
Chapter 11

GENETIC PROGRAMMING OF AN

ALGORITHMIC CHEMISTRY

W. Banzhaf
�

and C. Lasarczyk
�

�
Memorial University of Newfoundland;

�
University of Dortmund

Abstract We introduce a new method of execution for GP-evolved programs consisting of

register machine instructions. It is shown that this method can be considered as

an artificial chemistry. It lends itself well to distributed and parallel computing

schemes in which synchronization and coordination are not an issue.

Keywords:

Informally, an algorithm is a well-defined computational procedure that takes

some value, or set of values, as input and produces some value, or set of values,

as output. An algorithm is thus a sequence of computational steps that transform

the input into the output.

(Introduction to Algorithms, TH Cormen et al)

1. Introduction

In this chapter we shall introduce a new way of looking at transformations

from input to output that does not require the second part of the definition

quoted above: a prescribed sequence of computational steps. Instead, the

elements of the transformation, which in our case are single instructions from a

multiset
������� �	� � �
� ��� � � �
� ��� � � �	������ are drawn in a random order to produce

a transformation result. In this way we dissolve the sequential order usually

associated with an algorithm for our programs. It will turn out, that such an

arrangement is still able to produce wished-for results, though only under the

reign of a programming method that banks on its stochastic character. This

method will be Genetic Programming.

176 GENETIC PROGRAMMING THEORY AND PRACTICE II

A program in this sense is thus not a sequence of instructions but rather an

assemblage of instructions that can be executed in arbitrary order. By randomly

choosing one instruction at a time, the program proceeds through its transfor-

mations until a predetermined number of instructions has been executed. In

the present work we set the number of instructions to be executed at five times

the size of the multiset, this way giving ample chance to each instruction to be

executed at least once and to exert its proper influence on the result.

Different multi-sets can be considered different programs, whereas different

passes through a multi–set can be considered different behavioral variants of

a single program. Programs of this type can be seen as artificial chemistries,

where instructions interact with each other (by taking the transformation results

from one instruction and feeding it into another). As it will turn out, many

interactions of this type are, what in an Artificial Chemistry is called ”elastic”,

in that nothing happens as a result, for instance because the earlier instruction

did not feed into the arguments of the later.1

Because instructionsare drawn randomly in the execution of the program, it is

really the concentration of instructions that matters most. It is thus expected that

”programming” of such a system requires the proper choice of concentrations

of instructions, similar to what is required from the functioning of living cells,

where at each given time many reactions happen simultaneously but without a

need to synchronicity.

Even if the reader at this point is skeptical about the feasibility of such a

method, suppose for the moment, it would work. What would it mean for

parallel and distributed computing? Perhaps it would mean that parallel and

distributed computing could be freed from the need to constantly synchronize

and keep proper orders. Perhaps it would be a method able to harvest a large

amount of CPU power at the expense, admittedly, of some efficiency because

the number of instructions to be executed will be higher than in deterministic

sequential programs. In fact, due to the stochastic nature of results, it might

be advisable to execute a program multiple times before a conclusion is drawn

about its ”real” output. In this way, it is again the concentration of output results

that matters. Therefore, a number of � passes through the program should be

taken before any reliable conclusion about its result can be drawn. Reliability

in this sense would be in the eye of the beholder. Should results turn out to

be not reliable enough, simply increasing � would help to narrow down the

uncertainty. Thus the method is perfectly scalable, with more computational

power thrown at the problem achieving more accurate results.

We believe that, despite this admitted inefficiency of the approach in the

small, it might well beat sequential or synchronized computing at large, if we

1Elastic interactions have some bearings on neutral code, but they are not identical.

Genetic Programming of an Algorithmic Chemistry 177

imagine tens of thousands or millions of processors at work. It really looks

much more like a chemistry than like ordinary computing, the reason why we

call it algorithmic chemistry.

2. Background

Algorithmic Chemistries were considered earlier in the work of Fontana

(Fontana, 1992). In that work, a system of
�

-calculus expressions was exam-

ined in their interaction with each other. Due to the nature of the
�

-calculus,

each expression could serve both as a function and as an argument to a func-

tion. The resulting system produced, upon encounter of
�

-expressions, new
�

-expressions.

In our contribution we use the term as an umbrella term for those kinds of

artificial chemistries (Dittrich et al., 2001) that aim at algorithms. As opposed

to terms like randomized or probabilistic algorithms, in which a certain degree

of stochasticity is introduced explicitely, our algorithms have an implicit type

of stochasticity. Executing the sequence of instructions every time in a different

order has the potential of producing highly unpredictable results.

It will turn out, however, that even though the resulting computation is un-

predictable in principle, evolution will favor those multi-sets of instructions that

turn out to produce approximately correct results after execution. This feature

of approximating the wished-for results is a consequence of the evolutionary

forces of mutation, recombination and selection, and will have nothing to do

with the actual order in which instructions are being executed. Irrespective of

how many processors would work on the multi-set, the results of the compu-

tation would tend to fall into the same band of approximation. We submit,

therefore, that methods like this can be very useful in parallel and distributed

environements.

Our previous work on Artificial Chemistries (see, for example (Banzhaf,

1993, di Fenizio et al., 2000, Dittrich and Banzhaf, 1998, Ziegler and Banzhaf,

2001)) didn’t address the question of how to write algorithms ”chemically”

in enough detail. In (Banzhaf, 1995) we introduced a very general analogy

between chemical reaction and algorithmic computation, arguing that concen-

trations of results would be important. The present contribution aims to fill that

gap and to put forward a proposal as to how such an artificial chemistry could

look like.

3. The Method

Genetic Programming (GP) (Koza, 1992, Banzhaf et al., 1998) belongs to

the family of Evolutionary Algorithms (EA). These heuristic algorithms try to

improve originally random solutions to a problem via the mechanisms of recom-

bination, mutation and selection. Many applications of GP can be described

178 GENETIC PROGRAMMING THEORY AND PRACTICE II

as evolution of models (Eiben and Smith, 2003). The elements of models are

usually arithmetic expressions, logical expressions or executable programs.

Here, we shall use evolution of a sine function (an approximation problem)

and of a thyroid pattern diagnosis problem (a classification problem). We

represent a program as a set of instructions only stored as a linear sequence in

memory due to technical limitations. These instructions are 2 and 3 address

instructions which work on a set of registers.

It should be noted that — in contrast to tree-based GP — each change in

an instruction of this representation will have global effects. If, as a result of

a change in an instruction, a certain register holds a different value, this will

affect all registers making use of this register as input argument.

Linear GP with Sequence Generators

Here we shall use 3-address machine instructions. The genotype of an indi-

vidual is a list of those instructions. Each instruction consists of an operation,

a destination register, and two source registers2. Initially, individuals are pro-

duced by randomly choosing instructions. As is usual, we employ a set of

fitness cases in order to evaluate (and subsequently select) individuals.

Figure 11-1 shows the execution of an individual in linear GP. A sequence

R1=R2+R4

R7=R3*R1

R2=R2/R6

R4=R0+R1

R1=R2−R4

R3=R1−R1

R1=R2+R4

R7=R3*R1

R2=R2/R6

R4=R0+R1

R1=R2−R4

R3=R1−R1

sequencer
linear

next()

next()

next()

next()

next()

start()

Execution OrderMemory Order

Figure 11-1. Execution of an individual in linear GP. Memory order and execution order cor-

respond to each other. Arrows indicate returned values of calls to the sequence generator.

generator is used to determine the sequence of instructions. Each instruction

is executed, with resulting data stored in its destination register. Usually, the

sequencegenerator moves through the program sequence instruction by instruc-

2Operations which require only one source register simply ignore the second register.

Genetic Programming of an Algorithmic Chemistry 179

tion. Thus, the location in memory space determines the particular sequence

of instructions. Classically, this is realized by the program counter.3

1–Point–Crossover can be described using two sequence generators. The first

generator is acting on the first parent and returns instructions at its beginning.

These instructions form the first part of the offspring. The second sequence

generator operates on the other parent. We ignore the first instructions this

generator returns4. The others form the tail of the offsprings instruction list.

Mutation changes single instructions by changing either operation, or des-

tination register or the source registers according to a prescribed probability

distribution.

A register machine as an Algorithmic Chemistry

There is a simple way to realize an chemistry by a register machine. By

substituting the systematic incremental stepping of the sequence generator by

a random sequence we arrive at our system. That is to say, the instructions are

drawn randomly from the set of all instructions in the program5. Still, we have

to provide the number of registers, starting conditions and determine a target

register from which output is to be drawn.

As shown in Figure 11-2 the chemistry works by executing the instructions

of an individual analogous to what would happen in a linear GP–System (cf.

11-1), except that the sequence order is different.

R1=R2+R4

R7=R3*R1

R2=R2/R6

R4=R0+R1

R1=R2−R4

R3=R1−R1 R2=R2/R6

R1=R2−R4

R1=R2+R4

R1=R2+R4

R4=R0+R1

R1=R2−R4

Execution OrderMemory Order

start()

sequencer
random

next()
next()

next()
next()

next()

Figure 11-2. Execution in the AC system. The sequence generator returns a random order for

execution.

3(Conditional) jumps are a deviation from this behavior.
4Should crossover generate two offspring, the instructions not copied will be used for a second offspring.
5For technical reasons instructions are ordered in memory space, but access to an instruction (and subsequent

execution) are done in random order.

180 GENETIC PROGRAMMING THEORY AND PRACTICE II

It should be noted that there are registers with different features: Some

registers are read-only. They can only be used as source registers. These

registers contain constant values and are initialized for each fitness case at the

start of program execution. All other registers can be read from and written

into. These are the connection registers among which information flows in the

course of the computation. Initially they are set to zero.

How a program behaves during execution will differ from instance to in-

stance. There is no guarantee that an instruction is executed, nor is it guaranteed

that this happens in a definite order or frequency. If, however, an instruction is

more frequent in the multi-set, then its execution will be more probable. Simi-

larly, if it should be advantageous to keep independence between data paths, the

corresponding registers should be different in such a way that the instructions

are not connecting to each other. Both features would be expected to be subject

to evolutionary forces.

Evolution of an Algorithmic Chemistry

Genetic programming of this algorithmic chemistry (ACGP) is similar to

other GP variants. The use of a sequence generator should help understand this

similarity. We have seen already in Section 3.0 how an individual in ACGP is

evaluated.

Initialization and mutation. Initialization and mutation of an individual

are the same for both the ACGP and usual linear GP.

Mutation will change operator and register numbers according to a proba-

bility distribution. In the present implementation register values are changed

using a Gaussian with mean at present value and standard deviation 1.

Crossover. Crossover makes use of the randomized sequences produced

by the sequence generator. As shown in Figure 11-3 a random sequence of in-

structions is copied from the parents to the offspring. Though the instructions

inherited from each of the parents are located in contiguous memory locations,

the actual sequence of the execution is not dependent on that order. The prob-

ability that a particular instruction is copied into an offspring depends on the

frequency of that instruction in the parent. Inheritancetherefore is inheritance of

frequencies of instructions, rather than of particular sequences of instructions.

Constant register values will be copied with equal probability from each

parent, as is done for choice of the result register.

Genetic Programming of an Algorithmic Chemistry 181

sequencer
random

R3=R1−R1

R1=R2−R4

R4=R0+R1

R2=R2/R6

R7=R3*R1

R1=R2+R4

Parent 1 Offspring Parent 2

R2=R1+R7

R0=R4−R2

R5=R1*R1

R3=R1*R4

R6=R2+R3

R0=R5*R1

sequencer
random

start()

next()

next()

next()

next()

next()
next()

next()

R1=R2−R4

R7=R3*R1

R5=R1*R1

R0=R4−R2

R3=R1*R4

R3=R1*R4

start()

Figure 11-3. Crossover in an Artificial Chemistry.

Measures

Most measures, like the number of instructions of a program, can remain the

same as in other GP systems, some are not observable at all, e.g. edit distance,

or are completely new, as connection entropy described next.

If a register is written into from different instructions of a program which all

might be equally frequent in the program, reproducibility of a result is strongly

dependent on the sequence generator’s seed. If, however, all registers are only

written into from one instruction the result is more reproducible.

In order to increase reproducibility of results, the concentration of necessary

instructions needs to be increased and that of other instructions needs to be

decreased. One main influence on this is provided by crossover. At the same

time, however, it is advantageous, to decouple flow of data interfering with the

proper calculation. The connection entropy is designed to measure the progress

along this line.

Let � be the set of connection registers participating in any data path. A

connection register ����� might be written into by operations � � � of instructions�
. Each of these instructions might be in multiple copies in the program, with	 � � � 	 the number of copies. We then have

 ����
� �
	 � � � 	

the number of instructions that write into register � . Instruction � � � has proba-

bility

� � � � 	 � � � 	���

182 GENETIC PROGRAMMING THEORY AND PRACTICE II

to have written into � . The entropy

�������	��
�����
�
��������� �

�
���

of register � states how reproducible the value in a register is. The connection

entropy finally reads � ��� � �"! � �#%$&#('
The lower the connection entropy the more reliable the results from the execu-

tion of a program in ACGP are.

4. Description of Experiments

We take two sample problems to demonstrate that the idea works in principle.

The first one is approximation of the sine function, the second problem is

classification of thyroid function on real world data. Table 11-1 lists parameters

chosen identically for both problems. Table 11-2 shows settings that differ for

Table 11-1. Common settings of both experiments.

Parameter Value

Population

Parents 100

Offsprings 500

Individual/Algorithmic Chemistry

Connection registers 30

Evolved Constants 11

Operationset add,sub,div,mult,

pow,and,or,not

Init Length 100

Maximum Length 1000

Evaluation

Nr. of randomly drawn instructions)+* length

Training set sampling Stochastic subset sampling

Crossover rate 0.5

Mutation probability per entry 0.03

Evolution

Generations 500

both problems. Additionally, both problems vary in their fitness function. In

the following section we describe the applied fitness functions and give some

more information about the two problems.

Genetic Programming of an Algorithmic Chemistry 183

Table 11-2. Differences mainly concern the problem type and evaluation sets.

Parameter Value

sine thyroid

Problem type regression classification

Number of inputs 1 real value 21 values (6 real, 15 binary)

Training set size 1000 3772

subset (SSS) 100 400

Validation set size 400 1000

Testing set size 400 2428

Regression — Sine Function Approximation

Approximation of a sine function with non–trigonometric functions is a non–

trivial but illustrative problem. The set of fitness cases ���������
	����	������������������������ ���������������� is created in the following way: In the interval � �"!#�$!�% random

values ��& are used to calculate values �&'�)(�*,+-����&.� , *0/1�324��56� ����� ��+7� .

Given a subset �98 of the training set � , the fitness function is the mean

squared error of the individual : applied to all fitness cases of the subset:; � : �<� => ?
@BA4C DFEHG4IKJ � : ���L� � M� ��NO PRQTSUPWV

X�Y[Z�\M]
denotes a fitness case in the subset

Q S
of size

PRQ S P
,
Y

the input and
\

the

desired output.

Classification — Thyroid Problem

The thyroid–problem is a real world problem. The individual’s task is to

classify humans thyroid function. The dataset was obtained from the UCI–

repository (Blake and Merz, 1998). It contains 3772 training and 3428 testing

samples, each measured from one patient. A fitness case consists of a measure-

ment vector containing 15 binary and 6 real valued entries of one human being

and the appropriate thyroid function (class).

There are three different classes for the function of the thyroid gland, named

hyper function, hypo function and normal function. As Gathercole (Gathercole,

1998) already showed, two out of these three classes, the hyper function and

the hypo function, are linearly separable. Given the measurement vector as

input, an individual of the ACGP system should decide whether the thyroid

gland is normal functioning (class 1), or should be characterized as hyper or

hypo function (class 2).

Because more than 92% of all patients contained in the dataset have a nor-

mal function, the classification error must be significantly lower than 8%. The

184 GENETIC PROGRAMMING THEORY AND PRACTICE II

classification error is the percentage of misclassified dataset. We use the clas-

sification error as our fitness function.

The selection algorithm picks its subsets out of the 3772 training examples.

From the set of testing examples we remove the first 1000 examples to form a

validation set. The remaining examples form the testing set.

We assign the following meaning to the output of the individuals. A negative

output (���) denotes normal function, otherwise hyper or hypo function.

5. Performance Observation

Figure 11-4 shows the characteristics of fitness, length and entropy for both

experiments described in section 4. All results are averaged over 100 runs.

Fitness

Fitness characteristics are shown for population average as well as popula-

tions best individual, based on a subset of the training set. All individuals are

tested on a validation set and the best individual is then applied to the testing

set. The third characteristics shows fitness on this set in average.

In Figure 11.4(a) one can see their variation in time for the thyroid problem.

0 100 200 300 400 500
generation

0,00

0,02

0,04

0,06

0,08

cl
as

si
fi

ca
ti

o
n

 e
rr

o
r

training set average fitness
training set best fitness
testing set fitness

(a) Fitness

0 100 200 300 400 500
generation

0

20

40

60

80

100

n
u
m

b
er

 o
f

in
st

ru
ct

io
n
s

average length
length of best

0,5

1

en
tr

o
p
y

average entropy
entropy of best

(b) Number of Intructions and Entropy on

testing data

Figure 11-4. Observations on classification of thyroid function.

In this example fitness is equal to classification error. The average clas-

sification error (on the test set) after 500 generations is 2.29%. The lowest

classification error ever reached is 1.36%, observed after 220 generations. Us-

ing different settings, Gathercole (Gathercole, 1998) reports classification er-

rors between 1.6% and 0.73% as best result using his tree–based GP system.

He also cites a classification error of 1.52% for neural networks from Schiff-

mann et. al. (Schiffmann et al., 1992).

Genetic Programming of an Algorithmic Chemistry 185

Figure 11.5(a) shows mean squared error (MSE) as fitness value for the

sinus approximation problem. The lowest MSE observed ever is 0.026. One

0 100 200 300 400 500
generation

0,15

0,20

0,25

m
ea

n
 s

q
u
ar

ed
 e

rr
o
r

training set average fitness
training set best fitness
testing set fitness

(a) Fitness

0 100 200 300 400 500
generation

0

20

40

60

80

100

n
u
m

b
er

 o
f

in
st

ru
ct

io
n
s

average length
length of best

0,5

1

en
tr

o
p
y

average entropy
entropy of best

(b) Number of Intructions and Entropy on

testing data

Figure 11-5. Observations on approximation of the sine function.

run achieved this value, but it got lost in subsequent generations. Runs better

than average (0.17) show values next to 0.11. Certainly, there is room for

improvement regarding these results.

The MSE mightnot be an adequatefitness function for Algorithmic Chemistries.

No evaluation of a fitness case is like another, because a new random order of

instructions is used for each fitness case. While an insufficient order leads to a

low error on classification problems (one misclassification), it could lead to a

large error on regression problems using MSE. Even if an Algorithmic Chem-

istry leads to good results on almost every fitness case, a single failure could

have a large effect on the individual’s fitness value. This complicates evolution.

Limiting maximum error of a fitness case could be a possible way out.

Program Length and Connection Entropy

program length

Due to our definition of entropy, its variation in time is comparable to length

of the individuals. For this reason they are shown in the same chart (Fig. 11.4(b)

and 11.5(b)). We plotted the population means as well as the characteristics

of population’s best individual averaged over 100 runs. Values of the best

individuals should give an impression on how selection pressure influences the

mean value.

At the outset individuals loose between 20% and 40% of their initial length

of 100 instructions immediately. Within the first 100 generations they reduce

length even more and keep a nearly constant length afterwards. We cannot

observe bloat by ineffective code as it is known in linear GP. For this behavior

we take two reasons into account. First, bloat protects blocks of code belonging

186 GENETIC PROGRAMMING THEORY AND PRACTICE II

together in a specific order from being separated by the crossover operation. As

there is no order in ACs, there is no need for such kind of protection. Second,

each nonessential instruction reduces the probability of calling an essential

instruction in the right period of time. This cannot reduce bloat in linear GP,

because there it is assured that every instruction is called once in sequential

order.

With decrease in average length, average connection entropy declines, too.

This increases the uniqueness of the value assigned to a register.

Visualization of an Algorithmic Chemistry

Figure 11-6 represents an Algorithmic Chemistry of the population at two

different time steps. Each register is represented by a node. Read-only registers

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

DIV (1)

ADD (1)

AND (1)

ADD (1)

DIV (1)

SUB (1)

POW (1)

DIV (1)

OR (1)

AND (1)

SUB (1)

DIV (1)

OR (1)

POW (1)

ADD (1)

SUB (1)

DIV (1)

AND (1)

ADD (1)

POW (1)

DIV (1)

OR (1)

NOT (1)

OR (1)

MULT (1)

POW (1)

DIV (1)

ADD (1)

MULT (1)

SUB (1)

NOT (1)

NOT (1)

AND (1)

POW (1)

ADD (1)

POW (1)

DIV (1)

OR (1)

MULT (1)

DIV (1)

DIV (1)

MULT (1)

SUB (1)

OR (1)

AND (1)

AND (1)

ADD (1)

POW (1)

POW (1)

DIV (1)

AND (1)

AND (1)

POW (1)

ADD (1)

AND (1)

OR (1)

DIV (1)

NOT (1)

OR (1)

DIV (1)

MULT (1)

SUB (1)

AND (1)

NOT (1)

MULT (1)

DIV (1)

POW (1)

DIV (1)

MULT (1)

MULT (1)

NOT (1)

AND (1)

NOT (1)

NOT (1)

POW (1)

SUB (1)

AND (1)

SUB (1)

NOT (1)

MULT (1)

ADD (1)

AND (1)

DIV (1)

POW (1)

MULT (1)

POW (1)

DIV (1)

NOT (1)

SUB (1)

MULT (1)

MULT (1)

DIV (1)

OR (1)

ADD (1)

NOT (1)

DIV (1)

MULT (1)

SUB (1)

SUB (1)

NOT (1)

(a) Initial Generation

0

1

2

3

4

5

6

7

8

9

10

11
12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

0

1

2

3

4

5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

POW (1)

NOT (1)

AND (1)

MULT (1)

SUB (1)

AND (1)

ADD (1)

SUB (1)

POW (1)

MULT (3)

SUB (1)

ADD (1)

MULT (1)

NOT (2)

SUB (6)

SUB (3)

AND (1)

MULT (2)

OR (2)

SUB (1)

SUB (1)

SUB (1)

ADD (2)

DIV (2)

SUB (4)

POW (1)

SUB (1)

MULT (2)

SUB (3)

POW (1)

DIV (1)

SUB (1)

DIV (1)

POW (1)

SUB (1)

SUB (1)

POW (1)

AND (1)

(b) Generation 465

Figure 11-6. Graph of the best Algorithmic Chemistry for Thyroid problem at different gen-

erations.

are drawn as boxes. Other registers are symbolized by a diamond. Thus the

output register is a diamond, and it is also drawn bold. Instructionsare presented

as hexagons. They are labeled by the name of the operation that belongs to the

instruction they represent with number of identical instructions in parenthesis.

Every instruction–node is connected by an edge to the register it uses. The

circle at the end of an edge symbolizes the kind of access. A filled circle shows

a write access, an empty circle shows an read access. Flow of information

between instructions happens when one instruction writes and the other reads

a particular register.

Genetic Programming of an Algorithmic Chemistry 187

Figure 11.6(a) shows a graph of an initial individual. It consists of 100 ran-

domly assembled instructions. Nearly all instruction are single instances, and

all registers are in use. Figure 11.6(b) shows a later time step in evolution. One

can clearly see the reduced number of different instructions. Some instructions

show a higher concentration than the others. Many registers that only allow

read access, proved to be useless during evolution and are not accessed any

more.

In Figure 11-7 one can see a part of the last graph with a different layout.

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

POW (1)

NOT (1)

AND (1)

MULT (1)

SUB (1)

AND (1)

ADD (1)

SUB (1)

POW (1)

MULT (3)

SUB (1)

ADD (1)

MULT (1)

NOT (2)

SUB (6)

SUB (3)

AND (1)

MULT (2)

OR (2)

SUB (1)

SUB (1)

SUB (1)

ADD (2)

DIV (2)

SUB (4)

POW (1)

SUB (1)

MULT (2)

SUB (3)

POW (1)

DIV (1)

SUB (1)

DIV (1)

POW (1)

SUB (1)
SUB (1)

POW (1)

AND (1)

Figure 11-7. Most important part of the Chemistry shown in Figure 11.6(b). It shows all

operations and registers responsible for the chemistries result. The number in parenthesis in-

dicates how often this instruction is in the multiset. Brightness should indicate an instruction’s

frequency, with darker nodes having higher frequency.

The result register of this AC is register 11 shown at top left. Just one

instruction is doing a write access on this register. It is a subtraction available

six times in this AC. One of its source registers is register 29 of the register

set that just allows read access. While the first 21 Registers in this set contain

the inputs of the fitness case, the others contain evolved constants. The second

input is a writable register (numbered 26). At this point of time in evolution

there is also just one write access to this register. Here it is another subtraction

available three times in this chemistry. It subtracts two values of the fitness

case.

This illustrates how evolution achieves an evaluation with a high repro-

ducibility within Artificial Chemistries. The two main mechanisms are reduc-

188 GENETIC PROGRAMMING THEORY AND PRACTICE II

tion of competitive write-access to registers and an increase in the concentration

of important instructions.

6. Summary and Outlook

In this contribution it was not our intention to introduce simply a new rep-

resentation for Genetic Programming. Instead, we wanted to show that goal-

oriented behaviour is possible with a seemingly uncoordinated structure of

program elements. This way we wanted to draw attention to the fact that an al-

gorithmic chemistry could be a helpful concept for novel computer architecture

considerations.

In fact a lot can be said about the similarity of this approach to dataflow

architectures (Arwind and Kathail, 1981). Traditional restrictions of that archi-

tecture, however, can be loosened with the present model of non-deterministic

computation, ”programmed” by evolution. Recent work in the dataflow com-

munity (Swanson et al., 2003) might therefore find support in such an approach.

Spinningthe analogyof a genome further, we can now see that the instructions

used in ACGP are equivalent to genes, with each gene being "expressed" into

a form that is executed. Execution of an instruction can, however, happen

uncoordinated with execution of another instruction. So we are much nearer to

a regulatory network here than to a sequential program (Banzhaf, 2003).

The strength of this approach will only appear if distributedness is taken into

account. The reasoning would be the following: Systems of this kind should

consist of a large number of processing elements which would share program

storage and register content. Elements would asynchroneously access storage

and register. The program’s genome wouldn’t specify an order for the execution

of instructions. Instead, each element would randomly pick instructions and

execute them. Communication with the external world would be performed via

a simple control unit.

It goes without saying that such a system would be well suited for parallel

processing. Each additional processing element would accelerate the evalua-

tion of programs. There would be no need for massive communication and for

synchronization between processing elements. The system would be scalable

at run-time: New elements could be added or removed without administrative

overhead. The system as a whole would be fault-tolerant, failure of processing

elements would appear merely as a slowed-down execution. Loss of informa-

tion would not be a problem, and new processes need not be started instead of

lost ones. Reducing the number of processors (and thus slowing down compu-

tation) could be allowed even for power management.

Explicit schedulingof tasks would not be necessary. Two algorithmicchemistries

executing different tasks could be unified into one even, provided they used dif-

ferent connection registers. Would it be necessary that one task should be

Genetic Programming of an Algorithmic Chemistry 189

prioritized a higher concentration of instructions would be sufficient to achieve

that.

Finally (thoughwe haven’t demonstrated that here) programs which are never

sequentially executed don’t need to reside in contiguous memory space. A good

deal of memory management would therefore also become superfluous.

According to (Silberschatzand Galvin, 1994) “[a] computer system has many

resources (hardware and software) that may be required to solve a problem:

CPU time, memory space, file storage space, I/O devices, and so on. The

operating system acts as a manager of these resources and allocates them to

specific programs and users as necessary for their tasks”. Architectural designs

as the ones considered here would greatly simplify operating systems.

It is clear that non-deterministic programs resulting from runs of an ACGP

system would not be suitable for all applications of computers. Already today,

however, a number of complex systems (like the embedded systems in a car)

have to process a large amount of noisy sensor data about the environment. It is

frequently necessary to measure the same quantity repeatedly in order to arrive

at safe observations. In such cases one would simply extend the repetition of

tasks into computing. Adding processing would therefore simultaneously lead

to more reliable conclusions from these observations.

Our real world is messy and non-deterministic. Would not a GP approach

driving a messy and non-determinstic computational system be well suited for

taking up these challenges?

Acknowledgements

The authors gratefully acknowledge support from a grant of the Deutsche

Forschungsgemeinschaft DFG to W.B. under Ba 1042/7–3.

References

Arwind and Kathail, V. (1981). A multiple processor data flow machine that

supports generalized procedures. In International Conference on Computer

Architecture (Minneapolis 1981), Los Alamitos, CA. IEEE Computer Soci-

ety.

Banzhaf, W. (1993). Self-replicating sequences of binary numbers. Comput.

Math. Appl., 26:1–8.

Banzhaf, W., Nordin, P., Keller, R., and Francone, F. (1998). Genetic Program-

ming - An Introduction. Morgan Kaufmann, San Francisco, CA.

Banzhaf, Wolfgang (1995). Self-organizing Algorithms Derived from RNA

Interactions. In Banzhaf, W. and Eeckman, F.H., editors, Evolution and Bio-

computing, volume 899 of LNCS, pages 69–103. Springer, Berlin.

190 GENETIC PROGRAMMING THEORY AND PRACTICE II

Banzhaf, Wolfgang (2003). Artificial Regulatory Networks and Genetic Pro-

gramming. In Riolo, R. and Worzel, B., editors, Genetic Programming —

Theory and Practice, GP Series, pages 43–62. Kluwer, Norwell, MA.

Blake, C. L. and Merz, C. J. (1998). UCI repository of machine learning

databases. http://www.ics.uci.edu/ � mlearn/MLRepository.html.

di Fenizio, P. Speroni, Dittrich, P., Banzhaf, W., and Ziegler, J. (2000). Towards

a Theory of Organizations. In Hauhs, M. and Lange, H., editors, Proceedings

of the German 5th Workshop on Artificial Life, Bayreuth, Germany. Bayreuth

University Press.

Dittrich, P. and Banzhaf, W. (1998). Self-Evolution in a Constructive Binary

String System. Artificial Life, 4(2):203–220.

Dittrich, P., Ziegler, J., and Banzhaf, W. (2001). Artificial Chemistries - A

Review. Artificial Life, 7:225–275.

Eiben, G. and Smith, J. (2003). Introductionto Evolutionary Computing. Springer,

Berlin, Germany.

Fontana, W. (1992). Algorithmic chemistry. In Langton, C. G., Taylor, C.,

Farmer, J. D., and Rasmussen, S., editors, Artificial Life II, pages 159–210,

Redwood City, CA. Addison-Wesley.

Gathercole, Chris (1998). An Investigation of Supervised Learning in Genetic

Programming. PhD thesis, University of Edinburgh.

Koza, John R. (1992). A genetic approach to the truck backer upper problem and

the inter-twined spiral problem. In Proceedings of IJCNN International Joint

Conference on Neural Networks, volume IV, pages 310–318. IEEE Press.

Schiffmann, W., M.Joost, and Werner, R. (1992). Optimization of the backprop-

agation algorithm for training multilayer perceptrons. Technical Report 15,

University of Koblenz, Institute of Physics.

Silberschatz,A. and Galvin, P. B. (1994). Operating System Concepts. Addison-

Wesley, Reading, MA, 4 edition.

Swanson, S., Michelson, K., and Oskin, M. (2003). Wavescalar. Technical Re-

port UW-CSE-03-01-01, University of Washington, Dept. of Computer Sci-

ence and Engineering.

Ziegler, J. and Banzhaf, W. (2001). Evolving Control Metabolisms for a Robot.

Artificial Life, 7:171–190.

