network runs as follows.  To begin with, we separated our
data into training and testing sets.

For CGPS runs, the best individual of each generation
on the training set was evaluated on the testing set. The
results of that test were preserved.  After completing the
CGPS run, we used the data preserved during the run, as
described above, to select the best generalizing individual
from the run.  (We selected the best generalizing individual
by selecting the individual with the highest number of ‘ hits’



on the test data.)  We then used that best generalizing indi-
vidual to represent the generalization of the entire run.

Because the outputs available in the neural network
package used were different than the outputs on our CGPS
program, we had to choose the best generalizing network in
a slightly different manner.  For each neural network run,
the network with the highest R2 on the testing set was con-
sidered to be the best generalizer of the run.  For compari-
son purposes with the CGPS system, we then calculated the
number of ‘ hits’ of this best generalizing network as a per-
centage of the total testing set.

The foregoing is a decent (though not optimal) way to
test generalization [Masters 1995, Katz 1996].  We did not
implement more optimal techniques such as the Jacknife
and Bootstrap methods [Masters 1995] because the CPU
time to perform them on the neural network runs made such
techniques utterly impractical.

3.2 Improving The Measure of Gener-
alization With a Third and Off
Training Sample Data Set.

We acknowledge one respect in which the above meth-
odology could have been improved.  We choose which
individual (or network) from a run is the ‘best’ generalizer
by assessing its performance on the testing data. For exam-
ple, if the best CGPS individual correctly classified 85% of
the test cases in generation 10 but in generation 11, the best
individual correctly classified only 80% of the test cases,
we used the 85% figure to represent the generalization per-
formance of that run.

But once we have chosen the best generalizer in the
above manner, the testing set is, strictly speaking, no longer
a testing set—it has become part of the training set.  The
reason?  The testing set was used to select among different
individuals.

The method that we used does provide useful informa-
tion about the generalization capabiliti es of an ML system.
In our prior experience, we have found that there is a de-
cent correlation between generalization on the testing set
and generalization on entirely new data.  But to make our
assessment of generalization more rigorous, a third data set
ought to be added.  So while our results here are meaning-
ful, the abilit y of the best generalizer on the testing set to
generalize on yet a third data set would measure generali -
zation more accurately. We plan to implement this capabil -
ity in our CGPS system in the near future.

3.3 No Free Lunches?
We acknowledge the ongoing controversy over the ‘No

Free Lunches’ theorem and whether it is possible to find
any algorithm that has any meaningful generalization capa-
biliti es  [Compare Wolpert 1994 with Rao 1995].  It is not
our purpose to add to that discussion here.  We simply note
that, at this point, the theoretical guidance offered by pa-
pers on this subject about how to judge problem ‘domains’
is suff iciently vague that ML yet remains an experimental
science.  It is in that spirit that we present these findings.
Should it turn out that learning is effectively impossible in
this universe, our work here will be for naught and our re-

search group shall have to learn to occupy its time with
pursuits other than experimental machine learning.

We do, however, agree with Rao’s emphasis on the  im-
portance of off- training-set error, as we discussed above.
And we repeat here Rao’s admonition that “ [R]esearchers
should be careful not to say that Algorithm A is better than
Algorithm B without mentioning that this holds with re-
spect to the particular problem distribution.”   [Id].  That
was good advice both before the ‘No Free Lunches’ Theo-
rem and remains so today.

4. Description of the CGPS Por tion
of the Experiment

Our CGPS experimental setup stayed mostly constant from
problem to problem.  Table 1, contains the general experi-
mental specification [Koza 1992].

Table 1.   Experimental Specification for CGPS Runs

Objective Classification of data sets from
ELENA Database

Parsimony  Factor 0, 0.1, or 1

Explicitly Defined IntronsEnabled or Not Enabled

Crossover/Mutation Mix 95/5, 80/20, 50/50,  or 20/80

Terminal Set Integer constants initialized
from 0 - 10.  May be mutated
to the range, 0 - 255.

Function Set Addition, Multiplication, Sub-
traction, Division

Number of Hardware
Registers

One more than the number of
classes in the data.

Number of Fitness Cases75-100.  Varies with problem.

Number of Testing Cases75-100.  Varies with problem.

Fitness Function Sum of Absolute Deviations.

Hits See discussion above.

Wrapper None

Population Size 3000

Selection for Genetic
Operators

Tournament. 4/2. Children
replace the losing members of
the tournament.

Termination Criteria. 200 Generations or Destructive
Crossover falls to less than
10% of the total crossover
events, whichever comes first.

Maximum Individual Size256 instructions.

Total Number of Runs 720

Some of the parameters mentioned in Table 1 merit sepa-
rate discussion.

4.1 Parameters That We Varied From
Run To Run

We varied three of the parameters from run to run.  These
parameters were: Parsimony Factor, Explicitly Defined
Introns, and Crossover/Mutation Mix.



There were twenty-four different combinations of values
used for the above parameters (Table 1).  Each of those
twenty-four combinations of parameters was run for each
of our three problem sets on ten different random seeds. As
a result, we conducted a total of 240 runs per problem set.
On the three problems reported here, we conducted a total
of 720 runs.

4.2 Fitness Function
We had to define an appropriate fitness function for classi-
fication problems where the number of classes might vary
from problem to problem.  We did that as follows.  We
selected one hardware register as the output register.  The
value in the output register was then evaluated for fitness
on a particular fitness case as follows:

If a particular fitness case should have been classified as
being a member of Class 0, then the fitness of the individ-
ual for that fitness case is the absolute value of the differ-
ence between the value in the output register and 100;

If a particular fitness case should have been classified as
being a member of  Class 1, then the fitness of the individ-
ual for that fitness case is the absolute value of the differ-
ence between the value in the output register and 200; and
so forth where there are more classes.

4.3 Measuring Testing Set Hits
Table 2 is the lookup table that we used to determine the
meaning of a value contained in the Output Register of an
individual for a particular fitness case.

If the Predicted Class Membership determined by Table
2 for a particular fitness case is correct, then that prediction
is counted as a ‘Hit’  for that fitness case.  The total number
of hits for an individual is then divided by the total number
of test cases.  Where the testing set is 100 in size, and
where an individual gets 75 hits on the test set, that indi-
vidual’s Hit score would, therefore, be 75%.

Table 2. Class Membership Corresponding to Output
Register Values

Output Register
Value of . . .

Predicted Class
Membership

50  - 149 Class 0
150 - 249 Class 1
250 - 350 Class 2

Table 2 was obviously designed arbitrarily.  The effect of
that design is that researcher knowledge of the domain
space could not bias the results.

4.4 Function Set
We deliberately used a very simple function set—the

arithmetic operators.  The purpose of using the same func-
tion set that we used for previous symbolic regression work
was to maintain as much independence as possible from
experimenter knowledge of the problem domain.

4.5 Parsimony Factor
We used three different values for the parsimony factor—0,
0.1, and 1.  A value of n for the parsimony factor means
that the n times the length of the individual (measured by
the number of instructions that comprise the individual) is
subtracted, in the fitness function, from the fitness of the
individual.  A value of 0.1 for the parsimony factor, there-
fore, means that 1/10 of the length of an individual is sub-
tracted from the fitness of the individual.

4.6 Explicitly Defined Introns
Explicitly Defined Introns (‘EDI’ s’) were developed in our
previous work where we found that using EDI’ s to allow
GP to vary the probabilit y of crossover between instruc-
tions without effecting the fitness calculation of the indi-
vidual improved fitness, generalization and speed.  [Nordin,
Banzhaf & Francone 1996.]  We enabled EDI’ s in the
manner described in the aforementioned work for one half
of all runs.

4.7 Termination Crit erion.
The maximum number of generations that we allowed the
system on any CGPS run was 200 generations.  However,
we have previously reported a strong correlation between
the exponential growth of the size of programs and a de-
cline in the portion of total crossover events that can be
characterized as destructive crossover [Nordin, Francone &
Banzhaf 1996].  In fact, our earlier findings suggest that, at
the point where such exponential growth occurs, all effec-
tive training is over  [Id].  Accordingly, we monitored the
rate of destructive crossover during training.  When de-
structive crossover fell to 10% of the total crossover events
in any given generation, we terminated the run even if it
had not reached generation 200.

This early run termination approach saved a substantial
amount of CPU time.  Over 52% of our 720 runs were ter-
minated by generation 80 because of the early termination
criterion.  Had these runs not terminated early, they would
have continued the full 200 generations.  Had we not used
our early termination criterion, the total number of genera-
tions that our system would have needed to complete all
720 runs would have been 144,000 generations (720 runs
times 200 generations per run).  Instead, our system needed
only 75,134 generations to complete the entire 720 runs.
This savings was entirely due to our early termination crite-
rion based on monitoring the destructive crossover rate
relative to the total crossover rate.

5. Description of the Multilayer
Feedforward Neural Network
Por tion of the Experiment

5.1 Selection of the MLFN
We decided to run the same sparse data that we used in our
CGPS runs on at least one other established machine
learning system.   We spent some time deciding whether to
use a Multil ayer Feedforward Neural Network or a Prob-



abili stic Neural Network (‘PNN’) .   Generally speaking, a
PNN is better for classification problems and is much faster
than a MLFN.  We had access to MLFN and PNN software
from the same vendor so we discussed with the vendor
which of the modules would work better on our sparse data
set problem.  It was suggested that the MLFN module
would be more effective where the number of training
samples were limited [Katz 1996].  As a result, we ran the
same sparse data used for our CGPS runs on the N-TRAIN
MLFN module from version 1.02 of the N-TRAIN Neural
Network Development System [McCormick and Katz
1992].  N-TRAIN uses the backpropogation algorithm to
train multil ayer feedforward neural networks.  N-TRAIN
runs in 32 bit DOS extended protected mode.  Thus, it is
very fast for a PC based system.

5.2 Neural Network Architectures
We used a fully connected three layer MLFN with linear
neurons in the input layer and sigmoid neurons in the other
layers.  We varied the number of hidden neurons according
to the following protocol, which we set in advance of
training and testing.  For a network that has n independent
variables as inputs, we did 30 training runs using 30 differ-
ent random seeds for each network architecture that could
be constructed consistent with the following rules:

1. The network has an input layer consisting of n
linear neurons,

2. The network has one hidden layer consisting of k
sigmoid neurons where n <= k <= n*2; and

3. The network has an output layer consisting of one
sigmoid neuron.

So where there were three inputs for a problem, we did a
set of 30 runs using 30 random seeds each for three layer
architecture consisting of 3, 4, 5 and 6 hidden neurons, re-
spectively.

Based on our past experience, this range of hidden neu-
rons usually gives a good coverage of the better network
structures.  When the above runs were finished, we exam-
ined whether generalization performance appeared to be
improving at either the high or low end of the hidden neu-
ron architectures.  If so, we performed runs for the next two
numbers of hidden neurons in the direction that the network
performance generalization was improving.  By way of
example, if the generalization performance in the above
example appeared to be improving between 5 and 6 hidden
neurons, we would do 30 runs using 30 random seeds for 7
and 8 hidden neurons architectures.  If the performance
continued to improve, would do two more hidden neurons
and so forth.  { We note, in retrospect, that this procedure of
expanding the number of hidden neurons based on existing
results probably biased the experiment in favor of the
MLFN architecture.  No such interative procedure was fol-
lowed on the CGPS portion of the experiment.  Were we to
do this again, we would eliminate that portion of the ex-
periment.}

After we finished the above procedure, we performed
enough extra runs on that problem using new random seeds
distributed evenly over all of the hidden neuron configura-
tions used in the above procedure so that the total number

of runs on that problem with the MLFN equaled 240 runs.
Completing 240 runs with the MLFN—the same number of
runs that we performed with the CGPS system—greatly
improves the usefulness of the difference in means statisti-
cal test between the MLFN and the CGPS, which test we
will use later [Crow, Davis & Maxfield 1960].

Based on this protocol, we performed 60 runs each with
3-6 hidden neurons on the GAUSSIAN 3D problem, which
had 3 inputs.  We also performed 30 runs each with 3-10
hidden neurons for the PHONEME problem set, which had
5 inputs.  Therefore, the total number of runs we performed
on the GAUSSIAN 3D problem set was 240 and the num-
ber on the PHONEME problem set was 240.

5.3 Data Preprocessing
Our CGPS runs required integer inputs.  Neural networks
require that inputs be scaled in the range 0 to 1 or -1 to 1
range.  We scaled the inputs to the 0 to 1 range.

For reasons that are discussed below, we ran the MLFN
only on the GAUSSIAN 3D and PHONEME problem sets.
Each of those sets had only two output classes.  Therefore,
we gave the output data to the network as follows:  All i n-
stances that were Class 0 were assigned an output value of
0—all those of Class 1 were assigned an output value of 1.

5.4 MLFN Parameter Settings
For the most part, we used the default parameter settings
that come with the program—having found them in our
previous work to be an effective parameter set.  There
were, however, three parameters that we changed from the
default setting, each of which is detailed below.

The reader will note that we made our changes in the
MLFN parameters using the suggestions of the proprietor
of the MLFN software.  His suggestions were excellent and
greatly improved the performance of the MLFN system.

5.5 Learning Rate and Neuron Type
Parameters

In our initial MLFN runs, we used the N-TRAIN default
learning rate and neuron type settings.  The results from
those runs were unexpectedly poor.  The vendor suggested
that a much lower learning rate of 0.25 would be closer to
optimum for our problems.  In addition, he suggested that
we use linear instead of sigmoid neurons on the input layer
[Katz 1996]. We made those two adjustments to the pa-
rameters with greatly improved training results.

5.6 Error Tolerance Parameter Used to
Determine Testing Set Hits

In order to compare the CGPS hits with MLFN hits, we had
to measure the hit rate of the MLFN.  In order to measure
the MLFN hit rate, it is necessary to set a parameter called
‘error tolerance’ [ McCormick and Katz 1992].  This proved
to be the most diff icult parameter to set in a principled
manner.

Simply put, the error tolerance parameter determines
how close to 0 or 1 the network output must be in order to
be counted as a ‘hit.’  The program default setting of 0.10
meant that the network must output a value of less than



0.10 or greater than 0.90 to be counted as a ‘hit.’  All out-
puts between 0.10 and 0.90 were counted as wrong.

This default setting caused very poor performance by
the MLFN because, the networks that had the best R2 on the
testing set were generating a lot of ‘ correct’ answers that
were between 0.10 and 0.90.  (By ‘correct’ , we mean that
the network output was closer to the correct answer than it
was to the wrong answer.)

The solution on this might initially seem to be to set the
error tolerance to 0.4999.  This, however, forces the MLFN
to ‘guess’ .  That is, where there are only two classes, the
MLFN cannot do worse than 50% hits with an error toler-
ance of 0.4999.  But the reader will note that the CGPS
system was set up so that it was not forced to guess.  So this
solution was also not acceptable.

We finally elected to use an error tolerance of 0.25.
This seemed to deliver good performance but to prevent the
MLFN from using a range of outputs (between 0.25 and
0.75) where there was littl e or no relation between the net-
work output and the correct answers.  This is not an entirely
satisfactory solution but it was the best we could devise
given the differences between the paradigms.

5.7 Run Termination and Testing
Granulation

Run termination on the MLFN problem was determined by
number of passes of the backpropogtion algorithm through
the training set.  We started each run with 200 runs through
the training set, tested and stored the results.  Thereafter,
we tested every 50 runs through the training set.   Each run
comprised 10,200 runs through the training set and was
then ended.

We examined the course of training under this protocol
on about 50 of the runs and satisfied ourselves in each case
that: (1) the granularity of testing was suff icient to catch the
best or very close to the best network in generalizing
capabiliti es; and (2) that we had performed enough runs
through the training set to assure that the run had indeed
located the best maximum generalizer for that random seed
and network configuration.

6.  The IRIS Dataset.

6.1 The Full Dataset.
The IRIS dataset contains three classes and the total num-
ber of data instances is 150.  Each of the classes is a type of
IRIS plant [ELENA 1995, page 35].  This is a simple
problem domain and, given a large enough training set,
good results are to be expected [Id].

6.2 The KNN Benchmark.
The ELENA benchmark classifier for this problem is a
KNN classifier run using the Leave-One-Out method with
K = 7. A KNN (K-Nearest-Neighbors) classifier determines
the class of a fitness case by examining the class member-
ship of its K nearest neighbors.  Performance is optimized
by varying K for any particular problem domain  Because
of the use of the leave-one-out method, the dataset for de-
riving the KNN benchmark was 149 instances. The result-

ing error rate for the KNN classifier was between 0% and
7.3% [ELENA 1995 at 35-6].  We assume that the wide
range of the error rate was due to a wide 95% confidence
interval on this relatively small sample size (149).  In short,
a hit rate for CGPS of between 92.7% and 100% on the
IRIS data would mean the CGPS result is statistically
equivalent to the KNN benchmark.

7. IRIS Generalization Results

7.1 Sparse IRIS CGPS Training Set
Our training set size was 75, which is about half the size of
the training set used in deriving the KNN benchmark.  De-
spite the relatively sparse training set, CGPS did very well.

7.2 IRIS CGPS Results
Every IRIS CGPS run yielded at least one individual that
generalized at a hit rate that was statistically indistinguish-
able from the ELENA KNN benchmark.

92% of the IRIS runs resulted in individuals that gener-
alized better than or equal to 95% hits and 17% of the IRIS
runs resulted in individuals that generalized better than
96% hits.  Furthermore, CGPS found its benchmark-quality
solutions quickly.  In 78% of IRIS runs, our GP system had
evolved an individual that generalized as well as the KNN
benchmark by the end of generation one of training.  In
fact, our CGPS system generated at  least one new bench-
mark quality solution approximately once every one half
second.

7.3 IRIS MLFN R esults.
We did not run the MLFN system on the IRIS data because,
in discussions with the MLFN software vendor, he indi-
cated that he had run the IRIS data  and that his results were
in the range that made them likely to be statistically indis-
tinguishable from our CGPS runs.  Given our time con-
straints and what turned out to be the simplicity of the IRIS
problem, we believe it safe to conclude that the MLFN
generalization would have been statistically indistinguish-
able from CGPS generalization on this problem.  Accord-
ingly, we did not run the IRIS problem on MLFN.

8. PHONEME Recognition Dataset.

8.1 The Dataset.
The PHONEME recognition database contains two classes
of data—nasal vowels (Class 0) and oral vowels (Class 1)
from isolated syllables spoken by different speakers. “This
database is composed of two classes in 5 dimensions.
There are 5404 patterns; 3919 for class zero and 1586 for
class one. . . .  [T]his number of samples is just suff icient
for the database dimension.”  [ELENA 1995 at 30].  Note
that, while 150 data points was suff icient for the IRIS
problem, 5404 data points is regarded as ‘ just suff icient’ f or
the PHONEME Recognition set because of its higher di-
mensionality and greater difficulty [ Id].



8.2 The KNN Benchmark
The benchmark on this problem is a KNN classifier with K
set to 20.  The benchmark was derived from 5404 training
instances.  The mean misclassification rate calculated by
the KNN Benchmark is 14.2% [ELENA 1995. Page 31].
Therefore, any CGPS or MLFN run that has Hits that equal
or exceed 85.8%  has generalized as well as the Bench-
mark.

9. Generalization Results on the
PHONEME Dataset.

9.1 Sparse Training Set for CGPS and
MLFN on the PHONEME Dataset.

We gave our system only 100 data points for training and
another 100 for testing rather than the 5404 data points
used to derive the KNN Benchmark.  Thus, we withheld
from the CGPS, over 98% of the training instances that
were available to the Benchmark.  And we did so on a data
set where ordinary statistical analysis suggests that our
system ought to need those extra training samples to do a
good job [ELENA 1995.  Page 30-1].

9.2 Relative Generalization Results of
CGPS and MLFN on Sparse PHO-
NEME Recognition Dataset.

Both CGPS and the MLFN did respectably at finding indi-
viduals that generalized well—many runs produced indi-
viduals that were of near benchmark quality despite the
sparse training set.  Table 3 contain the mean hit rates re-
sults for all , the best 25% and the best  10% of PHONEME
Recognition runs for both MLFN and CGPS.

Table 3.  PHONEME Recognition Results.  Mean Hits by ELENA
KNN Benchmark, by CGPS and by MLFN systems.  All Runs, Best
25% Of Runs, Best 10% Of Runs, and Best Run.

System All Runs Best 25% Best 10% Best Run
KNN 85.8% ---- ---- ---
CGPS 77.6% 80.5% 81.2% 85%
MLFN 71.6% 79% 80.9% 82%

By any measure on this problem, CGPS outperformed
the MLFN in generalization.  The differences in perform-
ance are, for the most part statistically significant.  To test
statistical significance, we performed the test for a hypothe-
sized difference between two means assuming unequal
variances.  Table 4 sets forth our results.  P is the probabil -
ity that the actual difference between the CGPS and MLFN
means is less than the hypothesized difference.

Table 4.  PHONEME Recognition Results.  Statistical Significance
Level of Hypothesized  Difference Between the CGPS Mean Hits and
The MLFN Mean Hits.

Differences All Runs Best 25% Best 10%
Actual Diff. 6% 1.5% 0.3%

Hypothesized Diff. 5% 0.9% 0.05%
P 0.0141 0.0341 0.0884

Measured in CPU time, CGPS generated a solution that
generalized at least 90% as well as the Benchmark figure
about once every 1 minute.  And, finally, CGPS generated
a solution that was almost identical to the Benchmark fig-
ure about once every 55 minutes.

10. The GAUSSIAN 3D Dataset

10.1 The Full Dataset.
GAUSSIAN 3D is a three input, two class database that is
generated artificially.  Class 0 is a the set of points with a
normal distribution across the three input axes with zero
mean and standard deviation of 1.  Class 1 is a similar se-
ries of points except that the standard deviation is 2.
[ELENA 1995. Page 14.]  This is an diff icult classification
problem because the classes are linearly non-separable and
because of overlap between the two classes [Figure 1].

10.2 The Benchmarks.
There are several benchmarks available on this problem:

1.   The theoretical Bayes confusion boundary is 21.4%.
It is not possible to generalize better than this on this prob-
lem [ELENA 1995. Page 16].  Therefore a Hit rate of
78.6% should be the best possible performance of any clas-
sifier on these data.

2.   ELENA’s KNN classifier (K = 35) using the leave-
one-out method yields an error on 5000 training samples of
22.2%. Therefore, a hit rate of  77.8% would be competi-
tive with the KNN benchmark [ELENA 1995]

3.   A Binary Boltzman Machine and A Learning Vector
Quantization system attained results virtually the same as
the Bayes minimum but had to use 4,500,000 and 100,000
training samples respectively to attain that result  [ELENA
1995].

10.3 Generalization Results On The
GAUSSIAN 3D Dataset.

The task we assigned to CGPS and the MFLN on the
GAUSSIAN Data set seemed daunting. We gave them only
100 training samples.  In short, we withheld fully 98% of
the 5000 training samples that were available to the KNN
benchmark measure. Figure 1 is a projection of 100 points
from the GAUSSIAN 3D data set into two dimensions.
CGPS’ and the MLFN’s jobs were to distinguish the darker
diamonds (class 0) from the lighter dashes (class 1).

Again, both CGPS and the MLFN did respectably at
finding individuals that generalized well .  Table 5 contains
the mean hit rates results for all , the best 25% and the best
10% of the GAUSSIAN 3D runs for MLFN and CGPS.

Table 5.  GAUSSIAN 3D Results.  Mean Hits by ELENA KNN
Benchmark, by CGPS and by MLFN systems.  All Runs, Best 25% of
Runs, Best 10% of Runs and Best Run

System All Runs Best 25% Best 10% Best Run
KNN 77.8% ---- ---- ----
CGPS 57.4% 63.9% 67% 72%
MLFN 56.8% 62.4% 64.9% 68%



Once again CGPS outperformed the MLFN in the over-
all mean and on the upper tail of the generalization distri-
bution.  Again, the differences in are statistically signifi-
cant.  Table 6 presents the same types of statistical results
for the GAUSSIAN 3D data set as did Table 4 for the
PHONEME recognition data.

Table 6.  GAUSSIAN 3D Results.  Statistical Significance Level of
Hypothesized  Difference Between the CGPS Mean Hits and The
MLFN Mean Hits.

Differences All Runs Best 25% Best 10%
Actual Diff. 0.6% 1.5% 2.14%

Hypothesized Diff. 0.2% 0.5% 1%
P .0601 .0264% .0484

Measured in CPU time, CGPS generated an individual 90%
as good as the KNN benchmark every 18 minutes.

-6

-4

-2

0

2

4

6

-6 -4 -2 0 2 4 6

Figure 1.  Sparse GAUSSIAN 3D Data Set Projected
into Two Dimensions.  100 Data Points.

11. Discussion.

11.1 The Future of the IRIS Problem
The easiest conclusion to draw from our data is that the
IRIS data set is probably not a very good test of any
machine learning system—it is too easy. CGPS evolved
programs by the end of Generation 1 that were only a few
instructions long that did extremely well i n classifying the
IRIS data.  The ease of the problem is also indicated by
reported MLFN results [Katz 1996].  Of course, a finding
that a machine learning system could not do well on the
IRIS data would be quite a significant finding.  Other than
that, researchers should probably stop using the IRIS data
as being indicative of very much of anything.

11.2 CGPS and Generalization on
Sparse Data Sets.

For the most part, our other results speak for themselves.
CGPS generated solutions that generalized on the other two

problem sets well and quickly.  It did so somewhat more
effectively than the MLFN used here.  CGPS did well even
though we used simple functions and made no adjustments
to help the system solve the particular problems presented.
In short, our solutions were as free from experimenter
knowledge of the solution space as we could make them.

CGPS’ abilit y to generalize from sparse data sets was
quite consistent.  From the time figures noted above, with
enough CPU time, CGPS was able to extract good bench-
mark or near benchmark quality individuals using sparse
data.  Of course, on the GAUSSIAN 3D and PHONEME
problems, additional data was available—so in a sense, it
was not necessary to utili ze the extra CPU time to generate
solutions that generalized well .  We could just as well have
used larger training sets.  But in the real world, there is fre-
quently too littl e data for the dimensionality of the problem.
This suggests that CGPS may be a good choice for classifi-
cation problems where the available data is sparse.

11.3 Relative Distribution of Generaliza-
tion Results: MLFN vs. CGPS.

One of the most interesting comparisons between the
CGPS and MLFN paradigms comes from examining the
distribution of their relative generalization scores over all
runs.  Figures 2 and 3 show those distributions for the
PHONEME and the GAUSSIAN 3D data sets.  What jumps
out is that MLFN results are spread fairly uniformly over a
wide range—a normal or flattened normal distribution.
The CGPS results are concentrated very heavily around the
mean, have a very short low end tail , and have a long tail i n
the upper end of the distribution.  This long tail i s the rea-
son CGPS outperformed MLFN in the high quality solution
regions [Tables 3-6].  Given CGPS greater freedom of rep-
resentation than MLFN, this tightly bunched distribution is,
intuitively, the opposite of  what we expected.

More fundamentally, the relative uniformity in CGPS
results from run to run occurred despite the rather radical
set of parameter changes that we made among runs.  This
suggests that mere repetition of runs with different pa-
rameters and random seeds may not a particularly good
approach to using CGPS.  The same search space appears
to keep being explored over and over [See Mahoud 1995].
This implies that recent research where information gleaned
from one run is used to improve the performance on subse-
quent runs may well be a very important future direction for
research [Whigham 1995, Zannoni & Reynolds 1996].

Acknowledgments
We would like to thank the ELENA partners for assembling
the ELENA databases and the benchmark data.

We also thank the reviewers and Willi am Langdon,
whose questions and comments were very helpful.



Figure 2. Phoneme Recognition Problem.  Comparative
Histograms of all CGPS Runs (bars) and
MLFN Runs (lines) Sor ted by Generalization
Performance.

Figure 3. Gaussian 3D Problem.  Comparative Histo-
grams of all CGPS Runs (bars) and MLFN
Runs (lines) Sor ted by Generalization Per-
formance.

Jeffrey Katz of Scientific Consulting, Inc. helped us
configure the parameters on his N-Train Neural Network
system for benchmarking purposes.

We would also like to acknowledge support from the
Ministerium fur Wissenschaft und Forschung des Landes
Nordrhein-Westfalen, under grant I-A-4-6037.I.

Bibliography
Crow, E., Davis, F. and Maxfield, M. 1960. Statistics Man-

ual, NY, NY. Dover Publications, Inc.
ELENA Partners, The. Jutten, C., Project Coordinator

1995.  Esprit Basic Research Project Number 6891,
Document Number R3-B1-P.

Katz, J. 1996.  Designer and owner of Scientific Consultant
Services, Inc., proprietor of N-Train neural network
software.  Personal communication.

Koza, J. 1992. Genetic Programming, Cambridge, MA:
MIT Press.

Mahoud, S. 1995, Niching Methods for Genetic Algorithms,
Illi GAL Technical Report No 95001.  University of I l-
linois. Dept. of General Engineering.

Masters, T. 1995, Advanced Algorithms for Neural Net-
works.  NY, NY, John Wiley and Sons Inc. Pages 335-
376.

McCormick, D. and Katz, J. 1992. N-TRAIN Neural Net-
work Development System, Users Manual, V 1.02.

Nordin, J.P. 1994.  A Compili ng Genetic Programming
System that Directly Manipulates the Machine Code.
In Advances in Genetic Programming, K. Kinnear, Jr.
(ed.), Cambridge MA: MIT Press.

Nordin, J.P., Francone, F. and Banzhaf, W. 1996.  Explic-
itly Defined Introns and Destructive Crossover in Ge-
netic Programming. Advances in Genetic Program-
ming 2, K. Kinnear, Jr. (Editor), Cambridge MA: MIT
Press.

Nordin, J.P., Banzhaf W.  1995, Complexity Compression
and Evolution. In Proceedings of Sixth International

Conference of Genetic Algorithms, Morgan Kaufmann
Publishers, Inc.

Nordin, J.P., Banzhaf, W. 1995a. Evolving Turing Com-
plete Programs for a Register Machine with Self Modi-
fying Code. In, Proceedings of Sixth International
Conference of Genetic Algorithms, Morgan Kaufmann
Publishers, Inc.

Rao, B, Gordon, D. & Spears, W. 1995.  For Every Gener-
alization Action, Is There Really an Equal and Oppo-
site Reaction.  Analysis of the Conservation Law for
Generalization Performance.  In Prieditis, A. and Rus-
sell , S. (editors). Proceedings of the Twelfth Interna-
tional Conference on Machine Learning.  San Fran-
cisco, CA: Morgan Kaufmann Publishers, Inc. Pages
471-9.

Whigham, P. 1995.  Gramatically Based GP.  In Rosca, J.
(editor). Proceedings of the Genetic Programming
Workshop of the 12th Annual Machine Learning Con-
ference.

Wolpert,  D. H. 1994. Off-Training Set Error And A Priori
Distinctions Between Learning Algorithms, Technical
Report, Santa Fe Institute, Santa Fe, N.M.

Zannoni, E. and Reynolds, R., Extracting Design Informa-
tion from Genetic Program Using Cultural Algorithms.
In Proceedings for the Fifth Annual Conference on
Evolutionary Programming, 1996.


