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Abstract

We discuss a system of autocatalytic sequences of
binary numbers. Sequences come in two forms, a 1-
dimensional form (operands) and a 2-dimensional
form (operators) that are able to react with each
other. The resulting reaction network shows signs
of emerging metabolisms. We discuss the gen-
eral framework and examine specific interactions
for a system with strings of length J bits. A self-
maintaining network of string types and parasitic
interactions are shown to exist.

Introduction

Sequences of binary numbers are the most primitive
form of information storage we know today. They are
able to code any kind of man-made information, be it
still or moving images, sound waves and other sensory
stimulations, be it written language or the rules of math-
ematics, just to name a few. As the success of von-
Neumann computers has shown over the last 50 years,
binary sequences are also sufficient to store the com-
mands that drive the execution of computer programs.
In fact, part of the success of the digital computer was
due to the universality of bits and their interchangeabil-
ity between data and programs.

It is not far-fetched to expect that the physical iden-
tity between operators (programs) and operands (data)
may also play an essential role in self-organisation. We
have proposed to consider a simple self-organising sys-
tem [1], in which sequences of binary numbers are able
to react with each other and sometimes even to repli-
cate themselves. This ability of binary strings was a
result of the proposition to consider binary strings simi-
lar to sequences of nucleotides in RNA. RNA sequences
which presumably stood at the cradle of life [2, 3], seem
capable of self-organisation and come in at least two al-
ternative forms, a one-dimensional genotypic form and a
two or three-dimensional phenotypic form. We proposed
to consider binary strings in analogy and to provide for
a second, folded and operative form of strings. Techni-
cally, we considered as this alternative a two-dimensional

matrix form that is able to perform operations on other
one-dimensional binary strings.

Reactions between binary strings

The fundamental ideas of this model have been out-
lined elsewhere (see ref. [1],[4],[7] for details). Here we
only give a brief overview of what has been learned so
far.

Let us consider sequences
J5N) - (1)

of binary symbols s; € {0,1},7 = 1,..., N organised in
1-dimensional strings.

§= (81,82, Siy ..

Then we ask the question: Does there exist an alter-
native form of these strings, that is (i) reversibly trans-
formable into the form (1), and is (ii) operative on form
(1)? The answer is surprisingly simple and well known
from mathematics: Yes, there are operators with the
above capabilities, known as matrices.

Thus, we require the existence of a mapping M
M:5—P; (2)

which transforms § into a corresponding 2-dimensional
matrix form Pz of the sequence which should be unique
and reversible. This mapping is simply a spatial reorgan-
isation of the information contained in a sequence and
may be termed a folding, in close analogy to the notion
used in molecular biology.

The most compact realization of such a 2-dimensional
form would be a quadratic matrix. For a string with
a quadratic number of components N, N € N, with
Ngg = {1,4,9,16,25, ...}, the procedure is straightfor-
ward: Any systematic folding (examples are shown in
Figure 1) would do. Since folding is not yet very sophis-
ticated, and different configurations may be obtained by
a renumbering of string components, we shall consider
here the topological folding of Figure 1 (b) only.

In the more general case of N being a non-quadratic
number, different generalizations are reasonable. Here
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Figure 1: Some two-dimensional compactly folded forms of
a string in an example with N = 16 binary numbers: § =
(1101001011001000).

(a): non-topological folding, (b) and (c): topological foldings.

we shall only discuss a compact folding ! in non-square
matrices, where

N1><N2:N. (3)

In order to treat non-quadratic cases similar to the
quadratic case, a bias should be used in the direction
of the most compact solution, i.e.

N; =VN +¢, i=1,2 (4)
with | €; | as small as possible.

Table 1 gives the resulting 2-dimensional form for
strings up to N = 10. One can see that strings with a
length corresponding to a prime number are somewhat
special as they do not allow any compactification in the
2-dimensional form.

The interaction between a 2-dimensional form of a
string and a 1-dimensional form can be considered a re-
action between the two strings. As an example, let us
assume an operator Pz was formed from string §. This
operator might now ”react” with another string, §’, pro-
ducing thereby a new string 5:

Py s = 5" (5)

The notion here is that some sort of raw material (analo-
gous to energy-rich monomers in Nature) is continuously
supplied to allow the ongoing production of new strings
based on the information provided by the cooperation of
Py and 5.

A typical example of an interaction is given in Figure 2
for the simple case of strings of the same quadratic length
N. 5’ might be considered as concatenated from VN
segments with length /N each. The operator P; acts on
each of these segments sequentially, and performs semi-
local operations. In this way, it moves down the string
in steps of size /N until it has finally completed the
production of a new string 5.

The particular algorithm for assembling new compo-
nents 70” and ”1” into strings that we have examined in

!Compact foldings do not have any spacing between ad-
jacent string elements

Length Compact folded form
1 (s1)
2 (51 S9 )
3 (s1 sz s3)
4 (51 82)
54 83
5 (51 S92 S3 Sa Sy )
6 (51 S3 83)
S6 S5 84
7 (s1 s2 s3 sa S5 Se S7)
8 §1 82 83 54
S8 87 S S5
§1 82 83
9 S6 S5 84
S7 88 Sg
10 ( $1  S2 83 54 85)
S10 S9 S8 87 Sg

Table 1: Compact topological string folding with length up
to N = 10. FEach folding comes also with the transposed
matrix.

more detail, is:
i=VvVN
!
SitrvN = 7 Z Pijsjyhyw = © (6)

:1
i=1,...,VN k=0,..,vVN—1

with o[ ] being the squashing function

~

1 forz>0
L0 forz<0 (7)
and © used as an adjustable threshold. Eq. (6) may
be interpreted as a combination of Boolean operations,
applied separately in each segment k of the string if ©@ =
1.

olz]

The consistent generalization of eq. (6) for interac-
tion of non-quadratic strings and for strings of differ-
ent length is straightforward: Suppose a matrix of size
N1 X Ny is interacting with a string of length N3. The
operator locally interacts with N; elements of the sec-
ond string in order to generate one component of the
new string. This operation will be repeated N5 times,
then the operator moves on to interact with the next
N7 elements of the second string. The newly produced
string will thus consist of V4 elements with

Ny = [%”1 % N;. (8)

where [2] are Gaussian parentheses giving the next
larger integer to z.

In mathematical terms, the interaction reads:
J=N1
S;'/-}—sz =0 Z Pij5}+kN1 -0 (9)

i=1
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Figure 2: An operator Pz of matrix dimension vV N x VN (derived from string 5) acts upon a string §' consisting of v N

segments of length v/ N each to produce a new string 5" .

with
N3

i=1,..,N, -
1

k=0,..,[—]-1

This interaction is generally length-changing — either
resulting in a shorter or a longer product strings. The
particular direction of this length-change depends on the
relation of Ny to Ny: If Ny > Ny then Ny < N3, and
the new string is shorter. If, however, N; < Nj then
N4 > N3, and the new string is longer.

The different types of possible reactions between
strings are listed in Table 2. For a given N, say N =4,
the reactions form a reaction network, and we shall ob-
serve in the next Section the behavior of such a network.

Reactants | Product Description
s+ s s Heterogeneous reaction
s+ s s Replication
s+ s s Replication
s+s s’ Heterogeneous self-reaction
s+s s Self-replication

Table 2: Characterization of different polymerization reac-
tions.

Dynamics of a sample system

Every reaction vessel is only able to keep a finite num-
ber of strings, say M. The reactions discussed in Section
2, however, continuously produce new strings. There-
fore, a competitive dynamics has to be implemented by

providing for an overflow mechanism for the reaction ves-
sel. Since at present we would like a well-stirred reaction
vessel without any spatial structure for reactions, the re-
moval of strings will be a random process, hitting each
sort of strings with a probability proportional to its con-
centration. For each newly produced string, one string is
removed from the vessel. Whereas this random process
does not influence in any way the constitution of the ves-
sel content, due to different reaction channels producing
new strings, a change in the composition of the content
will happen over time.

There are, however, some potentially ”lethal” strings
in such systems. A string issaid to be lethal if it is able to
replicate in an unproportionally large number in almost
any ensemble configuration. For eq. (6), this happens to
be the case for two self-replicating string types 2, s(9) =
(0,0,...,0,0) and sV = (1,1,...,1,1). The former is
able to replicate with every other string, the latter with
most of the other strings.

In order to balance this tendency of the system we
prohibit production of s(°) and discourage production of
s In other words, s(°) will not be added to the
vessel, if the reaction product should be s(?). Instead,
a randomly selected string will be copied. We deal with
s in a more gentle way by providing a means of
non-deterministic string removal due to decay processes.
The fewer the number of ”1”’s a string contains, the
more stable it becomes. The chance to decay therefore
depends on the string feature

N
109 = 350
i=1

2We shall name strings with decimal numbers correspond-
ing to their binary sequence

k=1,.., M. (10)



I(®) measures the number of ”1”’s in string k and deter-
mines a probability

P ="y (11)

which determines whether a string should be removed.
Usually, we set the parameter n to n = 1. In any case,

the decay probability of s is 1. Once a string de-
cays, its place might be filled

(i) with a later reaction product or

(ii) with a copy of a randomly selected string in the ves-
sel. The latter method has the advantage of allowing a
constant string number M in the vessel and is adopted
here.

One sweep through the algorithms hence consists of
the following steps:

STEP 1:
Generate M random binary strings of length N each
STEP 2:

Select a string and fold it into an operator by forming
a compact matrix

STEP 3:

Select another string and apply the operator gener-
ated in STEP 2

STEP 4:

Release the new string, the old string and the oper-
ator (as string) into the reaction vessel, provided it
is not an s(®). Otherwise go to STEP 2.

STEP 5:

Remove one randomly chosen string in order to com-
pensate for the addition of a string in STEP 4

STEP 6:

Select one string and substitute it according to the
probability of (11) with the copy of a randomly se-
lected string

STEP 7:
Go to STEP 2

M sweeps through this algorithm are called a genera-
tion.

For a discussion of the system’s dynamic behaviour
we use as observables the concentrations z;(t) of all the

different string types s() with:

wi(t) = mi(t)/M (12)
where m; (t) is the number of actual appearances of string
type s®) in the vessel at time ¢.

If we run a system by seeding it with an initial com-
position of M random strings, we regularly observe a
transition into a (mostly fixed point) attractor. Due to

different rates of production of different sorts, an initial
composition will change until an equilibrium is reached.
During the transition, new sorts are produced, already
present sorts disappear, and every now and then a co-
existence between sorts is reached for some time. As long
as new sorts are created by interactions between already
present sorts, the network has to reorganise itself in order
to incorporate the newly emerging reaction channels be-
tween the different sorts. After some time, however, no
new string sorts arrive, and the system reaches a steady
state. Thus, the system behaves as one of the metabolic
networks that are discussed in Bagley et. al. [5, 6]. As
long as we have a small number of sorts, we can easily
describe the system by a set of deterministic differential
equations for the time development of string sort con-
centrations.

Deterministic rate equations were derived in [1] and
are given here as a summary: We assume continuous
non-random concentration functions y;(t) of the differ-
ent string types 7,1 < i < ng, which are considered to
approximate the time averaged concentrations <z;>;:

yilt) E<ai>y, 0<y(t) <1 (13)

The deterministic rate equations in y;(t) read:

(1) = Aw )+ | B + S Canult) — D | wl)+
k£

i(1)
2 wats Wignys (Dye () — Eyk e 2@ (14)
where B;, s, Wi are coupling constants derived
from a reaction table containing all sorts 1...ng. D; de-
termines a selection term

D; = p¥ (15)
and A(t) reflects the addition of strings due to random
copies

AW = Y a0y + 3 D) (16)

where

s = { 1 if the reaction of s(¥) and s() produces s(®
i 0 otherwise .
(17)
Finally, ®(¢) is a flow term that enacts competition be-

tween the various string sorts s(*) by enforcing constancy
of the overall sum of concentrations.

The reaction table listing the interactions between
string types (cf. Table 3) can be used to derive inter-
action graphs for various situations. In Figure 3 we have
depicted all interaction graphs that can be generated
from Table 3 if we start the reaction vessel with one out
of 2¥=1 string types (here N = 4). Functionally iden-
tical graphs are not depicted. Figure 3 illustrates the
variety of interactions emerging from a start with dif-
ferent string types. It ranges from self-replication over
parasitic interaction to entire metabolisms. From an in-
teraction graph it is evident, what kind of attractor may
be approached.



Figure 3: Interaction graphs of the system with N = 4. These graphs include all string sorts that are produced if the
upper left string sort is used as the one and only initial sort in the reaction vessel. Solid lines connect the two string sorts
participating in a reaction. Dashed lines indicate operator sort. (a) Self-replicator, also realized by sorts 5(7), s(12) and s(19),
(b) - (f): Simple and complicated parasitic interactions, (b) also realized by pairs (5(11), 5(15)), (5(13), 5(15)) and (5(14), 5(15)).
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1 tlol1] 23]l s3s]lol1lo]1]l2]3]2]3
2 ol tl1 ool 1]t ]2]2]3]3]2]2]3]s3
3 vl 23332333 ]2]3]3]3
4 ol alalo] o] a]als]s]12]12]s]s]12]12
5 1lals] 236 78] ol loln|lu]rs
6 ols5|s5]o0o]os |5 [1w]w]wtlilolw]iz]is
7 tls sl 23] 77 wluls|ilolunlis]is
8 slolal sl s lw2lola]ol]a]s|12]s]1
9 510 51wl ols]ols [1w0]15]10]15
1w |41 5] 82l olwl2ls s3] 7lw0]walir]rs
n sl |s]wolws|ull2] 737 w]i]i]rs
12 |alalal s 2]l s |22 s 121212
13 |5 |lals]wo]lw|ulis]s |3l u]is
4 |als|s] s3]l is
5 |5 |55 |10l 15]10]15]15]155]10]15]15]15

Table 3: Reactions table for the simulations of a N = 4 system. It was generated using a variant of (6) with topological

folding.

The dynamics of the parasitic interactions of Figure 3
is examined by integrating eq. (14). Figure 4 - 6 show
the results of a simulation. The transition of the string
composition is clearly visible. In [1, 4] we have shown
that simulations on the reaction level agree completely
with the integration of rate equations used here.

A simple metabolism emerges if we do not start with
one sort only, but with two or more from the outset. Fig-
ure 7 shows the interaction graph of this self-maintaining
network of reactions. This graph is somewhat special
as each reaction channel is of nearly equal strength. A
search through the space of all combinations of 2 initial
sorts uncovers that the self-replicator s(12) plays some
special role. Usually, as soon as even a spurious concen-
tration of s(12) is present, together with one other sort
(except 5(1)), the metabolic attractor emerges. Figure 8
gives two examples.

It is interesting to note that there are many closed
subsets of elements within even a simple N = 4 system.
In Tables 4, 5 we give a complete list of them, ordered
according to their complexity in terms of participating
string sorts. Following [8], a closed subset is defined as
the set A* of elements from the ensemble of string types

NS = {5(1)a 5(2)a cey 5(2N_1)}a

A" C Ns (18)
that might be produced by all different sequences of n
reactions,

Rp(A) = Uizora(A) (19)

starting from an initial set A C N, for n — oo, with

ro(A) = A (20)
ro(A) = U?:_olri(./l) orp_i—1(A): (21)
A = nILH;O R,(A). (22)

Closed subsets are important organisational struc-
tures, especially in the light of the fact, that we can
only populate part of sequence space, once the compo-
nent number strings increases.

We should keep in mind, that we have dealt here with
a system consisting of 4-bit components. The complex-
ity of interactions in such a simple system as Figure 3
demonstrates, is astonishing. We expect the two basic
behavioral classes, parasitic interaction and metabolism,
to emerge in a variety of forms in systems with longer
strings.

Evolution

As we have seen, the dynamics in this small system
quickly settles into one of its attractor states. The ques-
tion, however, arises, whether there is a perspective for
evolution, that is, for a sequential exploration of possibil-
ities. For evolution to happen, an occasional mutation of
one string into another should lead to a cascade of newly
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Figure 7: Reaction graph of the metabolism of N = 4.
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lt] 2 | 3 4 5 6 7 | 8 [
]2 ] 123 | (1234) | (12345) | (123456 ] (1,2,3.4,56,7) [(1,2,3.4,5,8,10,12)
@] 13 | 124 | 1248 | (12348) | (123457 |1,3,57,11,13,15|1,3,5,7,9,11,13,15
71 @8) ]| 135 | 1357 | (1,248,12) [(1,2,3,48,12)
@®)] 7.15 | (4,8,12)] 1,3,515 | 1,357,15
15 [ (8,12)] 7,11,15 |7,11,13,15| 1,3,5,9,15

13,15 |13,14,15 7.11,13,14,15

14,15

Table 4: Closed subsets of elements with up to 8 members. First column: Self-replicators. In parenthesis: Subsets which

occasionally produce the destructor.

9 11

13 15

(1,2,3,4,5,8,10,12,15)|(1,2,3,4,5,6,8,9,10,12,15)

(1,2,3,4,5,7,8,10,11,12,13,14,15)

(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15)

Table 5: Closed subsets with more than 8 members. All subsets occasionally produce the destructor.

produced string types, that lead to a new equilibrium.
We have shown this to happen in a N = 9 system [7],
and will adopt the results learned there.

We have been using a mutation as a motor for oc-
casional change. A mutation hits each string with a
probability depending on its size. We define ¢ to be
the probability that one element of a randomly selected
string changes to another symbol, here ”0” to ”1” and
vice versa. Since each element may be hit, thisis a length
dependent change and the probability that at least one
error occurs in a string is @Q(1) = Ngq, with the provi-
sion that ¢ << % Evidently, this mutation probability
depends linearly on the concentration of string sorts in
the reaction vessel. That is to say, a more successful
string sort will spawn more variations. Two-bit muta-
tions are then Q(2) = (Ngq)? where we neglect the fact
that sometimes back-mutation may happen. In Nature,
at least on instance of this type of mutations occurs in
mutations caused by cosmic radiation.

Mutation does open up new transformation pathways
between string sort, something Bagley et al. term a
stochastic metadynamics [6].

Suppose we start our system by sort s(7). Since this
is a self-replicating string sort, nothing interesting will
happen, unless the mutation process introduces one of
its nearest neighbors 53 s(5) 5(6) 5(15)  The reaction
table shows, that the appearance of s(®) will have no
consequence, whereas the appearance of s(3) s(3) (15)
allows the system to switch to another attractor. Fig-
ure 10, left, shows the effect of introducing s(®). As a
result, the interaction graph of Figure 3 (d) comes into
play, and s(!) dominates. Figure 10,right, is the evo-
lution from selfreplicator s(3) to the metabolism con-
sisting of (1), 5(2) s(4) s(®)  This has been achieved by

introducing s('?, a two-bit mutation from s(!3)_ in spu-
rious concentration.

Conclusion

We have examined a very simple self-organising sys-
tem. The main idea was to introduce a second form
of the information carriers of our system, the sequences
of binary numbers. This has been accomplished by us-
ing an operative matrix form for the strings. We then
have defined a particular interaction between matrices
and strings and considered the interaction itself as some
sort of a reaction with input and output. The low-level
("atomic”) computations in the system have thus been
likened to chemical reactions in the real world.

It has been shown that closed subsets of strings ex-
ist which can be considered as organisations. Under the
assumption of one particular folding, these subsets of
strings might be studied in their 2-dimensional matrix
form alone, effectively yielding an interesting class of
mathematical objects that are closed under the proposed
non-linear interaction.

We also dealt with the dynamics of the competitive
system naturally emerging, with reactions going on be-
tween different species of strings. As in other artificial
systems [5, 6, 9, 10, 11] an attractor state was reached
relatively quickly, beyond which nothing interesting hap-
pened any more. However, we already demonstrated
powerful evolutionary effects brought about by the in-
clusion of a mutation or the potential of length changing
interactions. Systems with longer strings will certainly
possess different metabolic networks, and it is clear that
the behavioral flexibility in such systems will be enor-
mous.
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