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Abstract This article reviews the growing body of scienti�c
work in arti�cial chemistry. First, common motivations and
fundamental concepts are introduced. Second, current
research activities are discussed along three application
dimensions: modeling, information processing, and
optimization. Finally, common phenomena among the
different systems are summarized. It is argued here that
arti�cial chemistries are “the right stuff” for the study of
prebiotic and biochemical evolution, and they provide a
productive framework for questions regarding the origin and
evolution of organizations in general. Furthermore, arti�cial
chemistries have a broad application range of practical
problems, as shown in this review.

Information should be generated from information just as organisms from
organisms. The pieces should fertilize each other, they should be crossed over,
they should be mutated, that is, varied to a small degree, but also to a larger
degree by radical changes not known in genetics. This could perhaps happen in
some vessels where reactions between “information-carrying molecules” take
place, molecules that carry information in a similar way as chromosomes carry
the features of organisms.1

Stanislaw Lem, Summa Technologiae, 1964

1 Arti� cial Life and Arti� cial Chemistry

One of the main driving forces of science is the quest for understanding the origin and
nature of life. For centuries, this quest has caused scientists to collect and systemati-
cally describe the diversity of life found everywhere around us. Over many years an
impressive collection of data about the processes of life has been amassed. Biology
as a traditional life science has sorted and classi�ed the data, and—in the course of
a century—has made considerable inroads into the understanding of certain aspects
of life. The informational perspective, however, has not been the center of interest
in biological attempts to approach the issue of life’s essence. Arti�cial life (AL) re-
search, on the other hand, abstracts from speci�c examples of living processes and
tries to integrate different approaches into one interdisciplinary attempt to extract the
�rst principles of life. The working hypothesis of AL research is that biotic phenomena
can be modeled by using complex systems of many interacting components. The com-
plex system approach toward an explanation of life employs emergence as a central
concept. Emergence is used to deduce global properties of a system from the local
interactions between its subsystems. These local interactions may follow simple effec-
tive rules that cause global behavior of the system to emerge, but cannot be predicted

1 Translated by the authors from the German edition, 1976, Insel Verlag: Frankfurt am Main
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by simply analyzing the subsystems and their components. In other words, a system
has certain properties not due to the properties of its constituents, but due to their
organization and their mutual function in the whole.

If we tentatively accept the hypothesis that properties of a system’s components are
not the main part of the description of that system’s organization, we come to the con-
clusion that natural systems such as organisms or social structures, though consisting
of truly different matter and components, might follow the same organizational princi-
ples. This fundamental idea characterizes many AL approaches. Under this view living
organisms are alive not because of the properties of their constituents but because of
their organization.

The theory of evolution, formulated by Darwin, has caused a storm of controversy,
challenging both scienti�c and popular beliefs about the appearance of life on earth.
Up to this day the Darwinian revolution has not been realized in its extent, nor is
it accepted by most of our contemporaries. The principle of random variation and
competitive selection that Darwin discovered is a powerful means for understanding
the progress of evolution. It seems to be valid also on the level of replicating molecules,
and can be observed in higher-level systems (even social or cultural systems).

What has been left open, however, by the theory of evolution are questions relating
to the origin of evolutionary units: How do the prerequisites come into being, that
is, the entities that are varied and selected? How did qualitatively new evolutionary
mechanisms emerge, such as sexual recombination, regulation of mutation rates, or the
genetic code?

Abstract models that should be able to explain the origin of evolutionary systems
would allow us to investigate the theoretical conditions for the origin and evolution
of life. This is one of the fundamental goals of the AL sub�eld of arti�cial chemistry
(AC) research. By abstracting from natural molecular processes, AC tries to investigate
the dynamics of these complex systems. AC deals with combinatorial elements that
change or maintain themselves, and especially with systems that are able to construct
new components. AC thus deals with forms of organization, self-maintenance, self-
construction, and with the conditions for those structures to arise. We would like to
argue that arti�cial chemistries are “the right stuff” to study when trying to uncover the
basic mechanisms of life, and more generally, the origin and evolution of organizations.

The spectrum of AC research is broad. Its application may be considered along
three main dimensions: (a) modeling, (b) information processing, and (c) optimization.
Along the axis of modeling are several examples of arti�cial chemistry modeling systems
in different domains. They range from the above-mentioned biological or evolutionary
systems to social systems or models of parallel processing. The metaphor of colliding
molecules is their common relation to chemistry.

In the area of information processing the computational properties of chemical sys-
tems are investigated and exploited. Many instances of chemical processes in nature
can be interpreted as performing computations. For example, chemical reaction net-
works control the movement of bacteria, other chemical processes control the growth
of neurons during the development of a brain, and the immune system can also be
regarded as a chemical information processing system. The area of information pro-
cessing can be subdivided again into two parts: (a) real chemical computing and (b)
arti�cial chemical computing. The former deals with real chemistry and tries to use real
molecules in order to compute. The latter applies the chemical metaphor as a design
paradigm for new hardware and software architectures.

In the area of optimization arti�cial chemical systems help to �nd solutions of “dif�-
cult,” mostly combinatorial problems. This application domain is closely related to the
�eld of evolutionary computing because many evolutionary algorithms can be seen as
arti�cial chemical systems.
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This article is organized as follows: First it outlines the common motivation for
formulating ACs. Then it gives a structured overview of different approaches by means
of common and distinctive features (Section 2.1). The following section (Section 2.2)
gives a short tutorial on ACs, introducing two illustrative examples. Section 2.3 is
devoted to a systematic attempt to classify the different AC approaches. A basis of
discriminative features is given, according to which the consecutive lineup in section 3
is structured. The next section (Section 4) gives an overview of projects that make use
of some properties of AC in applications. Section 5 deals with observed phenomena
common to several approaches and tries to summarize their results. The closing part
(Section 6) gives an outlook of future directions and challenges in the area.

2 Basic Concepts

This section gives an introduction to the basic concepts of arti�cial chemistries. Two
descriptive examples follow, which should demonstrate concrete implementations. Fi-
nally, we try to structure the characteristics of ACs.

2.1 What is an Arti� cial Chemistry?
Let us start with a broad de�nition: An arti�cial chemistry is a man-made system that is
similar to a real chemical system. This de�nition has been kept as general as possible
so as not to exclude any relevant work. When we now become more precise in
describing the structure of an arti�cial chemistry we should keep in mind that not all
AC approaches can be subsumed under the following conceptual framework.

More formally, an arti�cial chemistry can be de�ned by a triple (S , R , A), where S is
the set of all possible molecules, R is a set of collision rules representing the interaction
among the molecules, and A is an algorithm describing the reaction vessel or domain
and how the rules are applied to the molecules inside the vessel. Both the set of
molecules S and the set of reaction rules R can be de�ned explicitly or implicitly (e.g.,
by an algorithm or mathematical expression). This will be illustrated by two examples
in Section 2.2 and discussed in more detail in Section 2.3.

2.1.1 The Set of Molecules S
The set of molecules S D fs1, . . . , si , . . . , sng, where n might be in�nite, describes all
valid molecules that may appear in an AC. A vast variety of molecule de�nitions can be
found in different approaches. For example, molecules may be abstract symbols [50],
character sequences [9, 51, 77, 95], lambda-expressions [52], binary strings [12, 43, 134],
numbers [17, 44], hierarchical tree data structures [21, 22, 99], combinators [122], or
proofs [30, 55]. A molecule’s representation is often referred to as its structure and is
set in contrast to its function, which is given by the reaction rules R . The description
of valid molecules and their structure is usually the �rst step in the de�nition of an
AC. This step is analogous to the part of chemistry that describes what kind of atomic
con�gurations form stable molecules and how these molecules appear.

2.1.2 The Set of Rules R
The set of reaction rules R describes the interactions between molecules si 2 S . A rule
r 2 R can be written according to the chemical notation of reaction rules in the form

s1 C s2 C ¢ ¢ ¢ C sn ! s 0
1 C s 0

2 C ¢ ¢ ¢ C s 0
m (1)

A reaction rule determines the n components (objects, molecules) on the left-hand side
that can react and subsequently be replaced by the m components on the right-hand
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side. n may be called the order of the reaction.2 Note that the “C” sign is not an
operator here, but only separates the components on either side.

A rule is applicable only if certain conditions are ful�lled. The major condition is
that all of the left-hand side components must be available. This condition can be
broadened easily to include other parameters such as neighborhood, rate constants,
probability of a reaction, or energy consumption. In such a case a reaction rule would
contain additional information or further parameters. Whether or not these additional
predicates are taken into consideration depends on the objectives of the AC. If it is
meant to simulate real chemistry as accurately as possible, it is necessary to integrate
these parameters into the simulation system. If the goal is to build an abstract model,
many of these parameters can be omitted.

2.1.3 Reactor Algorithm A—Dynamics
An algorithm determines how the set R of rules is applied to a collection of molecules
P , called reactor, soup, reaction vessel, or population.3 Note that P cannot be identical
to S since some molecules might be present in many exemplars, others not at all.

Algorithm A depends on the representation of P . In the simplest case, without a
spatial structure in P , the population can be represented explicitly as a multiset or
implicitly as a concentration vector.

We shall now summarize the methods by which the dynamics of a reaction vessel
(which usually contains a huge number of molecules) can be modeled and simulated.
The approaches can be characterized roughly by whether each molecule is treated
explicitly or all molecules of one type are represented by a number, their frequency,
or concentration.
(1) Stochastic molecular collisions: In this approach every molecule is explicitly
simulated and the population is represented as a multiset P . A typical algorithm draws a
sample of molecules randomly from the population P and checks whether a rule r 2 R
can be applied. If so, the molecules are replaced by the right-hand-side molecules
given by r . If more than one rule can apply, a decision is implemented as to which
rule to employ. If no rule can be applied, a new random drawing is initialized. The
algorithm, however, is not necessarily restricted to be so simple. Further parameters
such as rate constants, energy, spatial information, or temperature can be introduced
into the rules for the chemistry to become more realistic.

The following example is an algorithm used for an AC with second-order reactions
only:

while:terminate() do

s1 :D draw(P );

s2 :D draw(P );

if 9(s1 C s2 ! s 0
1 C s 0

2 C ¢ ¢ ¢ C s 0
m) 2 R

then

P :D remove(P , s1, s2);

P :D insert(P , s 0
1, s 0

2, ¢ ¢ ¢ , s 0
m)I

�

od

2 Note that according to chemistry this is a simpli� cation.
3 Here, the term population is used as a technical term according to its meaning in the �eld of evolutionary computation and arti� cial

life. It refers to a data structure that holds all individuals during a simulation. It should not be confused with the technical term
“population” used in biology, which refers to a group of similar, interbreeding organisms that live in a particular area.
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The function draw returns a randomly chosen molecule from P (without removing
it from P ). The probability that a speci�c type is returned is proportional to the con-
centration of this type in P . The above algorithm does not include an in�ux or dilution
�ux of molecules. This can, however, be added easily.

Memory consumption of the algorithm is generally of order O (M ) (i.e., the memory
needed to store all molecules is linearly dependent on M , the total number of molecules
in the reaction vessel). The explicit simulation of every collision is the lowest level
of description. It is very realistic and circumvents some dif�culties generated by the
collective description we discuss below. There are, however, certain disadvantages for
an explicit simulation of every collision. If rate constants or concentrations of molecular
species differ by several orders of magnitude the atomic simulation is not ef�cient. In
addition, if the total number of different molecular species is low or the population is
large, an explicit simulation will be slow (see Section 2.1.4).
(2) Continuous differential or discrete difference equations: A common approach
to describe the dynamics of a chemical system is to use differential rate equations, which
re�ect the development of the concentrations of molecular species. The index carried
by a molecule now characterizes its species, not its place in the population. A reaction
r can be written as

r : a1s1 C a2s2 C ¢ ¢ ¢ C aN sN ! b1s1 C b2s2 C ¢ ¢ ¢ C bN sN

where the coef�cients ai , bi are the stoichiometric factors of the reaction. They are zero
if a species si does not participate in the reaction (ai D 0 if si is not a reactant and bi D 0
if it is not a product of the reaction). Let N be the total number of different species
in S . The change of the overall concentration4 of si is expressed with the following
system of differential equations

dsi

dt
D (bi ¡ ai )

NY

jD1

s
aj

j , i D 1, . . . , N . (2)

In order to take into account every reaction r 2 R that possibly contributes to changes
of concentration si one summarizes

dsi

dt
D

X

r2R

"
(br

i ¡ ar
i )

NY

j D1

s
ar

j

j

#
, i D 1, . . . , N . (3)

Rate equations are a continuous model for a discrete situation. The modeling and
simulation of the dynamics by differential equations is an approximation for large num-
bers of molecules from the same species being present.

Disadvantages of this approach are: Due to the properties of the numerical solu-
tion, concentrations are �oating point values and may be so small as to be below the
threshold that indicates a single molecule in the reactor. For example, if the assumed
population size is 1000, then every further calculation of reactions with si participat-
ing causes unnecessary computational effort if [si ] is below 0.001 because, in fact, the
species si is no longer present in the reactor. Thus, for the ODE approach to be useful,
the number of different molecular species N should be small.
(3) Metadynamics: This approach toward describing the reaction system acknowl-
edges that the number of species and therefore the number of differential equations
may change over time [9]. The equations at a given time represent the dominant species

4 Note that si is also used to describe the concentration of the species si , which is normally written as [si].
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(a dominant species is a species with a concentration above a certain threshold). As
the concentrations change, the dominant species may change, too. Thus the differ-
ential equation system is modi�ed by adding and/or removing equations. Bagley et
al. distinguish between deterministic and stochastic metadynamics. In deterministic
metadynamics the reaction graph changes relative to a concentration threshold ([10], p.
144). The sequence of graphs is purely deterministic. It explores only the internally
catalyzed pathways. In stochastic metadynamics, on the other hand, the physical ac-
curacy of approach (2) is combined with the speed of the deterministic metadynamics
approach.
(4) Mixed approaches: There are also approaches where single macromolecules
are simulated explicitly and a small number of molecules are represented by their
concentrations [141, 142].
(5) Symbolic analysis of the equations: If the differential equation system (ap-
proach (3)) is simple enough, a symbolic analysis is possible. By solving the equations
symbolically the steady-state behavior of the system (�xed point, limit cycle, chaotic
behavior, etc.) can be derived. In the mathematical sense, the symbolic approach is
the most exact one. It can be combined with the metadynamics approach to calculate
the dynamical �xed point of the differential equations “in one step.” Some researchers
[9, 10, 51] used this method with their polymer reaction network, which resulted in
a special ODE with only one stable �xed point. In the general case, the system is
restricted neither to stable attractors nor to �xed points. Dynamical behavior of the
system, however, cannot be derived from symbolic analysis because it gives insight
into the asymptotic behavior only.

2.1.4 A Comparison of the Computational Costs
To ease the decision about what kind of approach to use for the dynamic simulation
in a particular situation we will now compare roughly the computational costs of using
explicit molecular collisions versus an ODE system. For the comparison we assume that
E is the mean value of the number of molecules participating in each reaction r in R ,
and N is the number of different species in a population P of size M . We compare the
computational effort necessary to perform a single step of the two major approaches:
the explicit simulation of reactions and the continuous differential equation approach.

Explicit stochastic molecular collision: In an explicitly performed simulation, a re-
action requires O(E ) draw-operations, followed by O(R ) lookups in the reaction rule
set R . Thereafter O(E ) insert-operations are performed for an intermediate update.
This leads to the estimation of O (E ) C O(R ) costs for each reaction, which equals O(R ),
because in almost every chemistry the total number of different reactions is much larger
than the average number of reactants of a single reaction. A full update of the popu-
lation P thus requires a time of O(R ) ¢ O(M ) D O (R ¢ M ). These computational costs
reduce to O (M ) if the lookup of a reaction can be done in O (1), which is the case, for
example, if the reaction is implicitly de�ned in the structure of a molecule. However,
the comparison of the costs in Table 1 assumes an O(R ) lookup.

Numerical integration of the ODE equations (Equation 3): An integration of the
system requires N differential equations, each of which is of order E . The integration
has a step length h. An update of the concentration vector Es with a numerical integration
method thus has computational costs of O( 1

h ¢ N ¢ E ) function evaluations, because 1
h

evaluations of the system with N equations of order E are needed to perform a unit
step. So O( 1

h ¢ N ¢ E ) steps have to be performed to have the same progress as M
reactions would generate in an explicit simulation with a population P of size M . If
a very common integration method like the standard Runge-Kutta method is used, an
additional factor of 4 (because of the intermediate steps) needs to be weighed in, so
that the overall costs sum up to O (4 ¢ 1

h ¢ N ¢ E ), which equals O( 1
h ¢ N ). Note that the
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Table 1. Comparison of the computational costs (in instructions). Fixed step size h D 0.01, E = 2
(average reaction order). See text for more details.

Parameters Costs

Popsize M Species N Reactions R Collisions Integration

103 10 102 105 103

103 10 104 107 103

103 104 10 104 106

103 104 102 105 106

103 104 104 107 106

103 108 10 104 1010

103 108 102 105 1010

103 108 104 107 1010

106 10 10 107 103

106 10 102 108 103

106 10 104 1010 103

106 104 10 107 106

106 104 102 108 106

106 104 104 1010 106

106 108 10 107 1010

106 108 104 1010 1010

109 10 10 1010 103

109 10 102 1011 103

109 10 104 1013 103

109 104 10 1010 106

109 104 102 1011 106

109 104 104 1013 106

109 108 10 1010 1010

109 108 102 1011 1010

109 108 104 1013 1010

Runga-Kutta method uses a �xed step length. If the solver uses a variable step length,
the parameter h changes accordingly (variable-step-length solvers may be necessary if
the rate constants of the reactions differ by several orders of magnitude, which in turn
makes the system become stiff).

Though constant factors were omitted in the assumption of run-time behavior ex-
pressed in O (. . .) terminology, they may play an important role in the calculation of
the actual computational effort.5 Results of the comparison of the two approaches are
shown in Table 1. Integration is advantageous if the population is large and the number
of species is small. In the opposite case the explicit simulation shows better ef�ciency.
Which approach to favor if both population size and number of species are large is an
unresolved problem and will depend on additional parameters.

2.1.5 Alternative De� nition of an Arti� cial Chemistry
There is an alternative way to de�ne an arti�cial chemistry more naturally, namely by
a tuple (S , I ) where S is a set of particles (basic building blocks, functional groups,
or atoms) and I a description of the interactions among particles. The advantage of
this de�nition is that the “arti�cial” separation into reaction rules (which specify the
“logic” of the transformation of molecules) and algorithm (which de�nes the dynamics)
is avoided. The form (S , I ) is preferable if interactions or reactions are taking place in
the space of the particles or molecules, like in a lattice molecular system (Section 3.7).

5 This comparison does not consider other effects such as creating the reaction table, or the creation and deletion of new species
during the evolution of the system. It also neglects the memory requirements of both approaches, which cause additional
computational effort. Nevertheless, this comparison gives as a result a coarse evaluation of the approaches.
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In most cases the reaction between molecules is independent from the description of
the reaction vessel and their movement in that vessel, like in Fontana’s l chemistry
(Section 3.1.4). Under those conditions the form (S , R , A) is preferable.

The dif�culty of separating reactions from dynamics becomes especially clear in
Section 3.6 (assembler automata) and Section 3.8.1 (mechanical arti�cial chemistries).
But in order to be consistent we use the more general form (S , R , A) throughout this
article.

2.2 Two Examples
The �rst example demonstrates the relation of an explicit simulation of molecules to
their differential equation model. The second example is a constructive AC where
molecules and reactions are de�ned implicitly. The algorithms are given in detail
below.

2.2.1 A Nonconstructive Explicit Chemistry
In the following example, we de�ne a simple chemical system that consists of two
molecular types. Only deterministic second-order catalytic reactions are allowed. Thus
a collision of two molecules will catalyze the formation of a speci�c third molecule.
The two colliding molecules are regarded as catalysts, so they are not changed during
the collision. In order to prevent an unlimited growth of the population we assume a
maximum reactor size of M and a dilution �ux, which keeps the number of molecules
M constant in the reactor.

Molecules: Let the set of molecules be S D fA, Bg. Note that A and B are symbols
representing the molecules, and not variables or patterns.

Reactions: The reaction rules are given explicitly as follows:

r1 : A C A ¡! A C A C B

r2 : A C B ¡! A C B C B

r3 : B C A ¡! B C A C B

r4 : B C B ¡! B C B C A

It may also be convenient to represent the reaction rules by a reaction table :

reactands products
rules A B A B
r1 2 2 1
r2 1 1 1 2
r3 1 1 1 2
r4 2 1 2

or, shortly
A B

A B B
B B A

Dynamics by explicit stochastic reactions: A simulation in which every molecule is
explicitly stored and every single collision is explicitly performed can easily be imple-
mented if the population is represented by an array P of �xed size M . An array element
P [i] 2 S represents a single molecule. The algorithm becomes:

while:terminate() do

P [randInt(1, M )] :D reaction(P [randInt (1, M )], P [randInt (1, M )]);

od
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Figure 1. Comparison of the accuracy between the explicit simulation of collisions and the numerical integration.
The upper curve represents the concentration of molecular species B. Left: Simulation of a population with 103

elements. Middle: Simulation of a population with 104 elements. Right: Numerical integration of the ODE model.

One iteration of the while loop simulates one collision of two molecules. The
algorithm is so short here because every collision results in a reaction and the production
of exactly one new molecule, which replaces one randomly chosen molecule. The
replaced molecules form the dilution �ux.

Dynamics by an ODE model: To simulate the reaction system using an ODE model
we represent the population by a concentration vector Ex D (xA, xB ) where xA and
xB denote the concentration of molecular types A and B , respectively. Because the
total number of molecules is kept constant we can normalize xA and xB such that
xA C xB D 1, xA ¸ 0, xB ¸ 0 holds. The corresponding differential equations read:

dxA

dt
D xBxB ¡ xAW (t ),

dxB

dt
D xAxA C 2xAxB ¡ xBW(t ) with W(t ) D (xA C xB )2 D 1. (4)

The dilution �ux W(t ) equals one because, as a result of a collision, exactly one
molecule is created, so that one molecule is removed at each time step.

Comparison: In Figure 1 a comparison of the explicit stochastic collision and the
ODE approach is shown. For the explicit simulation the typical behavior for two
population sizes is depicted. It is clear that the smaller the population, the more
in�uence will be carried by the randomness of collisions. The ODE model can be seen
as a simulation with in�nite population size, and thus it generates smooth concentration
curves.

2.2.2 A Constructive Implicit Chemistry
As an example of an implicitly de�ned arti�cial chemistry we choose the number-
division chemistry [17, 20].

Molecules: The set of molecules S consists of all natural numbers greater than one:
S D f2, 3, 4, . . .g.

Reactions: Mathematical division is used to calculate the reaction product. When
two molecules s1, s2 2 S collide and s1 can divide s2 without remainder, s2 is transformed
to s2 /s1. Thus, s1 acts as a catalyst. The set of reactions can also be written implicitly
as

R D fs1 C s2 ! s1 C s3 : s1, s2, s3 2 S ^ s3 D s1 /s2g. (5)

If two molecules collide and there is no corresponding reaction rule in R , the collision
is elastic.
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Figure 2. Development of prime number concentration and diversity. Population size M D 100. Population initialized
with number taken randomly from S D f2, 3, . . . , 10000g.

Dynamics: The algorithm draws at random two molecules out of the population
and replaces one of them if it can be divided by the other reactant. So, the algorithm is
similar to the previous one (Section 2.2.1), but additionally includes elastic collisions.

Discussion: Despite the simple algorithm, the dynamic behavior of the system is
fairly interesting. After repeated application of the reaction rule, the whole population
tends to eliminate non-prime numbers until it �nally consists of primes only (Figure 2).6

The concentration of primes shows a typical growth and �nally reaches a maximum
at cprimes D 1.0. The diversity reduces from its initial value to a smaller one through
a transient maximum. The AC emerges as a prime factor calculation of the numbers
in the reactor. By dividing larger numbers into smaller numbers, the total amount
of different numbers increases, until all numbers are divided into their prime factors.
The concentration of prime factors increases, and thus the diversity of the population
decreases. Finally, all numbers in the reactor are prime factors of the initial population.

2.3 Characteristics and Methods
In this section, basic terms are introduced and frequently used methods are summarized.
These allow us to characterize and classify arti�cial chemistries.

2.3.1 De� nition of Molecules: Explicit or Implicit
In an arti�cial chemistry fS , R , Ag the set S represents the objects or molecules, which
interact according to certain rules de�ned in R . The set S can be de�ned explicitly or
implicitly.

Molecules are explicitly de�ned if the set S is given as an enumeration of symbols,
for example, S D fA, B, C g. An implicit de�nition is a description of how to construct
a molecule. This description may be a grammar. Examples of implicit de�nitions are:
S D f0, 1g¤, the set of all bit strings; or S D f1, 2, 3, . . .g, the set of natural numbers.

To build constructive dynamical systems (Section 2.3.5) it is convenient to de�ne
molecules implicitly. Typical implicitly de�ned molecules are character sequences (e.g.,
abbaab ), mathematical objects (e.g., numbers), or compound objects that consist of
different elements. Compound objects can be represented by data structures [92]. We
will refer to the representation of a molecule as its structure.

In some arti�cial chemistries, the structure of a molecule is not de�ned a priori. In-
stead, the arrival of molecules is an emergent phenomenon, and interpreting a structure

6 Simulation in Java available at: http://ls11-www.informatik.uni-dortmund.de/alife/primegen/
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as a molecule is possible only a posteriori. Hence, it is not even necessary to de�ne a
molecule, either explicitly or implicitly.

2.3.2 De� nition of Reaction Laws: Explicit or Implicit
Once we have de�ned the molecules of our AC, it is time to specify their interactions.
These interactions can be de�ned, again, in two different ways.

Explicit: The de�nition of the interaction between molecules is independent of the
molecular structure. Molecules are represented by abstract interchangeable symbols
and the total number of possible elements of the AC remains �xed. Reaction rules are
enumerated and explicitly given. All possible elements and their behavior are known
a priori and their interaction rules do not change during the experiments.

Implicit: The de�nition of the interaction between molecules must refer to their
structure. Examples of implicit reaction rules are concatenation or cleavage of polymers.
An arti�cial chemistry with an implicit reaction scheme allows us to derive the outcome
of a collision from the structure of the colliding molecules. The number of possible
molecules can be in�nite because there is no need for an explicitly de�ned interaction
scheme. Implicitly de�ned interactions are commonly used for constructive chemistries.

2.3.3 De� nition of Dynamics: Explicit or Implicit
The algorithm A of the arti�cial chemistry fS , R , Ag now needs to be de�ned. The
explicit de�nition of the system’s dynamics has already been given in Section 2.1.3.
This de�nition is necessary from a computational point of view, because in a computer
only the effective execution of a series of formally de�ned interactions causes the system
to develop and to show a dynamic behavior. The explicit de�nition of the dynamics is
based on the interactions determined through R and may include various parameters,
ranging from temperature, pressure, and pH value to �eld effects of secondary or
higher-level molecule structures, resulting in an arti�cial chemistry that can be used in
the �eld of computational chemistry [33]. It is shown in Section 2.2, however, that even
a random execution of interactions with no additional parameters causes interesting
dynamical phenomena.

Sometimes, the de�nition of interactions makes the additional de�nition of A ob-
solete. This implicit de�nition is used, for example, in a cellular automata chemistry,
where the dynamics is caused by the synchronous or asynchronous update of lattice
sites.

2.3.4 Levels of Abstraction: Analogous or Abstract
Arti�cial chemistries may also be characterized according to their level of abstraction.
If there is an isomorphism between a molecule or reaction of the AC to a molecule
or reaction in chemistry, respectively, the AC can be called analogous, otherwise it is
called abstract. Analogous ACs are considered in the realms of computational chemistry
where the goal is to model chemical processes in the computer as closely as possible.
What makes an abstract AC a model of chemistry, however, are merely statistical or
qualitative features of the reaction laws. The level of abstraction varies and depends
on the goals of the modeling.

2.3.5 Constructive Dynamical Systems
In a constructive dynamical system new components can appear, which may change
the dynamics of the system. This is different from a conventional dynamical system
where all components and interactions are given explicitly at the outset of the process
(see the �rst example, above).
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A constructive system is called weakly constructive if new components are gener-
ated randomly [56]. It is called strongly constructive if new components are generated
through the action of other components. Natural chemistry is considered to be a
strongly constructive system [52].

By modeling the dynamical system with differential equations, one can describe a
constructive system as an ordinary differential equation (ODE) system where equations
are modi�ed, added and/or removed dynamically. A constructive dynamical system
may also be modeled by a �xed ODE system with an in�nite state space. Mathematical
techniques are available to handle such systems, but this approach is not intuitive and
has many additional drawbacks. When one uses explicitly simulated molecules the
system can be considered constructive if the number of elements that appeared in the
system at least once increases in time.

2.3.6 Random Chemistries
One of the easiest ways to generate an arti�cial chemistry is by drawing random num-
bers for rate constants or by generating explicit reaction laws randomly. The random
autocatalytic systems investigated in Stadler et al. [123], the GARD system [119], or the
metabolic networks in the multicellular organisms reported in Furasawa and Kaneko [57]
are examples of nonconstructive random chemistries. It is also possible to generate con-
structive chemistries randomly by drawing parameters for the reaction laws “on the �y”
when they are needed as demonstrated by Bagley and Farmer [9]. The advantage of
random chemistries is that the statistical characteristics of the reaction mechanism can
be speci�ed arbitrarily. There is, however, an increasing memory consumption through
newly appearing molecular species, because every randomly generated reaction law
has to be stored explicitly for the whole simulation.7

2.3.7 Measuring Time
One step of the algorithm (Section 2.1.3) can be interpreted as a collision of two (or
more) molecules. Simulated time is proportional to the number of collisions divided
by reactor size M . It is common to measure the simulated time in generations, where
one generation consists of M collisions, independent of whether a collision causes
a reaction or not. Using M collisions (a generation) as a unit of time is appropriate
because otherwise an increase of the reactor size M would result in a slowdown of
development speed. If, for example, 1010 collisions were computed in a reactor with
a population size of 105, this would mean that, statistically, every molecule of the
population participated twice in a reaction. If the same number of collisions were
computed in a reactor of size 1020, only half the molecules would have taken part in a
reaction. This would result in a fourfold slower development, if time were not scaled
by reactor size.

In continuously modeled ACs the progress of time depends on the integration step
size of the numerical ODE solver. For a standard solver, a �xed step length of h D 10¡2

is a common setting. Thus, 100 evaluations of the ODE are needed to get a unit length
of time progress.

2.3.8 Pattern Matching
Pattern matching is a method widely used in arti�cial chemistries and other arti�cial
life systems [4, 41, 80, 94, 112]. A pattern can be regarded as information about (or
as a means to identify) the semantics of a subcomponent or location. It allows one to
refer to parts of a system in an associative way independent from the absolute position

7 This problem can be circumvented by using a deterministic pseudorandom number generator trading space requirements with
time requirements.
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of these parts. Koza, for example, used the shape of trees to address subtrees and
to select reaction partners [80]. In the �eld of DNA computing, pattern matching is a
central mechanism in the alignment of two DNA strands. There, a pattern is a sequence
of nucleotides such as CGATTGAGGGA. . . In Tierra, a pattern is given by a sequence
of NOP0 and NOP1 operations in the genome of an individual and is used to direct
jumps [112] of the program counter. McCaskill [94] suggested modeling a chemical
polymer system as molecules interacting inside a pattern space instead of modeling the
movement inside a reaction vessel.

The accuracy of a match can be used to calculate the probability of a reaction or rate
constants, as suggested in Bagley and Farmer [9]. In order to compute the accuracy,
a distance measure between patterns is needed that computes the “similarity” of two
molecules by assigning a numerical value. A convenient distance measure for variable-
length sequences is the string edit distance. The distance between strings of the same
length is usually computed by the Hamming distance.

2.3.9 Spatial Topology
A spatial structure of the reactor is a parameter of the algorithm A of the AC fS , R , Ag and
has no further in�uence on S and R except for some approaches that allow molecules
to grow and occupy more than one point in the reactor space (see Section 3.7 for a
description of such ACs). In most cases, the reactor is modeled as a well stirred tank
reactor, often with a continuous in�ow and out�ow of substances. In a well stirred tank
reactor the probability that a molecule si will participate in a reaction r is independent
of its position in the reactor. In a reactor with topology, the probability depends on the
neighborhood of si . This neighborhood may be determined by the vicinity of si in a
Euclidian space. This space may be two- or more-dimensional. Also, the neighborhood
may be de�ned as the neighborhood in a cellular automaton (e.g., [90, 136]) or as a
self-organizing associative space [42].

All these different spatial structures have one thing in common: They have a more
or less important in�uence on the selection of reactants, performed by the algorithm
A. By adopting an additional spatial structure, the analysis of ACs becomes a more
complicated task; but on the other hand, some of the observed properties might not
occur without it.

3 Approaches

In this section, methods for building arti�cial chemistries are reviewed in some de-
tail. They are organized according to their underlying interaction mechanism and the
structure of their molecules.

3.1 Rewriting or Production Systems
A rewriting system consists of certain entities or symbols and a set of syntactic rules for
performing replacements. A rule de�nes whether a pattern of symbols can be replaced
by another pattern. There are two variants for utilizing rewriting systems to de�ne
the reactions. On the one hand, the application of a rule corresponds to a reaction
(see Sections 3.1.1–3.1.3); on the other hand, one single reaction consists of multiple
applications of many rules (see Section 3.1.4 and [122]). Rewriting systems are also
used to model chemical computation [31, 104].

3.1.1 The Chemical Abstract Machine (CHAM)
Berry and Boudol have developed an abstract machine, called the chemical abstract
machine (CHAM), which is based on the chemical information processing metaphor,
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to model concurrent computation [20]. The machine is an extension of the C language
introduced by Benâtre and Le Métayer [71].

Molecules: The molecules s1, s2, . . . are terms of an algebra. The reactor (population,
solution) is a �nite multiset, which may contain molecules as well as subpopulations
called subsolutions. Subpopulations are treated like molecules. Reactions may take
place in subpopulations independently and in parallel. A membrane concept enables
molecules to leave subpopulations.

Reactions: A special CHAM is de�ned by a set of transformation laws. There are
four general laws that are valid for every CHAM and are the only rules that contain
premises.8 The speci�c rules de�ne a special CHAM and are simple rewriting rules of
the form

s1, s2, . . . , sk ¡! s 0
1, s 0

2, . . . s 0
l (6)

The general laws de�ne how these rewriting rules can be applied to a multiset. Roughly
speaking, they say that molecules inside a (sub)population that matches the left side
may be replaced by the molecules on the right side (reaction and chemical law), that a
subpopulation may develop independently (membrane law), and that molecules may
enter or leave a subpopulation (airlock law).

To de�ne a special CHAM, an arbitrary set of special rules of the form (6) can be
added to the general laws. To ease handling of the special rules, Berry and Boudol
[20] distinguish three classes of special rules, namely, heating rules, cooling rules, and
reaction rules. A heating rule decomposes a molecule into its components. A cooling
rule is the corresponding counterpart. Heating and cooling are considered to be re-
versible. Reaction rules are irreversible and are usually applied to heated molecules.
They change the information content of a population.

Dynamics: At any time a CHAM may perform an arbitrary number of transformations
in parallel, provided that no molecule is used more than once to match the left side of a
reaction law. A CHAM is nondeterministic if more than one transformation rule may be
applied to the population at a time. In this case the CHAM selects a transformation rule
randomly. (This selection process is guided by an objective function in the chemical
casting model by Kanada and Hirokawa [74] (see Section 3.1.3).)

3.1.2 The Chemical Rewriting System on Multisets (ARMS)
The chemical abstract machine has been developed to model concurrent computing.
However, Suzuki and Tanaka demonstrate that it can be utilized to model chemical
systems [125, 126]. They de�ned an ordered abstract rewriting system on multisets
called chemical ARMS.

Molecules: Similar to a CHAM, the molecules are abstract symbols.
Reactions: The reaction rules are rewriting rules.
Dynamics: The reactor is represented by a multiset of symbols. In addition, there

is a set of input strings and an optional rule order. The rule order speci�es in which
order the rules are processed. It is used to analyze the in�uence of the order of
rule application on the dynamics. Different rate constants are modeled by different
frequencies of rule application.

It has been shown that ARMS is able to model oscillating chemical systems, such
as the Brusselator. Suzuki and Tanaka investigated the qualitative dynamics of ARMS
by generating rewriting rules randomly and they derived criteria for the emergence of
cycles [125]. They also de�ned an order parameter le , which is roughly the relation of

8 These transformation rules are rules for a formal production system and should not be confused with reaction rules of arti� cial
chemistries.
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the number of heating rules to the number of cooling rules [126]. They found that for
small and for large le values the dynamics are simple: The rewriting system terminates
and no cycles appear. For intermediate le values cycles emerge. Recently ARMS has
been applied to model ecological systems (see Section 4.1.3).

3.1.3 The Chemical Casting Model (CCM)
The chemical casting model (CCM) introduced by Kanada is also a production system
inspired by the chemical metaphor. The motivation was to develop a new method for
optimization of constraint satisfaction problems. In addition, the CCM can be regarded
as a model for emergent computation.

Molecules: Molecules (composed of atoms) and reaction rules depend on the type
of the search problem. In general, atoms are components of a potential solution of
the problem. In Kanada’s and Kanada and Hirokawa’s examples [73, 74] the whole
population (working memory) represents one point in search space. Each atom has
a type and a state. Atoms can be connected by links. Links may be used to specify
a concrete problem, like in the graph coloring example. In this case links are �xed
during a simulation. For a traveling salesman problem (TSP), links can represent a
solution to the problem and thus have to change during the search process.

Reactions: The reaction rules have in general the form

LHS ¡! RHS (7)

where the left-hand side (LHS) is a sequence of patterns. If a subset of atoms matches
the LHS it may be replaced by atoms that match the right-hand side (RHS).

Dynamics: The quality of a solution is measured by a local evaluation function called
the local order degree (LOD). The LOD is used to decide whether a rule can be applied
or not. There are two types of LODs: The �rst one maps one atom to a number and
the second one maps two atoms to a number. A rule may be applied if the sum of the
LODs of the participating atoms on the left-hand side is smaller than the sum of the
LODs on the right-hand side. The quality of the solution is only measured locally by
this method.

Kanada has also introduced an annealing method by assigning an additional energy
state variable, called frustration, to each atom [73]. The frustration is similar to a kinetic
energy. The frustration is added to the LOD so that, if the frustration of atoms is high,
they may react even if the previous LOD criteria are not ful�lled. In case of an elastic
collision, the frustration of the colliding atoms is increased by a factor c. In case of a
reaction, the frustration is reset to an initial value.

Kanada and Hirokawa [74] have demonstrated successfully the application of the
CCM to different constraint satisfaction problems, namely, graph coloring, the N-queens
problem, and TSP. The simulations show that even if during the simulation the current
solution is evaluated only locally, the system can converge to the global optimum.
They have also shown how the locality of the reaction rules can be tuned by adding a
catalyst. Adding a catalyst reduces the locality of a rule, which roughly leads to faster
convergence speed, but increases the probability that the system will get stuck in a
local optimum. The advantage of this approach is that many processors may operate
on one instance of a problem solution in parallel with minimal communication because
every evaluation of the quality and every variation is performed locally. In some cases
(like graph coloring) even synchronization and access con�ict to a shared memory can
be ignored, because they only generate a harmless noise of low intensity. A problem
is the termination criterion. In general it is a global operation to determine whether the
optimum is found (if possible). A local termination criterion would have to estimate
the global quality, which results in a longer computation time.
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3.1.4 Lambda-Calculus (AlChemy)
The l-calculus provides a way to de�ne an implicit structure-function mapping. It has
been used by Fontana to de�ne a constructive arti�cial chemistry [52].

Molecules: The set of molecules called model universe ([53], p. 10) are normalized
l-expressions. A l-expression is a word over an alphabet A D fl, ., (, )g [ V where
V D fx1, x2, . . .g is an in�nite set of available variable names. The set of l-expressions
S is de�ned for x 2 V , s1 2 S , s2 2 S by

x 2 S variable name
lx .s2 2 S abstraction
(s2)s1 2 S application

An abstraction lx .s2 can be interpreted as a function de�nition, where x is the parameter
in the “body” s2. The expression (s2)s1 can be interpreted as the application of s2 on
s1. This can be formalized by the b-rule:

(lx .s2)s1 D s2[x Ã¡ s1] (8)

where s2[x Ã¡ s1] denotes the term that is generated by replacing every unbounded
occurrence of x in s2 by s1. A variable x is bounded if it appears in in a form like
. . . (lx . . . . x . . .) . . .. It is also not allowed to apply the b-rule if a variable becomes
bounded. For example, let s1 D lx1.(x1)lx2.x2 and s2 D lx3.x3. Then we can derive:

(s1)s2 H) (lx1.(x1)lx2.x2)lx3.x3 H) (lx3.x3)lx2.x2 H) lx2.x2 (9)

Reactions: The simplest way to de�ne a reaction scheme for two colliding molecules
s1 and s2 is to apply s1 to s2:

s1 C s2 ¡! s1 C s2 C normalForm((s1)s2) (10)

The procedure normalForm reduces its argument term to normal form.9 The l-calculus
allows a generalization of the collision rule by de�ning it by l-expression W 2 S :

s1 C s2 ¡! s1 C s2 C normalForm(((W)s1)s2) (11)

Dynamics: Fontana and Buss have performed a large number of experiments based
on a l-chemistry. In their experiments typically a simulation was used with explicit
molecules and explicit single collisions according to the algorithm in Section 2.2.1,
and a constant reactor size (M D 1000–3000). The reactor is initialized with random
molecules.

With the simple reaction scheme and algorithm of the �rst example (Section 2)
Fontana observed that the diversity of the population reduced quickly, often leading to
only one surviving self-replicating species. The organization structure of the surviving
ensembles is called level-0 organization. In general, a level-0 organization consists of
a few closely coupled replicators.

In order to arrive at more complex reaction networks, Fontana introduced additional
�lter conditions. For instance, a collision was considered to be elastic if the outcome
of the reaction function was equal to one of the reactants. In such a case an exact

9 The reduction process is bounded by a maximum of available time and memory. If these resources are exceeded before termination,
the term is considered to be unstable and no reaction product results.
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Figure 3. A simulation of the number-addition chemistry. The population is initialized with one randomly generated
molecular type. The � gure shows the evolution of the relative number of different string types in the population.
Population size M D 10000. Reaction s3 D s2 C s1 mod 232.

replication was not allowed. The result of these additional �lter conditions were reac-
tion networks called level-1 organizations composed of a huge, even in�nite, number
of molecules. These organizations were very stable. Because the reactor size was
small compared to the size of a level-1 organization, a level-1 organization was only
represented by some of its species in the reactor and constantly produced new species
(with respect to the species in the reactor). A randomly generated species inserted into
a reactor containing a level-1 organization would only rarely be incorporated into the
organization. If it was incorporated the new organization was typically extended in
layers.

Fontana further de�ned level-2 organizations, which consist of two (or more) co-
existing level-1 organizations. The stable coexistence is characterized by the following
two conditions: (a) The organizations interact. (b) The interaction is moderated by in-
termediate species called glue. A spontaneous emergence of a level-2 organization from
a randomly initialized population is extremely rare. However, it can be synthetically
generated by merging two independently evolved level-1 organizations.

Fontana discovered that the species dominating the reactor after the transient phase
have a similar syntactical structure [52]. This phenomenon is typical for constructive
arti�cial chemistry and appears even in systems with totally different representation
and reaction mechanisms. It is discussed in detail in Section 5.

3.2 Arithmetic Operations
3.2.1 Simple Arithmetic Operators
As we have already shown in the example of the number-division chemistry, rep-
resentations and operators can be borrowed from mathematics to construct arti�cial
chemistries with interesting behavior. To demonstrate that even the simplest reaction
rules may generate a (presumably) chaotic behavior, one can construct the following
chemistry.

Molecules: The molecules are natural numbers.
Reactions: Figure 3 shows a typical simulation of a number-addition chemistry where

the reaction mechanism is simply the integer addition operation:

s1 C s2 ¡! s1 C s2 C reaction(s1, s2) (12)
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The function reaction is de�ned as reaction(s1, s2) D s1 C s2 mod 2n, with n being the
size of the integer representation, here n D 32.

Dynamics: Initializing the well stirred tank reactor with only 10 different numbers,
the reactor’s behavior is apparently totally chaotic after a very short transient phase.
That is to say the content of the reactor looks as if it had been generated randomly.

3.2.2 Matrix-Multiplication Chemistry
One of us has introduced a binary string chemistry based on matrix multiplication
[12, 14, 15]. Here, the central operation is the folding of a binary string into a matrix,
which then operates on another string by multiplication.

Molecules: The molecules are binary strings. Simulations have been performed with
�xed-length (4-bit, 9-bit, and 16-bit) and variable-length systems.

Reactions: Assume a reaction s1 C s2 H) s3. The general approach is:

1. Fold s1 into a matrix M .
Example: s1 D (s1

1 , s2
1 , s3

1 , s4
1 )

M D

³
s1
1 s2

1

s3
1 s4

1

´
(13)

2. Multiply M with subsequences of s2.
Example: Let s2 D (s1

2 , s2
2 , s3

2 , s4
2 ) be divided into two subsequences s12

2 D (s1
2 , s2

2 )
and s34

2 D (s3
2 , s4

2 ). Then we can multiply M with the subsequences:

s12
3 D M ¯ s12

2 , s34
3 D M ¯ s34

2 (14)

3. Compose s3 by concatenating the products.
Example: s3 D s12

3 © s34
3

There are various ways of de�ning the vector matrix product ¯. It was mainly used
with the following threshold multiplication. Given a bit vector x D (x1, . . . , xn ) and a
bit matrix M D (Mij ), then the term y D M ¯ x is de�ned by:

yj D

(
0 if

Pn
iD1 xiMi, j · W,

1 otherwise.
(15)

The threshold multiplication is similar to the common matrix-vector product, except
that the result vector is mapped to a binary vector by using the threshold W. For the
4-bit example the threshold has usually been set to W D 0.

Dynamics: Simulations have been performed with implicit as well as with explicit
molecules and collisions.

The general result was that such a system would quickly develop into a steady state
where some string species support each other in production and thus become a stable
autocatalytic cycle, whereas most others would disappear due to the competition in the
reactor. Small systems could also be modeled by differential rate equations and were in
good agreement with the simulation of explicit and implicit molecules. The complexity
of interactions even of small systems, say of bit string length 4, was surprising [13].
Figure 4 shows a metabolism developing in one of the smallest nontrivial systems of
this kind.
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Figure 4. Reaction graph of the metabolism of N D 4. Figure taken from Banzhaf [13].

In later work, the matrix-multiplication system was equipped with a topology. This
allowed an even larger set of interactions. Notably, string species that would die out
in an unbounded interaction space could survive in the neighborhood of other string
types. As a result, membranelike structures formed in an N D 4 matrix-multiplication
chemistry [16]. Figure 5 shows one of these structures from a simulation.

3.3 Autocatalytic Polymer Chemistries
Bagley, Farmer, Fontana, and Kauffman and others [9, 10, 51, 76, 77, 89] have studied the
emergence and evolution of autocatalytic metabolic networks by using a constructive
arti�cial chemistry, where the molecules are character sequences and the reactions are
concatenation and cleavage. They have shown how small, spontaneous �uctuations
can be ampli�ed by an autocatalytic network, possibly leading to a modi�cation of the
entire network. A sequence of such modi�cations has been identi�ed as an evolutionary
process. The spontaneous �uctuations are explicitly induced by the meta-dynamical
algorithm, which can be interpreted as explicit (passive) mutation. The modi�cations
of the reaction network are achieved by means of randomly modifying reaction sets [9,
10, 77] or by evolving reaction networks with an evolutionary algorithm [89]. Bagley et
al. [10] mentioned experiments in which they modi�ed the reaction network according
to the present polymers and their structure, but their main interest was on random
catalytic networks.

Arti�cial polymer chemistries are intentionally motivated by the investigation of the
emergence of autocatalytic sets of proteins [76], which, together with the theory of hy-
percycles [50] and prebiotic molecular evolution [79, 105] are considered to be essential
for the origin of protein-based organic life. Random reaction networks, analyzed by
Kauffman [75, 78] and others, were additionally helpful.

Molecules: All polymer chemistry approaches make use of molecules that are char-
acter sequences over a �nite set S D fa, b, . . .g of so-called monomers.

Arti�cial Life Volume 7, Number 3 243



P. Dittrich et al. Arti�cial Chemistries—A Review

Figure 5. Stable membrane-like structure of N D 4 matrix multiplication AC with a topology. Figure taken from
Banzhaf et al. [16].

Reactions: In most cases, the reactions are of the type

s1 C s2 C s3 *) s1s2 C s3 (16)

which are catalyzed concatenation and cleavage reactions.
Dynamics: The experiments use a well stirred tank reactor without any topological

structure, which is simulated by a metadynamical ODE framework.
An interesting aspect is that the catalytic or autocatalytic polymer sets (or reaction

networks) evolve without having a genome. The inheritance of information in these
sets and the question of when and how the transition from genome-less evolution
and inheritance of information to genome-based replication takes place is discussed by
Kauffman [76, 77].

Bagley et al. have also studied the emergence and evolution of autocatalytic metabolic
networks by using a constructive arti�cial chemistry, where the molecules are character
sequences and the reactions are concatenation and cleavage [10]. They have shown
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how small, spontaneous �uctuations can be ampli�ed by an autocatalytic network,
possibly leading to a modi�cation of the entire network. A sequence of such modi�ca-
tions has been identi�ed as an evolutionary process. The spontaneous �uctuations are
explicitly induced by the metdynamical algorithm, which can be interpreted as explicit
(passive) mutation.

3.4 Abstract Automata
The concept of an abstract automaton or machine is commonly used in computer
science and provides a variety of approaches to de�ne structure-function relationships.
Interesting candidates are �nite state machines [43] or Turing machines [69, 134], which
operate on binary data. So, it is quite natural to represent molecules as collections of
bits organized as binary strings. The state transition function of the machines can be
represented as a lookup table or by a program (a sequence of commands). A molecule
appears in two forms: (a) as passive data (binary string) and (b) as an active machine.
The mapping from a binary string into its machine form is called folding. Folding may
be indeterministic and may depend on other molecules (e.g., [69]).

3.5 Arti� cial Molecular Machines
Already in the early 1970s Laing argued for using abstract, nonanalogous models in
order to develop a general theory for living systems [81]. For developing such a general
theory so-called arti�cial organisms would be required. Laing suggested a series of
arti�cial organisms [81–85] that should allow one to study general properties of life and
thus to derive a theory that is not restricted to the instances of life we observe on earth.
The arti�cial organisms consist of different compartments, for example, a “brain” plus
“body” parts [82]. These compartments contain molecules from an arti�cial chemistry.

Molecules: The molecules are strings of symbols, usually binary strings. Molecules
can appear in two forms: They can be binary data strings or machines. In machine
form the molecules are represented as a sequence of instructions where the sequence
possesses a three-dimensional shape. So, the machine form is a molecule that con-
tains loops. The motivation behind this design is to avoid jumps that are biologically
implausible according to Laing [83].

Reactions: In order to perform a reaction, two molecules are attached to each other
so that they touch at one position (atom). One of the molecules is considered to be the
active machine, which is able to manipulate the passive data molecule. For running the
machine the instruction at the binding position is executed. Depending on the content
of data and machine molecules at the binding position, the binding position is moved
to the left or the right on the data molecule. On the machine molecule, the binding
position moves also, which is equivalent to pointing to the next instruction.

Dynamics: Laing has not considered an explicit dynamics, probably because a dy-
namical simulation of his arti�cial chemistries was beyond the computational means
available back then. However, he proved that his arti�cial organisms are able to
perform universal computation [82] and he also demonstrated different forms of self-
reproduction, self-description, and self-inspection [83–85].

3.5.1 Polymers as Turing Machines
McCaskill investigated the self-organization of the genetic apparatus by a model reactive
polymer chemistry implemented in silicon. Starting from an implementation as software
[94], he realized the AC in a specially designed parallel computer [28, 49, 132]. The
early work by McCaskill should be described in more detail.

Molecules: Linear macromolecular heteropolymers provide a simple class of mole-
cules with combinatorial complexity. Polymers consisting of �nite sequences of bases
from a �nite set of monomers (restricted to two) with a bounded length l act as the
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set S . In earlier experiments, l was typically 20. In later experiments with special
parallel hardware, the length was not limited any more. Each molecular string can be
processed as a linear molecule and also codes for an automaton. This is a well known
property of universal Turing machines, which also divide the tape into program and
data.

Reactions: Binding dynamics is integrated ef�ciently using a pattern matching colli-
sion table. This results in a molecular pattern-based interaction where the relationship
between function (here it is replication) and sequence is externally speci�ed. Only
bimolecular or unimolecular reactions occur, with all unimolecular rates set to zero
or to one.10 To encode the relationship between sequences, the two-body-interaction
scheme uses patterns f0, 1, #g¤ (# is a “don’t care” symbol). The number of #s in the
condition (pattern) determines the speci�city of the recognition. Strings of length l
encode 2mC1 ¡ 1 different patterns of length up to m D 1, 2, . . . , l . Only rules for
the derivation of kinetic parameters from macromolecular sequences are given: The
bimolecular rates thus depend on concentration and speci�city. The general reaction
scheme can be written as:

s1 C s2 ¡! s1 C s3, if p1 µ s1 matches p2 µ s2. (17)

In this reaction, p1 and p2 are substrings (patterns) of the polymers, p1 is the processor,
and p2 acts as the data.

Dynamics: The reactor realizes a two-dimensional domain (in the early experiments
a linear domain) in which the polymers are set to random locations. In the latter case,
the neighborhood is de�ned by a relationship in “pattern-space,” in the former case,
the neighborhood is de�ned by the location in the Euclidian space of the reactor.

In later work [28, 132] ACs were implemented and simulated with recon�gurable
hardware based on FPGAs. The algorithm realizes a “pattern processing chemistry” and
this processing is potentially universal: It is a probabilistic and constructive variant of
a Turing machine operating on a polymer tape. A special error rate parameter controls
the precision of elementary steps of the Turing machine. Without this parameter, the
dynamics would reduce to a Markovian dynamics: The population of sequences at time
t would determine the future dynamics. This error rate can be regarded as “mutation.”
The real encoding of processors from crossed molecular strings is a modi�cation of a
Turing machine: It has two tapes and no �nite state machine. The point of intersection
moves, with symbols under the point of intersection being directly modi�ed, and the
direction of future motion is determined by the two symbols. The tapes of the Turing
machine are built with two randomly chosen polymers, with the �rst string acting as
processor and the second string acting as data. The resulting two strings are returned
to the population.

It is observed that during the development of the system, strings with the ability to
self-replicate appear. In coevolution with parasites, an evolutionary arms race started
among these species and the self-replicating string diversi�ed to such an extent that
the parasites could not coadapt and went extinct. In the lattice environment, sets
of cooperating polymers evolved, interacting in a hypercyclic fashion. In the latest
experiments, a Chemoton-like cooperative behavior appeared, with spatially isolated,
membrane-bounded evolutionary stable molecular organizations. These organizations
were capable of self-assembling their surrounding membrane and, as a whole, were
“diffused” in space. Spatial isolation allows diversi�cation into separate competing
species (each representing open reaction networks). Cooperative organizations show
an evolutionary advantage over more “egoistic” organizations.

10 A reaction rate of zero indicates an elastic reaction.
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3.5.2 Machine-Tape Interaction
Ikegami and Hashimoto developed an abstract arti�cial chemistry based on binary
strings where the interaction is de�ned by a Turing machine with �nite circular tape.

Molecules: There are two molecular types: tapes and machines. Tapes are circular
binary strings (7 bits long in Ikegami and Hashimoto [69]). Machines are binary strings
composed of a head (4 bits), a tail (4 bits), and a state transition lookup table (8 bits).
Tapes and machines form two separate populations in the reactor.

Reactions: Reactions take place between a tape and a machine according to the
following reaction scheme:

sM C sT ¡! sM C sT C s 0
M C s 0

T (18)

A machine sM is allowed to react with a tape if its head matches a substring of the tape
sT and its tail matches a different substring of the tape sT . The machine operates only
between these two substrings (called reading frame), which results in a tape s 0

T . The
tape s 0

T is folded (translated [69]) into a machine s 0
M by reading 16 bits in a circular way

starting at the head binding position. Thus, a tape s 0
T can be translated into different

machines if there are machines that bind to different positions at tape sT .
Dynamics: The molecules are represented implicitly by an integer frequency vector.

During the simulation the population sizes of machines and tapes are kept constant,
as in Dittrich and Banzhaf [43] and Fontana and Buss [55]. An update is performed by
replacing a fraction of c (in Ikegami and Hashimoto [69] c D 60%) molecules of the
reactor by reaction products. The composition of the reaction products is calculated
using rate equations with real valued variables and parameters. For this, the integer
frequency vector is converted into a real valued concentration vector, and the result of
the rate equations is rounded to obtain integer values.

Ikagami and Hashimoto showed that under the in�uence of low noise, simple auto-
catalytic loops are formed. When the noise level is increased, the reaction network is
destabilized by parasites, but after a relatively long transient phase (about 1000 gener-
ations) a very stable, dense reaction network, called a core network [69], is formed. A
core network maintains its relatively high diversity even if the noise is deactivated. The
active mutation rate is high. When the noise level is very high, only small, degenerated
core networks emerge with a low diversity and very low (or even no) active mutation.

At a low noise level, reaction cycles are formed that are similar to the hypercyclic
organizations proposed by Eigen and Schuster [50]. Ikegami and Hashimoto called
them Eigen/Schuster type networks, which have the following form:

sM C sT ¡! sM C sT C s 0
M C sT

s 0
M C s 0

T ¡! s 0
M C s 0

T C sM C s 0
T (19)

A reaction network like Equation 19 does not perform any active mutation.
At a higher noise level, a different type of reaction cycle emerged, called a double

autocatalytic network [69]. These cycles maintain a high active mutation and in their
pure form do not perform exact replication. The following network is an example of
a double loop type network:

sM C sT ¡! sM C sT C s 0
M C s 0

T

s 0
M C s 0

T ¡! s 0
M C s 0

T C sM C sT (20)

The core networks that emerged under the in�uence of external noise are very stable,
so that there is no further development after they have appeared. To promote evolution,
reaction systems can be encapsulated into cells (compartments) where substances are
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Figure 6. A schematic diagram of the automata reaction [43]. The CPU executes the program speci� ed by s1 .
Roughly, four bits are interpreted as one command. The CPU may read the program and I/O register but can only
write the I/O register. With an appropriate program the contents of the program register can be copied to the I/O
register.

allowed to diffuse. Ikegami and Hashimoto showed that this can result in complex,
coevolutive behavior [70].

3.5.3 Automata Reaction
The automata reaction, developed by us [43], is based on a formal �nite state automaton,
which is a mixture of a Turing machine and a command-driven register machine. It
has been inspired by Typogenetics [65]. The automata reaction has been designed in
consideration of “respecting the medium” [112], here a von Neumann computer, so
that it is fast and ef�cient, which allows large population sizes (e.g., 106 ) and long
simulations (e.g., 10,000 generations).

Molecules: The molecules are �xed-length binary strings S D f0, 1g32. This allows
easy and ef�cient explicit simulations.

Reactions: An interaction of the form

s1 C s2 ¡! s1 C s2 C s3 (21)

among two strings s1, s2 2 S is performed in two steps: (a) s1 is mapped to a �nite
state automaton As1

by interpreting s1 as 4-bit machine code. (b) The automaton As1
is

applied to s2 to generate the output s3. Note that after the reaction the automaton is
discarded and s1 is not changed. Each sequence may act as an automaton and/or be
processed as an automaton with equal probability. There is no population of automata
like those in the system by Ikegami and Hashimoto.

Figure 6 shows the structure of the automaton. It contains two 32-bit registers, the
I/O register and the operator register. At the beginning, operator string s1 is written into
the operator register and operand s2 into the I/O register. The program is generated
from s1 by simply mapping successive 4-bit segments into instructions. The resulting
program is executed sequentially, starting with the �rst instruction. The automaton halts
after the last instruction has been executed. During program execution the automaton
can only modify bits in the I/O register, but can read bits from the operator register.
There are logic and arithmetic operations that take as input two bits, one from the I/O
and one from the operator register, respectively. The result is stored in the I/O register.
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The position of processed bits is under the control of the program. In addition, in some
experiments elastic collisions are introduced by not allowing exact replications [52].

Dynamics: With the automata reaction, several experiments have been performed
using explicit single-molecule collisions and explicit populations with and without a
topological structure. Typical phenomena that have been observed are: dominance
of self-replicators, the formation of catalytic networks, complexity increase when exact
replication is disallowed, and syntactic similarity of molecules forming the emergent
organizations. These observations support the �ndings of Fontana et al. [56], especially
the phenomenon of syntactic and semantic closure. In large systems of this AC, evolu-
tionary phenomena have been observed. This is notable because no explicit variation
(passive mutation) and no explicit �tness function is present in the system. Variation
and “natural” selection are driven by the molecules themselves. For this reason the
phenomenon has been termed self-evolution. Further phenomena observed are spon-
taneous emergence of recombination and spontaneous transition from lazy to eager
replicators.11

3.6 Assembler Automata
An assembler automaton12 is a parallel computational machine that consists of a core
memory and parallel processing units. It can be regarded as a parallel von Neumann
machine. Assembler automata have been used to create certain arti�cial life systems. In
this section we will describe the basic functionality of assembler automata and discuss
their relation to arti�cial chemistries.

The �rst implemented assembler automaton of competing computer programs is
Core War. Core War was designed by Dewdney as a game where handwritten computer
programs struggle for computer resources and may �ght each other [40]. The system is
in fact a multi-processor, shared-memory system. All processors operate on the same
linear and cyclic memory called core. The machine code (called redcode) consists of
only 10 instructions with one or two arguments. Memory cells can be addressed only
direct relative or indirect relative. Thus, the execution of a program is independent
from its absolute position in the memory.

For a typical match, two programs that should play against each other are stored at
random locations in the core memory. Then they are started in parallel by assigning
each program a CPU with its own program counter (PC) and registers. The following
example illustrates the redcode language. It is a program writing a zero at every �fth
memory location, which should overwrite and destroy the code of its opponent.

cell no. instruction arg1 arg2 comment
0 DAT ¡1 memory cell used as a variable, which is ini-

tialized by ¡1
1 ADD #5 ¡1 adds 5 to the contents of the previous memory

cell
2 MOV #0 2 writes 0 to the memory cell addressed indi-

rectly by the memory cell 0
3 JMP ¡2 jumps two cells backwards

The simplest self-replicating program consists of only one instruction: MOV 0 1.
This instruction copies the contents of the relative address 0 (the MOV 0 1 instruction)
to the next memory cell (relative address 1). Thus, the program scrolls through the

11 A lazy replicator s1 copies every molecule it collides with and can be mathematically viewed as an identity function: s1 C s2 H) s2 .
An eager replicator s1 creates a copy of itself: s1 C s2 H) s1 .

12 The term assembler automata has been coined by Rasmussen.
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memory leaving a track of MOV 1 0 instructions behind. There is also an instruction to
split execution, which creates a new process.

3.6.1 Coreworld
Rasmussen et al. have used Core Wars to build an arti�cial chemistry called Core-
world [107, 108]. They introduced random �uctuations in two different ways: (a) New
processes are started at random with randomly initialized PCs. (b) When a MOV in-
struction is executed, the copied data may be mutated. In addition, computational
resources are introduced explicitly. Each cell holds an amount of computational re-
sources (a number), which are used up by program execution and are re�lled by a
constant in�ux. There is also a maximum operation radius, which restricts relative
addressing and promotes locality.

Rasmussen et al. observed through various experiments that the qualitative dynamic
behavior depends crucially on the parameter setting. For low resource in�ux (called
desert condition) only simple cyclic structures dominated the converged population.
For high resource in�ux (called jungle condition) diversity becomes much richer and
more complex, even cooperating structures emerge.

Molecules: A problem in Coreworld is to identify a molecule or organism which
might be de�ned as a collection of cells or instructions. The smaller an individual
is, the harder it is to distinguish it from the environment. In addition, situations are
dif�cult where instruction pointers are intermingled. Ray has overcome this problem
by introducing a memory management in Tierra.

Reactions: The Coreworld chemistry is different from other ACs because there are
no explicitly de�ned reactions between molecules. Due to the fact that it is dif�cult to
identify molecules, interactions between molecules are even more dif�cult to determine.
Implicitly, a reaction might be seen as the execution of code belonging to another
molecule.

Dynamics: The dynamics of the system is achieved by many CPUs working in
parallel on different pieces of code. The code moves within the memory and changes
because of explicit mutations or changes caused by other programs.

3.6.2 Tierra
Ray has designed Tierra to model the origin of the diversity of life (e.g., the Cambrian
explosion), not its origin [112]. Tierra is similar to Core War with the following important
modi�cations and extensions:

Small instruction set without numeric operands: The instruction set of Tierra consists
of 32 instructions. Thus, only 5 bits are needed per cell. Therefore memory cells in
Tierra are much smaller than in Core War, where in addition to the opcode of the
instruction the arguments have to be stored.

Addressing by templates: Memory locations are addressed by templates, which con-
sist of NOP0 and NOP1 instructions. Consider, for example, the following program
sequence consisting of four instructions: JMP NOP0 NOP1 NOP0. The target for the
jump instruction is the closest of the inverse patterns formed by the three instructions
NOP1 NOP0 NOP1.

Memory allocation and protection: Programs can allocate memory, which is pro-
tected by a global memory manager. Other programs are not allowed to write protected
memory, but may read or execute it. By this method it is much easier to specify and
make clear which memory cells belong to a certain organism.

Arti�cial �tness pressure: Ray also introduced an arti�cial, explicit �tness pressure
by penalizing “illegal” or unwanted operations; like a JMP instruction where no target
pattern can be found or division by zero. Programs executing many unwanted opera-
tions are more likely to be terminated by a reaper process, which is invoked when the
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allocated memory exceeds a prede�ned threshold. This mechanism allows one also to
create a �tness pressure towards more ef�cient organisms, easily.

Molecules, reactions, and dynamics: These are nearly the same as in Coreworld,
except for the “molecules,” which are easier to determine because they possess a clearly
separated and protected piece of memory. In typical experiments with Tierra, the core
memory is initialized with a handwritten program, the ancestor, which is able to self-
replicate. Under the in�uence of mutations and random �uctuations the population
diversi�es. Ray has observed the evolution of parasites, protection against parasitism,
hyper-parasites, and cooperative organization. It should be noted that the different
species are similar to the ancestor and are often generated from it by only a few point
mutations.

It has been experimentally shown that in Tierra self-replicating entities, like the
ancestor, do not appear spontaneously [110]. Pargellis has shown that this can be
achieved by simplifying the instruction set so that the probability of getting a self-
replicating program randomly is increased [102, 103] (see also Primordial Soup by M.
De Groot).

3.6.3 Avida
Ray’s Tierra was further developed by Adami’s Avida group. The major differences be-
tween Tierra and Avida are the restriction to only local interaction between individuals,
and the maximum population size given by the dimensions of the grid rather than by
the size of the total genome space of the population.

Molecules: A molecule is a single assembler program. The assembler language is
a reduced variant of Tierra’s instruction set. Initial molecules are usually handwritten
self-replicating programs.

Reactions: In the fundamental Avida system, the only unimolecular �rst-order reac-
tions that occur are of replicator type. The reaction scheme can be written as

s
E¡! s 0 C s (22)

and thus are more similar to chemical interactions than in other assembler automata. In
Equation 22, s 0 D s if no mutation occurs. The program s 0 is created by execution of s
and explicit mutation of its output. E can be seen as a certain energy that is consumed
during the replication and is modeled as CPU time.

Dynamics: The population consists of a 2D lattice where each lattice site holds
one molecule (program). Programs are executed in parallel and independently. The
system is seeded with an ancestor and evolves by adapting the population via mutation
to an external �tness landscape that de�nes the amount of CPU time (i.e., the energy)
given to an individual. Competition and selection occur because programs replicate at
different speeds depending on their code and energy consumption.

The Avida group also investigated evolutionary learning, the emergence of gene
expression, and similarities to population dynamics in E. Coli bacteria [3, 4].

3.7 Lattice Molecular Systems
In this section, we discuss systems that consist of a regular lattice where each lattice
site can hold a part (e.g., atom) of a molecule. Bonds can be formed between parts so
that a molecule covers many lattice sites. This is different from systems where a lattice
site holds a complete molecule, like in Avida or Banzhaf et al. [16]. The important
difference is that in lattice molecular systems the space of the molecular structure is
identical with the space in which the molecules are �oating around. In systems where
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Figure 7. Example of an autopoietic entity in a lattice molecular system by Varela, Maturana, and Uribe [136].

a molecule covers just one lattice site the molecular structure is described in a different
space independently from the space the molecule is located in.

3.7.1 Autopoietic System
Varela, Maturana, and Uribe [136] introduced a lattice molecular system to illustrate their
concept of autopoiesis, which has also been investigated by Zeleny [143], McMullin and
Varela [96], and others. The system consists of a 2D squared lattice.

Molecules: Each lattice site can be occupied by one of the following atoms: Substrate
S , catalyst K , and monomer L (also called link particle [96]). Atoms may form bonds
and thus form molecular structures on the lattice.

Reactions: If molecules come close to each other they may react according to the
following reaction rules:

K C 2S ¡! K C L (1) Composition: Formation of a monomer.
. . . -L-L C L ¡! . . . -L-L-L
L C L ¡! L-L

(2) Concatenation: Formation of a bond between a
monomer and another monomer with no more than
one bond. This reaction is inhibited by a double-
bounded monomer.

L ¡! 2S (3) Disintegration: Decomposition of a monomer.
The inhibition of reaction (2) by a double-bounded monomer has been reconsidered

and identi�ed as a crucial mechanism by McMullin and Varela [96].
Dynamics: The reaction rules are applied to lattice sites asynchronously similar to

an asynchronous cellular automaton. Figure 7 illustrates an autopoietic entity, which
may arise in such an arti�cial chemistry.
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This autopoietic entity has a cell-like structure. Its membrane is formed by a chain
of L monomers and encloses one or more catalysts K . Only substrate S may diffuse
through the membrane. Substrate inside is catalyzed by K to form free monomers. If
the membrane is damaged by disintegration of a monomer L, it can be quickly repaired
by a free monomer �oating around inside the cell.

A problem arises when monomers inside the cell form bonds among each other. In
this case it is unlikely that the cell is able to self-repair [96]. Thus, a mechanism has to
prevent the formation of bonds inside the cell. Here, this is achieved by chain-based
bond inhibition, which has already been used but not documented in the original work
by Varela et al. [136] and reconsidered by McMullin and Varela [96].

They demonstrate by simulation that without chain-based bond inhibition, self-repair
is unlikely, otherwise likely. But the simulation also showed that even with chain-based
bond inhibition, the autopoietic entity is not asymptotically stable. In all reported
5 runs the autopoietic structure was able to sustain itself for only about 200–1500
update cycles. There have been no systematic parameter studies performed, yet. So
it cannot be said whether the observed phenomena are typical and which necessary
properties an arti�cial chemistry must have in order to allow persistent autopoietic
structures.

3.7.2 Lattice Polymers
Lattice molecular systems have been intensively used to model polymers [135], pro-
tein folding [121], and RNA structures. Besides approaches that intend to model real
molecular dynamics as accurately as possible, there are also approaches that try to
build abstract models. These models should give insight into statistical properties of
polymers, like their energy landscape and folding processes, and how they are related
to parameters such as primary structure and folding method. These abstract models
may also be considered as arti�cial chemistries. For example, there are also random
chemistry approaches where interactions between monomers are chosen at random
[114, 115].

We will not go into more detail here, because the focus of these works is on the
molecular dynamics (folding process) and statistical (thermodynamic) properties of
polymer systems and not on fundamental questions concerning origin and evolution,
self-maintaining organizations, or molecular information processing. For these ques-
tions a more complete system allowing diverse chemical (catalyzed) reactions and the
simulation of larger spaces (reaction vessels) is needed, which will be discussed in the
following section.

3.7.3 Lattice Molecular Automaton (LMA)
Mayer, Köhler, and Rasmussen have developed the lattice molecular automaton (LMA)
to enable simulation of large-scale molecular self-organization processes [92, 93, 97]
The LMA is based on the lattice polymer automaton by Rasmussen and Smith [109], but
is more realistic. The purpose of these automata is to give insight into the driving forces
that are responsible for the origin and evolution of complex hierarchical structures and
what is required for the emergence of these structures (minimal model).

The LMA is a synchronous, deterministic cellular automaton with discrete space, time,
mass, and energy. Only integer arithmetic is used. The physical space is represented by
a two-dimensional triangular lattice. Kinetics as well as potential energy are modeled,
but for the potential energy only intermolecular potentials are considered.

Molecules: Each lattice site may hold one atom or monomer (referred to as atom
in the following), which is represented by a 7-tuple, called a data structure. Three of
these seven components are used as temporary variables during one update cycle. An
atom is described by its type, outgoing forces, local kinetic energy, and intramolecular
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bonds to other atoms in the neighborhood. Atoms can form polymers that occupy
several lattice sites. Atoms in a polymer are connected with a bond.

Reactions: Due to the fact that neither new bonds are created nor old bonds deleted,
there are no reactions taking place. There still is interaction between molecules on the
level of forces, spatial movement, and several kinds of energy.

Dynamics: The synchronous and deterministic update rules of the cellular automaton
cause the dynamics of the system. An interesting feature of the LMA is that forces
are modeled by force particles, which are propagated during one update cycle to the
temporary variables of neighboring lattice sites. To illustrate the mechanism the update
cycle will be brie�y summarized. It consists of 18 substeps, which are organized in the
following six steps:

Step 1: Propagation of molecular types and kinetic energy: Thermal diffusion is
performed by redistributing kinetic energy to neighbors.

Step 2: Construction of force �elds: Outgoing force particles are copied into the
corresponding temporary ingoing force particle variables. They may be modulated
depending on the molecular type.

Step 3: Calculation of potential energies: The calculation of the potential energies
is based on a Coulomb term, where ingoing force particles are multiplied with
corresponding outgoing force particles. A rotation to the right or left takes place if
the local potential energy is reduced by this rotation. This step also handles
induced charge displacement (dipole/induced dipole interaction), polarization
(induced dipole/induced dipole interaction), and cooperative increasing strength of
bonds. After step 3 the sum of forces affecting a molecular object are calculated for
all directions.

Step 4: Calculation of move direction: The move direction is calculated based on
classical mechanics by taking the current kinetic energy (“speed”) and the �nal
potential energy of step 3 (“forces”) into account. If the lattice site in this direction
is already occupied by a molecular object, the object remains at its current location.
To avoid bond-breaking, a movement is performed only if the molecular object
does not leave the neighborhood of any of its neighbors it is connected to. This
will signi�cantly reduce the movement.

Step 5: Update of bonds in polymers: Bonds inside polymers are moved according
to the molecular movement in step 4. No new bonds are created or removed.

Step 6: Movement of molecules: The nontemporary values of the molecular
molecules are copied to neighboring cells according to their previously calculated
move directions.

In [92, 97] the LMA is demonstrated by simulating (a) cluster formation of polar
molecules, (b) phase separation of a mixture of water molecules and hydrophobic
monomers [97], (c) polymers in a simulating polymer dynamics in a polar environment
(e.g., water) [92, 97], and (d) emergence of self-reproducing micelle-like structures
[93]. The authors were able to show that the measured radial distribution function13

(RDF) of water corresponds qualitatively with the RDF in the simulated system (a).
The simulated phase separation is similar to the observed process real mixtures (b).
The hydrophobic effect (which is responsible for assembly of membranes of cells and
intracellular compartments [131]) appeared as an emergent phenomenon. Polymers

13 Measured by the probability of � nding a molecule close to another.
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Plate 1. Example of a 3D molecular dynamics (MD) lattice gas simulation of micellar self-assembly of amphiphilic
pentamers (green D hydrophilic head groups and yellow D hydrophobic tails). Water not shown. Figure from M.
Nilsson and S. Rasmussen (unpublished). See also [99, 105].

form higher-order structures in LMA simulations, such as the micelle-like patterns shown
in [93]. Plate 1 shows a micelle-like structure, which appeared in a recent 3D version
of the LMA [100, 106].

The formation of these micelles can be considered as an emergent process with at
least two hierarchical levels. The �rst level is the formation of hydrophobic, hydrophilic,
or amphiphilic polymers, and the second step is the formation of larger micelle-like
clusters that consist of amphiphilic polymers. It should also be noted that these micelles
reproduce. A hydrophobic surface of a micelle is able to catalyze hydrophobic polymers
to become amphiphilic, which are afterwards incorporated into the micelle. The micelle
grows until it becomes unstable and “divides” [93].

A problem is fast propagation of information, which is required for realistic move-
ment of large molecules. If the updates are strictly performed locally (like in the LMA),
the highest propagation speed is only one cell per update cycle. This speed is too
slow, for example, for a realistic simulation of a collision of two large molecules.
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Plate 2. Cell growth and cell division of a self-replicating cell by Ono and Ikegami [100].

Figure 8. A mechanical self-assembly system by Hosokawa et al. [67].

3.7.4 Self-Replicating Cell
Ono and Ikegami [101] have constructed a simple model of primitive cells that simulates
the dynamics of a set of symbolic chemicals on a two-dimensional grid. One of the
substances autocatalytically replicates and produces membrane molecules by convert-
ing a kind of high-energy “substrate.” This AC is able to organize itself into a cell-like
structure that is dynamically stable (Plate 2). They have shown that these cells can
divide themselves into sub-cells spontaneously.

3.8 Other Approaches
This section describes arti�cial chemistry approaches that cannot easily be associated to
one of the sections above. Nevertheless they represent very interesting and important
variants demonstrating qualitatively additional mechanisms and properties.

3.8.1 Mechanical Arti� cial Chemistry
Hosokawa et al. [67] show that a mechanical self-assembly system can be regarded
as a chemical system. This allows one to build a model for the yield of the desired
target structure by means of chemical kinetics theory. In Hosokawa et al. [67] this
approach is demonstrated by deriving an analytical model for a simple mechanical
self-assembling system, shown in Figure 8. The basic units of the mechanical systems
are regular triangular units, which may form bonds by permanent magnets. This work
demonstrates that arti�cial chemistry research is not limited to formal or algorithmic
systems.

Another physical model of a chemical system has been developed by Grzybowski et
al. [58]. It consists of millimeter-size discs rotating at a liquid-air interface. An important
difference from the work of Hosokawa et al. [67] is that the emergent structures are
dissipative. This means that the structures are present only as long as they are sup-
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Plate 3. Example of a set of self-replicating loops in a � nite space by Sayama [116].

plied with energy. The energy is fed into the system by a permanent magnet rotating
underneath the liquid.

3.8.2 The Chemical Metaphor in Cellular Automata
In Section 3.7 we have already seen that cellular automata can be used as a medium to
simulate polymer chemistries. In this section we are going to discuss two more abstract
models. They are more abstract in the sense that the de�nition of a molecule or reaction
is implicit and depends on an observer or on an interpretation. In the lattice molecular
systems described above it is clear what a molecule or a reaction is, because they are
part of the model description. In the following approaches the model speci�cation
does not contain any notion of a molecule or reaction. They emerge as structures that
are interpreted as chemical units.
Self-Replicating Loops In cellular automata self-replicating patterns can appear. A fa-
mous example is the original work by von Neumann, who de�ned a complex CA in
order to demonstrate that self-replication is possible inside machines. In subsequent
work by others simpler and more elegant cellular automata have been developed dis-
playing self-replicating patterns, like Langton’s self-reproducing loop [86]. A cellular
automaton like this can be interpreted as an arti�cial chemistry where the molecules
are the self-replicating structures. This becomes noticeable in the work by Sayama
[116], for example, who introduces structural dissolution in Langton’s self-reproducing
loop. In this work the loops begin to dissolve after replication (Plate 3). Thus, they
have to permanently keep reproducing in order to keep the number of loops at a
certain concentration level. Sayama also showed that in a bounded �nite space, com-
petition occurs, which leads to evolutionary effects. Furthermore, interaction among
loops takes place, which can be interpreted as a chemical reaction.
Embedded Particles in Cellular Automata as Molecules A different way to relate CAs to
chemistry is to interpret a moving boundary between two homogeneous domains in
a CA as a molecule [66]. Figure 9 shows an example of a one-dimensional CA. The
�gure shows the trace of the state-transition where two “particles” collide. The major
difference from the previous approach is that particles become visible as space-time
structures and that they are de�ned as boundaries and not as a connected set of cells
with speci�c states.
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Figure 9. Filtered version of a space-time diagram of a one-dimensional, binary-state, r D 3 CA. Homogenous
domains are mapped to white, domain borders to black. Domain borders can be interpreted as particles or
molecules. Figure taken from Hordijk, Mitchell, and Crutch� eld [66].

3.8.3 Typogenetics
Typogenetics was introduced in 1979 by Hofstadter in order to illustrate the “formal
logic of life” [65]. It can be regarded as one of the �rst arti�cial chemistries and has
been further investigated by Morris, Varetto, and others [98, 137, 138]. The molecules
of the system are character sequences (called strands) over the alphabet A, C, G,

T. The reaction rules are “typographic” manipulations based on a set of prede�ned
basic operations such as cutting, insertion, or deletion of characters. A sequence of
such operations form a unit (called an enzyme), which may operate on a character
sequence like a Turing machine on its tape (Figure 10).

A strand codes for several enzymes, which are separated by the “duplet” AA. To
translate a character sequence into a sequence of operations, a pair of two characters
codes for one operation. For example AC codes for “cut,” which cuts a strand at the
current binding position of the enzyme (see Figure 10). The initial binding position of
an enzyme depends in a nontrivial way on its coding sequence. In Figure 10 the �rst
enzyme binds initially to G. If the strand contains more than one character of this kind,
one will be randomly chosen.

Double-stranded molecules can be formed, too. There are two operations which
create double-stranded molecules: “copy mode on” and “copy mode off.” If the copy
mode is active, movement of the enzyme creates an inverse copy of characters it is
touching. The enzyme may also switch from one strand to its parallel strand by a
“switch” operation (Figure 10). Typogenetics is very complex because the size of
molecules is variable, a reaction may produce a variable number of products, and the
reaction mechanism is non-deterministic.

4 Applications

As has been argued above, the applications of arti�cial chemistries can be subdivided
into three domains: (a) modeling, (b) information processing, and (c) optimization.
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Figure 10. Example of a reaction in a Typogenetics model by Hofstadter [65]. Two enzymes coded by the strand
CGA....AT operate on a copy of the same strand. The result is three reaction products. The current binding
position of an enzyme is depicted by a lowercase character. Example taken from Morris [98].

By “application” we refer not only to industrial applications, but also to applications
where the chemical metaphor is used to build a model of a system in order to extend
knowledge about our environment.

4.1 Modeling
Most AC work falls into the domain of modeling. Within this domain mainly biochem-
ical systems are modeled. Exceptions are, for instance, the chemical abstract machine
(CHAM), which models concurrent computer processes [20] (Section 3.1.1) or the Ran-
dom Prolog Processor applied to model social systems [127, 128, 130].

The chemical metaphor can also serve to model higher structures such as population
dynamics, ecological systems, social systems, or economic markets. The similarity of
these systems and their relation to the chemical metaphor becomes particularly clear
in the replicator equation [117, 133]

dxi

dt
D xi ( fi (x1, . . . , xn ) ¡ W(x1, . . . , xn )) (23)

which describes the dynamics of n replicating types. The function fi can be interpreted
as the catalytic in�uence of all other types on the replication rate of xi or as the �tness
of type i, which may depend on the concentration of all other types. The dilution �ux
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W is given by

W(x1, . . . , xn ) D
nX

iD1

xi fi (x1, . . . , xn) (24)

and can also be interpreted as the average �tness ([64], p. 67). The dilution �ux
ensures that the state of the system stays inside the concentration simplex Sn. On the
molecular level the replicator equation is applied to model ensembles of replicating
molecules (e.g., polymers). In this category falls the hypercycle [50], whose dynamics
can be described by a special form of the replicator equation. On an ecological scale
the replicator equation describes the dynamics of interacting populations. In this case
replication rate constants can be associated with �tness values of certain groups or
species. The replicator equation is equivalent to the Lotka-Voltera equation [62], which
demonstrates the close relation between chemical and ecological dynamics. Even for
social and economic systems the replicator equation can serve as a model [63].

4.1.1 Modeling (Bio)chemical Systems
Arti�cial chemistries modeling (bio)chemical systems can be subdivided according to
their level of abstraction (Section 2.3.4). ACs like the polymer automata [92] or the
Belusov-Zhabotinsky reaction formulated in ARMS [125, 126] model concrete chemical
systems in an analogous way (Section 2.3.4). Molecule and reaction in the model
correspond to molecule and reaction in reality.

Approaches like AlChemy, tape-rewriting systems, assembler automata, number
chemistries, or random chemistries (e.g., GARD or random ARMS) model the dynamics
of chemicallike organizations in a more abstract manner. These are the approaches
to which the term “arti�cial” refers. Strictly speaking we should have these abstract
models of chemistry in mind when using the term “arti�cial chemistry” in a modeling
context. If we encompassed all kinds of chemical models, the term “arti�cial chemistry”
would lose some substance. Of course, the boundary line is fuzzy.

4.1.2 Evolution and Self-assembly
Two important ways to generate biochemical complexity are (a) self-assembly and
(b) evolution. We can use these two aspects as another way to distinguish between
different AC approaches.

Self-assembly produces a more complicated structure by local interaction of inde-
pendent entities without central control. Typical examples of self-assembly are the
formation of micelles or the morphogenesis of phages. It is believed that the transition
from a non-self-maintaining population of molecules to a self-maintaining population,
which later developed into a population of aggregates that we would call living, has
occurred through a process of chemical evolution and self-assembly [32]. Self-assembly
plays an important role not only in the origin of living systems, but also in their operation
today. Furthermore, self-assembly can be employed as a strategy to build nano-scale
structures [139], such as thin �lms or molecular wires, or to solve computational prob-
lems [91].

When self-assembly is simulated we have to include a model of a (physical) space
wherein the entities are located. It is typical for such simulation models that the space of
interaction is the same as the space of movement. Thus, we cannot easily (or naturally)
obtain a model in terms of the (S , R , A) scheme by separating the reaction rules R
from the algorithm A that describes the reaction space. Furthermore, interactions may
depend on the movement (e.g., velocity) or relative orientation of the interacting entities
in space [140].
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There is a large body of work in the domain of computational chemistry that uses
Monte Carlo methods in order to simulate self-assembly processes accurately (e.g.,
Dawnkaski et al. [39]). These approaches aim at realistic models for direct comparison
of simulation results with experimental real-world data. On the other hand, arti�cial
chemistry approaches do not emphasize comparability on the microscopic level; rather
they aim at revealing the “logic” of certain phenomena, such as the emergence of
dynamical hierarchies [93], the formation of micelles [38, 48, 118] or autopoietic cells
[96, 101, 136], or the spontaneous formation of aggregates that undergo division and
evolution [140] (Section 3.7). It might be added that physical models are also nicely
suited to investigate self-assembly [58, 67] (Section 3.8.1).

The AC literature on evolution is much larger than that on self-assembly (see Sec-
tion 3). AC work on evolution can be subclassi�ed according to whether it concentrates
on the origin (of evolution) [9, 43, 54, 69, 94, 103, 107, 108, 122], or whether they as-
sume prerequisites, such as replication or individuals that differ in �tness, as given
prede�ned components of the model [50, 72, 117]. Up to now, most AC publications
on evolution do not include self-assembly. It would be interesting for the future to join
both principles in order to investigate their mutual in�uence.

4.1.3 Ecological Modeling with Arti� cal Chemistries
AC as a Subsystem of an Ecological Model In an ecological model an arti�cial
chemistry can provide a fundamental “currency” if mass conservation and energy con-
servation are respected. In such ecological models organisms may absorb chemicals
from their environment and metabolize them [46, 47]. The organisms may even consist
of chemicals that are released after death [26].

An example of this approach is the metabolically based arti�cial ecosystem model
EVOLVE IV [26, 27], which is an advancement of a series of evolutionary ecosystem
computer models originated in 1969 [34, 113]. The objective of these models is to inves-
tigate the conditions under which an evolutionary process comparable to that observed
in nature occurs [26]. Species formation is one of the investigated phenomena, for ex-
ample, the development of diverse quasi species [34, 36]. The aim of EVOLVE IV is
(a) to generate a niche structure reminiscent of the niche structure of a natural ecosys-
tem and (b) to investigate the conditions under which niche diversi�cation can occur.
Brewster and Conrad [26] describe experiments where the population is initialized with
handwritten organisms. They consist of 22 essential genes (e.g., sugar decomposition)
and one nonessential gene (conjugation gene). There are two complementary genes
(photosynthesis and scavenging gene) so that the population may diversify by special-
izing on one of these genes. At least one of these two genes is required for survival.
In simulations most organisms carried both genes (if initially supplied with both) ([26],
p. 480).
AC as an Ecological Model Suzuki, Takabayashi, and Tanaka [124] applied the abstract
chemical rewriting system (ARMS) to model an ecological system in which plants re-
spond to herbivore feeding activity by producing volatiles that in turn attract carnivorous
natural enemies of the herbivores. Such defense mechanisms have been reported in
several tritrophic systems. The volatiles are not the mere result of mechanical damage,
but are produced by the plant as a speci�c response to herbivore damage. Suzuki et
al. compared the case where plants produce herbivore-induced volatiles versus the
case where they do not. They found that there was a case where herbivore-induced
volatiles that attract carnivores resulted in the population increase of the herbivores.

4.1.4 Social Modeling with Arti� cial Chemistries
Computer simulations are a small sub�eld in theoretical or mathematical sociology, but
the number of contributions is constantly growing. In the following section a concrete
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example is presented in which a constructive arti�cial chemistry is applied to model
social dynamics [127]. The model is based on the Random Prolog Processor (RPP) [130],
which is a nondeterministic model for evaluation and motivated by the work of Berry
and Boudol, Fontana, Benatre, and others.

Molecules: There are three types of molecules (called information molecules): facts,
rules, and goals. They are statements of a logical programming language.

Reactions: Szuba and Stras [130] report on four implemented general collision rules
(inferring diagrams). What kind of inferring diagram applies depends on the type of
the colliding molecules.

Dynamics: The molecular dynamics is simulated as an explicit Brownian motion in a
3D Euclidian space. Szuba and Stras [130] simulated 200–300 molecules, which required
a parallel 8-processor SGI (1997). A simulation cycle consists of (a) computation of
random displacement vectors such that boundary conditions are not violated (e.g.,
city border, reaction vessel border), (b) movement of molecules, (c) generation of
subsets of molecules which are in a rendezvous distance d , and (d) processing of
reactions (generate logic formulas, evaluate them, create new molecules if clauses are
not false,...).

Szuba and Stras [129] applied the RPP to model social systems. In their model a
social system consists of facts, rules, and goals called molecules here. A membrane
concept similar to the membrane concept of the CHAM allows a hierarchical structure.
Because the computational resources needed for simulating hierarchical systems are
very high only non-hierarchical systems are simulated in [129]. The motivation is to
create measures and tools to evaluate the inference power of human social structures
(e.g., cities or nations).

As a benchmark problem Szuba and Stras introduced the N-step inference. The N-
step inference problem consists of N rules, one fact, and one goal. To infer the goal
the N rules have to be applied sequentially in a speci�c order. Szuba and Stras showed
that a system that contains a “city” is able to solve the problem much faster than a
system without a city. In order to model a city a spherical subspace of the RPP reactor
in�uences the movement of the molecules in the following way: (a) Molecules that
enter the “city” can leave it only after they have stayed a certain amount of time in the
“city.” (b) Molecules move slower inside the city.

The obtained results are not surprising from a social science and dynamical system
point of view. But the methods introduced are fascinating and a promising approach
to build individual-based social simulation models. It should also be stressed that the
underlying reaction mechanism based on logical inference is quite general and allows
one to formulate a huge variety of interaction models easily.

4.2 Information Processing
Another major application of AC is the �eld of information processing. Since every living
entity can be seen formally as an information processing system, generating output (in
general, a certain behavior) as a result of processing the input (the current internal
state and the environmental in�ow), it appears evident that the basic mechanism of
information processing is chemistry, and thus, to study arti�cial information processing,
AC is an appropriate tool.

Molecules: The idea becomes clear if we have the following metaphor in mind:
As was stated by us [17], the data to be processed (input and output) shall be seen as
molecules, carrying a certain “meaning.” In this context, the general term “information”
is reduced to pragmatic information.

Reactions: The processing of data can now be regarded as the molecule-molecule
interactions (reactions), in which each of the residing “meanings” is either propagated,
multiplicated, eliminated, or processed.

262 Arti�cial Life Volume 7, Number 3



P. Dittrich et al. Arti�cial Chemistries—A Review

Dynamics: To make the processing of information by means of reactions a reason-
able approach, the dynamics of the AC is a crucial part of the system.

The research of information processing with AC divides into two different approaches
that will be explained in some detail in the next two sections.

4.2.1 Arti� cial Chemical Computing
Arti�cial Chemical Computing (ACC) deals with information processing systems con-
sisting of an arti�cial chemistry as the main processing entity. This processing of
information—common to all approaches—is then used for different reasons:

First, and this is the main approach, ACC is used for control tasks, especially for
mobile robots. Husbands [68] used an AC to get better results with an arti�cial neural
network for robot control. In his model, neurons are able to emit substances that
diffuse and modulate transmission functions of other neurons. Brooks [29] used a
hormone system to achieve asynchronous information �ow and coherent behavior in
a distributed parallel control architecture for a humanoid robot torso. The hormone
system is equivalent to an arti�cial chemistry without reactions, so that hormones just
carry information and do not process it. Adamatzki et al. [1, 2] and we [145] used
excitable lattices and simpli�ed enzyme-substrate kinetics, respectively, to control real
mobile robots.

Lugowski, Shackleton, and Aoki [6, 90, 120], to give some approaches, intended
to establish a new sight on a parallel distributed computer architecture, completely
different from the well known and common von Neumann architecture, Conrads and
Zauner [35, 37, 141, 142] started to implement and analyze a simulator for shape-
based or pattern-recognition–based biochemical motivated complex reaction networks.
Astor [8] used AC to control the growth of arti�cial neural networks, and one of us [11]
used the processing capabilities to implement a “molecular” solution to the traveling
salesman problem.

Due to the complexity of AC, all approaches used more or less manually designed
instances of AC to get the desired results. It is up to now an unsolved problem to
automatically generate ACs with properties suitable for the given problem. One possible
solution could be the evolution of reaction networks [89, 144] that in turn would result
in “emergent programming” of AC.

4.2.2 Real Chemical Computing
In the �eld of real chemical computing (RCC), the well established DNA Computing
plays a dominant role. There are, however, several other approaches that establish a
research area that deals with the idea of using real chemistry to perform computations.
Hjemfeld et al. [61], for instance, investigate the possibilities of realizing arti�cial neural
networks and Turing machines in vitro. Arkin [7] discovered computational functions
in biochemical reaction networks and therewith proved Hjemfeld’s thesis. Adamatzki
et al. proposed the use of oscillating reactions like the Belousov-Zhabotinsky reaction
to control mobile robots [2].

The most promising biomolecule for a technical application that would be able to
compete with classical electrical computers is bacteriorhodopsin . Bacteriorhodopsin
is a molecule found in the membrane of Halobacterium halobium. The molecule is
responsible for the conversion of solar light into chemical energy. In the mid 1980s it
was found that it can be used as a holographic recording medium. Important properties
of this molecule are that its conformational state can be changed by photons of speci�c
wavelengths and that it is very robust and not destroyed when stimulated many times.
In addition, the current conformational state can be easily detected by using light
because the adsorption spectra of bacteriorhodopsin depends on its conformational
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state [18]. Potential applications of bacteriorhodopsin are high-density memories [23],
hybrid electro-optical neural networks [60], and optical pattern recognition [59].
DNA Computing Because DNA Computing is now a well established special branch of
RCC, we will not discuss it in much detail here, but only give a short introduction.

DNA Computing (DNA-C) consists of two branches: Theoretical DNA-C investigates
the possibilities of DNA with regard to well-known problems of computer science (e.g.,
universal computing [19, 25], cryptology [24], or acceleration of computation [88]). A
DNA computer model can be regarded as a constructive, analogous arti�cial chemistry.
It is analogous because it should model a real biochemical system accurately such that
a molecule in simulation can be identi�ed with a real molecule and a reaction going on
in simulation should also have its counterpart in reality. One expects results forecasting
the computational power of DNA.

On the other hand, DNA-C is established as “wet computing.” This is mainly due
to Adleman’s famous experiments [5], in which he solved a variant of the Hamiltonian
path problem (a NP-complete problem in computer science) with real DNA. In the
meantime these experiments have been reproduced and others are being conducted
that investigate the computational power and the applicability of this approach under
real conditions.

4.3 Optimization
Another application of AC is the �eld of optimization. There are evolutionary algorithms
(EA), well established since the late 1960s, which bene�t from the possibility of con-
trolling evolution with an externally de�ned selection scheme and �tness function. Be-
cause of the ability of ACs to create evolutionary behavior (or even self-evolution [43]),
it is not a big step towards using AC for evolutionary optimization. Koza [80] created
self-replicating computer programs that are self-improving and evolving. This system
can be regarded as an arti�cial chemistry where the molecules are computer programs
and reactions take place while programs are executed.

Kanada and Hirokawa [73, 74] (Section 3.1.3) have demonstrated successfully the
application of the Chemical Casting Model (CCM) as a new method for optimization to
different constraint satisfaction problems such as graph coloring, the N-queens prob-
lem, and the Traveling Salesman Problem (TSP). Molecules (atoms) and reaction rules
depend on the type of the search problem. In general, atoms are components of a po-
tential solution of the problem. Another molecular solution of the TSP was suggested
by one of us [11]. Ray [111] discussed the possibility of optimization in the context of
Tierra.

5 Common Phenomena

Despite the vast diversity of the different approaches in the �eld of arti�cial chemistry
research, common phenomena can be observed.
Reduction of Diversity There is a force towards reduction of diversity. This becomes
visible in experiments where the reactor is initialized with maximum diversity as shown,
for example, in Figure 11. In nearly all arti�cial chemistries reported in the literature, the
diversity reduces to either (a) a single self-replicating molecule, (b) an inert population
in which no reaction takes place, (c) a simple network consisting of a few interacting
molecules, or (d) a complex reaction network that may change over time and is not
limited to a �nite set of elements.

There is, of course, also a force increasing the diversity in constructive arti�cial
chemistries. A typical example where this force becomes visible is variable-length
polymer chemistries where reactions may produce longer and longer sequences, thus
increasing the diversity.
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Figure 11. Examples of diversity reduction, which appears in different arti� cial chemistries: (a) number-division
chemistry (prime number chemistry) [17], (b) automata reaction [43], (c) variable-length matrix reaction (MV2)
[41].

Figure 12. Left: Stable network of binary strings with reaction matrix. Middle: Network of polymer reactions.
Dotted lines indicate catalytic activity. Right: Simplest stable network of l-expressions. A D ls1 ¢ (s1)ls2 ¢ ls3 ¢
(s3 )ls4 ¢ ls5 ¢ (s5 )s4, B D ls1 ¢ (s1)ls2 ¢ ls3 ¢ (s3)s2 .

Formation of Densely Coupled Stable Networks From a randomly initialized population
the emergence of closely coupled stable reaction networks can often be observed.
This phenomenon appears in various systems despite the different representation of
molecules and reaction rules. Examples are level-0 organizations in the lambda-chemistry,
matrix-reaction, automata-reaction, Turing machines on tape, catalytic polymer net-
works, assembler automata (e.g., Tierra), and others. Figure 12 shows three examples
of stable reaction networks from different ACs.
Syntactic and Semantic Closure In strongly constructive arti�cial chemistries the molecules
of the above-mentioned stable networks (organizations) show similarities in structure
and function. This phenomenon has been analyzed by Fontana and Buss in detail and
is called syntactic and semantic closure, respectively [52, 53, 55]. Figure 13 demon-
strates that this phenomenon also appears in totally different arti�cial chemistries such
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l-chemistry automata reaction matrix reaction
lx1.lx2.lx2 7240a7ef 110000
lx1.lx2.lx3lx2 7240a7ea 111000
lx1.lx2.lx3.lx3 7240a7eb 11110000
lx1.lx2.lx3.lx4.lx3 7240a7ee 11100000

Figure 13. Example of syntactical similarity. Shown are samples from a l-chemistry [53], an automata chemistry
[43], and a chemistry based on matrix multiplication.

Figure 14. Example of semantic closure of a level-0 organization. Example taken from the automata reaction [43].
The self-maintaining organization consists of 8 molecular types. Their syntactic similarity allows us to represent
them in the form xY , where x 2 fa, b, c, dg and Y 2 fA, Bg. The semantic closure allows us now to describe the
interactions valid for this organization by a simple algebraic rule: xY C x0Y 0 ¡! xY C x0Y 0 C x0Y .

as matrix-multiplication chemistry or abstract automata chemistries. Following Fontana
one can derive a grammar that fully describes the subset of molecules forming the sur-
viving organization. Based on this abstract syntactic description one can also de�ne an
algebra that speci�es the interactions among the molecules (semantic closure). This se-
mantic description abstracts from the underlying reaction mechanism. Figure 13 shows
examples of syntactically similar molecular organizations taken from different arti�cial
chemistries. The similar syntactical structure allows one to describe the structure of
the dominating ensemble of species in a more abstract way by a grammar and their
relations by an algebra. By doing so, an organization can be described by a grammar
(specifying the syntax) and an algebra (specifying the semantics) in an abstract way, so
that the description is independent from the underlying reaction level. Figure 14 shows
a simple example of a level-0 organization taken from an automata chemistry [43].
Evolution and Punctuated Equilibrium Reaction networks may also evolve over time as has
been shown for the autocatalytic polymer chemistry by Bagley et al. [10]. Evolution
is usually induced by external noise14 causing variations in the population. Bagley
et al., for example, introduce randomly generated catalytic links between molecular
sequences, which may lead to a restructuring of the metabolic network. Another fre-
quently used method is to introduce random point mutations (e.g., bit-�ips) in the

14 Called passive mutation by Ikegami and Hashimoto [69, 70].
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structure of molecules. Examples are machine-tape chemistries [69, 70, 94, 134] and
assembler automata like Tierra [112], Avida [4], or Coreworld [108].

Evolution may also take place without external, explicit mutations. In this case
variation is only performed by the molecules themselves. This type of variation is
called active mutation by Ikegami and Hashimoto. It has been demonstrated that an
arti�cial chemistry with only active mutation can show evolutionary phenomena either
in the presence of an explicit, externally de�ned �tness function [80] or even without
any explicit �tness function [43, 45].

6 Discussion and Outlook

This paper gave a survey of the present state of research in the �eld of arti�cial
chemistries. It provided an overview of the diverse approaches presently discussed
in the literature. The goal of our paper was to introduce this diversity using a con-
sistent nomenclature for speci�c aspects of ACs and a systematic description for a
meaningful comparison between different approaches. After basic concepts the main
research areas were introduced, followed by different �elds of applications, such as
modeling, information processing, and optimization. Common features of ACs, for ex-
ample, reduction of diversity of molecules or the formation of densely coupled stable
networks, were discussed in Section 5.

We would like to argue that the knowledge accumulated in studying arti�cial chem-
istries will provide a fertile ground for new ideas about the origin of life and for prebiotic
evolution. By using the freedom of formulation that is offered by abstract systems
resembling chemistry, the problem of life’s self-organization might be better explored
than by sticking to the one real chemistry that is available in nature. This does not mean,
however, that one should detach from the natural system altogether. If, for instance,
generic phenomena of ACs can be connected successfully to natural phenomena, these
phenomena might become qualitatively predictable.

Important questions remain though: What level of abstraction for an AC is appro-
priate to be useful in the context of life’s origin? Which key ingredients are missing in
current AC systems? Do we have to incorporate detailed physical/chemical knowledge?
What does evolution mean in the context of an (arti�cial) chemical system? What role
does self-assembly play in the emergence of novel functionality? What is the relation
between evolution and self-assembly? Does “information processing” emerge by way
of evolution? And if so, how?

If ACs are a subject of study in their own right, a number of questions remain to be
answered: What are “natural laws” of arti�cial chemistries? What are organizations and
how can an AC system self-organize? How can an arti�cial chemistry be investigated
and analyzed? Is an arti�cial chemistry able to create information? How can “evolution”
be measured in general? How many meta-levels of evolution are there?

As it looks now, ACs will have many different applications. The ubiquity of interac-
tions among isolated objects in our world stands as testimony to this potential. Starting
from an analysis of possible interactions, these should be formulated in terms of objects
and their interaction features. Dynamical processes will be generated from these, and
can be set up in a way useful for the purpose in mind. So it might be asked, what is the
relation of ACs to other domains of research, such as population dynamics, immune
system dynamics, social dynamics, or economic system dynamics?

It is our conviction that arti�cial chemistries in their most general formulation as ab-
stract systems of objects that follow arbitrary rules of interaction in combinatorial spaces
will in due time contribute to many different �elds of inquiry. Therefore we would like
to encourage readers to study systems of their own interest from this perspective.
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