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Résumé.2014 Nous étudions les propriétés d’une architecture d’ordinateurs proposée récemment qui
modelise un système dynamique. Nous généralisons le modèle et explicitons quelques questions impor-
tantes. Nous utilisons la complexité du bassin d’attraction comme mesure et illustrons l’utilité de ce
système pour la reconnaissance de formes.

Abstract.2014 We study features of a recentrly proposed computer architecture which models a dynam-
ical system. We generalize the model and give some central issues. We apply the basin complexity as
a measure and exemplify the use of the system for pattern recognition.
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Three years ago, an arrangement of computers
has been proposed [1,2] which represents a kind
of a dynamical system. A more detailed analysis
was given by the same authors in [3].

If one models the following principles in a system
of computers :

- many equaily structured computing ele-
ments are forming a system,

- exchange of data is going on locally, i.e.

between neighbours,
- the algorithms contain non-linearities,
- the whole system is open with respect to

flow of information,
- the dynamics of interaction between com-

puting elements dominates behaviour of the sys-
tem,
then it should be expected that selforganizing

processes could be observed. These processes
and its utility for pattern recognition will form
the subject of interest here.
The aforementioned principles play a prominent
role in models of nature, where formation of an
enormous number of different patterns is to be
explained. By analogy it was concluded [4] that
problems of pattern recognition could be solved
by application of similar principles, if they were
realized appropriately on computers. In fact,
natural pattern recognition systems as, e.g. liv-

ing organisms, make extensive use of these prin-
ciples in coping with the challenges of its complex
environment.

A general description could be stated as follows :
the proposed arrangement of computers is one
example of a multi-attractor system, where at
the beginning given states Pl,..., P n dissipatively
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relax into (presumable) simple attractor states
Ai,..., Am. One can see this evolution as process-
ing of information [5-7], represented at the start
of computation by some "input state" Pi, at the
end by some "output state" Aj. The dissipative
character of the system consists of destruction
or compression of information easily seen if one
compares numbers of possible states at the be-
ginning of computation and at the end.
Although this is rather general, pattern recog-
nition systems call for just this feature as one
important ingredient.
Formulated more specifically : the classification
of patterns requires firstly criteria of which infor-
mation should be seen as features to be classified
and which not (feature selection) and secondly
the mechanism to compress information appro-
priately (feature extraction).
Throughout this paper we shall suppose the

number of patterns is much greater than the
number of classes.

Ordinary pattern recognition proceeds via divid-
ing the classification task into two parts, where
of a programmer often takes over the first part
of feature selection using heuristic principles or
alternatively running a program designed to clus-
ter features and to transform the problem to a
suitable basis. Then only the second part con-
stitutes the problem of pattern recognition to be
solved by a machine. Although the task as a
whole can be executed by one program, there is,
by contrast, no separation into two distinct parts
in selforganizing systems, thus giving more flex-
ibility to the entire system.
The real difference, however, between selforga-
nizing pattern recogniton (PR) systems and de-
terministic or stochastic non-selforganizing ones
is the fact that in a selforganizing system classes
are determined by the nature of the dynamical
system itself and the near-neighbour interactions
of processing elements. Beyond that, the system
respects to topological laws and automatically
maps similar patterns into identical classes. This
has to be seen in distinction to non-selforganizing
systems, where all principles of the processing of
patterns are to be set up explicitely.
Since in the case of the selforganizing systems
considered here there is only a limited influence
on the classification result from the outside, and
in fact the system is able to classify just from
the beginning of sample presentation, we shall

call the classification "spontaneous". Sponta-
neous classification of patterns, however, poses
serious questions which we shall address at the
end : what are the semantics of classes and how

can one use spontaneously emerging classes for
controllable pattern recognition ?

1. The original system.

We now want to describe the abstract framework

comprising as a special case the system [1].
Generally stated, we have a network of identical
processing elements (PEs), which could be iden-
tified by its indices PEiik... characterizing its lo-
cation in a net.

Every PE possesses an OUTPUT value OPijk...,
a vector of INPUT values

and additionally the vector of MEMORY values

Therefore, every processor has to its disposal sev-
eral registers to hold memory values (sometimes,
but not here, called processor state) and a cou-
ple of input lines to receive messages from oth-
ers which are represented mathematically by v-
resp. s-dimensional vectors. On the basis of this
information it computes one unambigeous out-
put.
The algorithm which has to be executed by every
PE each time step t reads globally (suppressing
indizes)

although a local version is reasonable as well

In this way depending on content of memory, on
inputs and (eventually) on location in the net a
new state (= output) will be computed.
The non-linearity necessary for selforganization
is generated by an additional dependence of

memory values on the state of the PEs

If the ouput of every processor is recycled as in-
put for another one and functions f and g contain
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some - e.g. saturation - non-linearities, the sys-
tem exhibits features of a simple multi-attractor
system.
The algorithms (1) and (2) are chosen in such a
way as to ensure that state values OP are fast

relaxing (stable) variables whereas memory val-
ues S are slowly varying (instable) quantities.
Stated in the language of synergetics, the mem-
ory values are allowed to slave the state values

[8].
When S is driven into saturation due to its non-

linearity, also the OP.s reach limit values. Chos-
ing, instead, saturation of OP which are con-
siderably below these limit values results in a
strong robustness of OP against perturbations
in S. This will be studied in more detail below.
To summarize : we have two interactions of dif-
ferent kind, one concerning the transfer of output
information of PE.s to input lines of other PE.s
which is a one-way interaction, the other con-
cerning internal quantities of the processing units
which consists of exchange of messages between
PE.s in both directions. Furthermore, these two
interaction types are distinct with respect to the
time scales of its evolution equations.
In the following we limit ourselves to meshes of
two dimensions. The special realization of Hu-
berman [1] can be given here in compact form :

This is one of many possible algorithms for con-
trast adaptation.
In what follows we shall see that - besides the

flexibility in algorithms - also the non-linearities
and the density of state space can be subject to
variability without serious changes in the general
behaviour of the system.

2. Some observations.

We consider a system of M x N processing ele-
ments arranged as in [1].
To extract the essentials of the model constituted

by equations (3,4,5), we have to consider some
points more closely.
Beginning with algorithm (1) we remove its non-
linearity u and test the OP behaviour. Since the
following features

i) S values are slaving OP values
ii) S values possess saturations

are still valid, we conclude that OP will still have
limit values, although they will be considerable
higher than just the saturation values of OP im-
plemented originally by o,.
Figure 1 shows OP-distances d(P) of period-
ically applied inputs as measured by means of
the stroboscopic method used by Hogg and Hu-
berman [1].

After growing up to large values the distance also
converges to zero as in the original net, signalling
adaptation to the inputs. But adaptation is now
only due to the fast that S values sattle down
after a transient time.
Use as a PR system, however, is not adequate,
since we have removed "dissipation" and there-
fore the formation compression capabilities from
I/O behaviour.
To state it in other words : what physicists mean
by dissipation, i.e. contraction in phase space, is
one important constituent of a pattern classifica-
tion system.
The second point concerns the time-scale of

adaptation.
By fixing the step AS to ±1,0 the mutation of
S is kept small against that of 0 P. We remove
this limitation, also with respect to an analog
computation of values chosing

Here we get our first control parameter E adjust-
ing the rate of convergence of the net. It will be

useful in context of different kinds of fluctuations

applied to the net [9].
Another change is concerned with the density in
state space. With the allowance of real numbers
the density is enlarged by a factor of 109 (single
precision computations). The behaviour result-
ing form this change is qualitatively the same.
This demonstrates the possibility of an analog
realization of the net by operation amplifiers [9].
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Fig.l.- Comparison of output distances d(P) = max [OPi(tP) - OPi(t(P - 1))] over period number P in a
{2 }

8x4 network with 4 input patterns (8 components each). d(P) is going to zero, a) after growing up to large
amounts due to displacement of saturations in OP values, b) just from beginning if OP values are limited to
[-15, +15].

Figure 2 shows the convergence behaviour, again
measured in OP distances for different values of

E for a net with extended density in state space.
In a further variation we change the algorithm
(4) totally, substituting now the saturation non-
linearity of S by some kind of limitation of re-
sources. To this end the development of S must
be made dependent on another control parame-
ter Sc, which limits the average of Sij thereby
introducing a cooperative interaction

Here, for the sake of simplicity we let the damp-
ing R depend on the global average of Sij. Al-
though this seems to be a violation of the princi-
ple of local interactions, it is common ingredient
to all natural systems to be limited with respect
to its resources. On the other hand, dependence
on the global state of a parallel computer system
is a problem of global communication solutions

of which are proposed in many text books on
parallel computing, e.g. [10].
In contrast, different local algorithms are possi-
ble as well. E.g. these may perform summations
of Sij in a specified processor neighbourhood as
in the case of cellular automata it is performed
by totality rules [11].
Figure 3 shows a comparison of memory values
S for the original (a) and the cooperative (b)
algorithm with identical inputs. One can see the
considerable concentration of S values deviating
from 1. The important point about this is that
with few deviations of values from the starting
state in the cooperative algorithm case we obtain
the same basins of attraction as in the saturation

case, where nearly all memory values have to be
changed.
By the way, removing non-linearities u and p si-
multaneously results in a similar non-dissipative
behaviour as described before.

What was the motivation for considering some
issues more closely here ?
1. Modelling dynamical systems by computer
networks is just at its dawn. To get a feeling of
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Fig.2.- Different rate of convergence d(P) for different choice of control parameter
6 X 10-3, 6’3 = 2 X 10-2, e4 = 1 in a 8x4 network computed with real numbers.

Fig.3.- Memory values Si,j differing from starting value 1 (a) Original algorithm of Eq. (3,4,5). (b) Cooperative
algorithm, Eq. (3,7a,7b), Se = 2.0 in a 8x8 network with 12 input patterns. Both exhibit approximately same
basin structure.

the essential points one has to collect experiences
with respect to the question, what properties
would be dispensable for the behaviour as a dy-
namical system and what would be constituent.
As dispensable were identified :

i) saturation non-linearities,
ii) choice of special points in phase space for

the evolution of the system.
2. A second point is concerned with the influ-
ence from outside ,onto the dynamical system.
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Computers should execute orders. If one is con-

fronted with a non-transparent network at least
some control parameters are necessary to be able
to influence something.
3. The most fundamental argument is that we
need more understanding of processes in net-

works. What seems to be sure is that modelling
dynamical systems on computers will bring to
light many new properties and will enable per-
formances, which up to now only mark biological
systems.
We can expect important contributions to the re-
lation between information processing "devices"
in electronics and nature.
We close with an observation possible in all nets :
these are attractor cycles, where d(t) # 0 after
relaxation. The appearance of two or more at-
tractors for one input signals bifurcations and the
possibility of generating more complicated series
of outputs.

3. General behaviour of the meshes.

We now want to demonstrate the behaviour of
meshes quite general. All experiments were done
in nets with algorithm of equations (3,4,5).
As mentioned at the beginning the meshes show
dissipation, i.e. contraction of volume in the
state space of state variables. As an estimate, in
a net of width M (with the same number of input
components) and input data of integer numbers
in [-15,+ 15] the number of possible states will
be diminished by a factor of

Here it was assumed that all state values develop
toward three possible states : +15, 0, generating
3M attractors.
As a measure to examine the basins of attrac-
tion in state space we introduce the attractor

complexity [12]

pi is the fraction of volume in state space due to

attractor Ai. Or, since the state space is acces-
sible only statistically, pi means the probability
to find Ai as the output if the input is generated
by an equally distributed random process.
For all measurements, the adaptation property of
the nets should be turned off, i.e. S constant,
otherwise it would strongly influence the result.

This is a consequence of the very fast adaptation
compared to other models, e.g. neural nets, [13].
Generally speaking the attractor complexity is

an averaging measure of the basin structure of a
net. One example of a real structure is shown in
figure 4. Nets also exhibit spontaneous classifi-
cation abilities if no training inputs were applied
(see Fig.4).

Fig.4.- Basin structure of a 8x8 net with 20 inputs
and 0 inputs.

Observation of developments in this structure
can also be used with profit.
In figure 5 one can see dependence of CB on M, N
and the number of inputs in a training sequence.
The fact that CB is growing with the number of
trained inputs shows clearly a shrinking of the
basins of attraction.

Fig.5.- Basin complexity CB = - Ei pi.ln pi against
length N of nets for different width M. CB approaches
limit values as N grows. (On the basis of 10000 input
trials each).
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Constant CB for M = 2, 3 is due to border ef-
fects.

Falling CB with increment in N, on the other
hand, means that some possible reactions of the
net at smaller N die out if length N approaches
about the width M of the net. Whether this

could be used as a parameter to control some
kind of resolution during the classification pro-
cess remains as an open question.

4. Pattern classification abilities.

As mentioned above one application of the nets
discussed will be a pattern recognition system.
Patterns are represented by strings of numbers,
here taken from the interval [201315, +15]. Classes
are also represented by strings of numbers, reg-
ularly consisting of saturation states ±15, some-
times also of the neutral state 0 or another con-
stant value.

The situation resembles that of the "brain-state-
in-a-box"-model of Anderson et al. [14], where
also non-saturation values appeared in the final
states. Without adaptation, the system sponta-
neously classifies all input patterns into output
classes and two problems arise :

i) In which way classes can be made flexi-
ble ?

ii) What are the meanings of classes ?
The first problem could be solved partially by
turning on adaptation (S develops according to
Eq. (4)). Then the behaviour of the net seems
to exhibit generalization and differentiation, de-
pending on presented training samples. Table
I demonstrates that the considered comput-
ing structures exhibit exactly this characteristic
which can be formulated quantitatively in the
following way : suppose you have an ensemble of
pattern vectors Ij, j = 1,J used as sample pat-
terns for the systems training period and a cor-
responding set of output vectors Oj representing
the classes. Then the variance of the OJ defined
as

is up to marginal variations presumably due to
random effects independent of the variance of the

ly analogously defined.
Different classes are formed also from similar pat-
terns of the training period and the system is

trained to amplify these small differences. Vice

versa, large differences in training vectors also
result in the same output variance indicating ab-
straction of the system (see Tab. I).
This is, however, only part of the story, since the
adaptation algorithm restrains the behaviour of
the net to contrast adaptation. Although there
are algorithms which allow to manipulate the
basins of attraction according to other criteria
[15], conservation of topology, in general, will be
a fixed constraint.

Table L- Abstraction and generalization abilities in
nets with a different number of sample inputs. (8x8
net, original algorithms.

This means that a classification totally at will is
not possible in self-organizing nets.
The semantics of classe remains as the other pro-
blem of this approach. As a consequence of spon-
taneous classification the meaning of classes has
to be fixed separately. Figure 6 shows a solution
to this problem.
Patterns coming from outside the system are

transformed to attractors by a dynamical sys-
tem. A replica of the system with fixed memory
parameters Sij is available internally.
In (B) patterns are generated as long as there is
no match between SA and GA, i.e. at the level
of attractor states. This is done by a simple evo-
lution algorithm according to the so-called two-
membered (1+1) evolution strategy [16]. Start-

ing from a given (parent) pattern in generation
N, G(P, N), a slightly modified child pattern
G (C, N) is generated by a random mutation
in one of its components. In the next genera-
tion, only a single one will "survive", i.e. will
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be G(P, N + 1). For to select between G(P, N)
and G(C, N) a measure of quality of each pat-
tern has to be introduced. This is done here

by using the euclidian distance of the resulting
attractor states GA[G(P, N)] and GA[G(C, N)],
respectively, from SA. The pattern with smaller
distance will be G(P, N + 1). The mutation pro-
cess is stopped, when SA and GA are the same,
i.e. its distance is zero.

Fig.6.- Pattern recognition system.

The examples given in table II always start from
G(P,O) = (14,13,12,...,8,7). Number of muta-
tions is equal to number of generations necessary
to end up with the correct attractor state.

Comparison of external and internal patterns at

the level of fixed points of the dynamical system
determines therefore the semantics : patterns G
in (B) generates the same result as pattern S in
(A), or to state it in other words, G is the internal
representation of S and an attractor SA(= GA)
means G for this dynamical system.
Comparison of patterns at the level of its attrac-
tor states helps to avoid production of much re-
dundant information. It suffices to find one rep-
resentative state of class SA in (B). Of course,
there is a huge number of applicable evolu-

tion algorithms [16,17] varying greatly in speed
and complexity. As a consequence of the fact,
however, that many basins of attraction are of
considerable size (of order 10-3...10-2 of state
space) even one of the simplest algorithms is suc-
cessfull.

5. Conclusions.

Examination of computer modeled dynamical
systems open new routes to pattern recognition.
Although preliminary in results, the relevance of
these models in application to special classifica-
tion problems is shown. As many dynamical sys-
tems as possible, however, - only one example of
which was presented here - should be subject to
examination prior to comparison with conven-
tional methods of pattern recognition. At the

long run there is hope to find a flexible algo-
rithms using selforganizing principles which is

comparable in performance to traditional pat-
tern discrimination algorithms.

Table IL- Examples of recognition of patterns S. The evolution algorithm always starts from G=(14J19J12J
11,10,9,8,7) and modifies G the given number of times until the same attractor is reached.
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