Peter Nordin, Wolfgang Banzhaf and Frank D. Francone

This chapter describes recent advances in genetic programming of machine code. Evolutionary pro-
gram induction using binary machine code is the fastest known Genetic Programming method. It is,
in addition, the most well studied Genetic Programming system that uses a linear genome. Evolution-
ary program induction using binary machine code was originally referred @oawiling Genetic
Programming SystefCGPS). For clarity, the name was changed in early 1998tomatic Induc-

tion of Machine Code—Genetic Programm{#dM-GP). AIM-GP stores evolved programs as linear
strings of native binary machine code, which are directly executed by the processor. The absence of
an interpreter and complex memory handling increases the speed of AIM-GP by about two orders
of magnitude. AIM-GP has so far been applied to processors with a fixed instruction length (RISC)
using integer and floating-point arithmetic. We also describe several recent advances in the AIM-GP
technology. Such advances include enabling the induction of code for CISC processors such as the
INTEL x86 as well as JAVA and many embedded processors. The new techniques also make AIM-GP
more portable in general and simplify the adaptation to any processor architecture. Other additions
include the use of floating point instructions, control flow instructions, ADFs and new genetic op-
erators e.g. aligned homologous crossover. This chapter also discusses the benefits and drawbacks
of register machine GP versus tree-based GP. This chapter is directed towards the practitioner, who
wants to extend AIM-GP to new architectures and application domains.

12.1 Introduction

In less than a generation, the performance of computing devices has improved by several
orders of magnitude. At the same time, their price has dropped dramatically. Today, a
complete one-chip computer may be purchased for less than the price of one hour of work.

But the cost of software has not kept pace with falling hardware prices. From 1955 to
the early 1990’s, the proportion of system development costs attributable to software rose
from 10% to 90%. Today, the demand for software greatly exceggisly Studies show
that demand may outstrip supply by as much as three-to-one. This mismatch is sometimes
referred to as aoftware crisis

The reasons for this software crisis are not difficult to fathom. Hardware is mass-
produced; the economies of scale and mass production exert constant downward pressure
on hardware prices. Falling hardware prices have driven a rapid growth of demand for
software.

But software is not mass-produced. It is still hand-crafted by a limited supply of pro-
grammers. While programming advances like structured programming, object-oriented
programming, rapid application development and CASE tools have increased program-
ming productivity to some extent, 99% of available CPU cycles are not used.

Further increases in hardware speed and capacity will lower the cost of system devel-
opment to some extent. But it is likely that much of any such increase will result only in
more unused CPU cycles. Serious reductions in system development costs in the future will



likely focus on the largest remaining cost component of system development, software.

One possible approach to the software crisis is to have computers write computer pro-
grams, in other wordgiutomatic programmingSuch an ambitious goal would have been
regarded as science fiction as recently as fifteen years ago. But today, there are a number
of different approaches to automatic programming extant: Genetic Programming [Koza,
1992][Banzhaf et al., 1998], ADATE [Olsson, 1997], PIPE [Salustowicz et al., 1997] and
others. All of these approaches generate computer programs by using CPU cycles instead
of human programmers. In a real sense, automatic programming holds the promise that
computer programs, like computer hardware, may someday be mass-produced.

But mass-production of computer prograrasds significant obstacles. One of the most
formidable is, ironically, limitations on available CPU time. Put simply, Genetic Program-
ming and other automatic programming techniquesvany computationally expensive.
AIM-GP (Automatic Induction of Machine Code) addresses this obstacle by evolving pro-
grams using direct manipulation of native machine code. This results in a speedup of almost
two orders of magnitude over other automatic programming systems.

AIM-GP has been the subject of extensive research and development for several years at
the University of Dortmund in Germany and, during that time, has been the subject of many
published articles. Originally limited to RISC chips and to a small number of inputs, AIM-
GP has recently been extended to CISC environments such as the WINTEL (MS-Windows
on Intel) platform and Java byte code. Today, AIM-GP is available on WINTEL machines
in the commercial software package, Discipdiifs and in an academic research version
for Java byte code.

AIM-GP has also been extended to include many new features such as floating-point
arithmetic, greatly expanded input capabilities, conditional branching, flexible control over
the function and terminal set, and an important new genetic operator, Homologous Crossover.
These advances make AIM-GP more flexible and portable in general and simplify its adap-
tation to any processor architecture.

While such additional capabilities are simple to add in a typical Genetic Programming
system, they pose a considerably greater challenge in AIM-GP, where all evolved programs
must be made up of synctactically correct native machine code. The purpose of this chapter
is to report the new techniques that made possible the recent advances in AIM-GP.

12.2 Why Evolve Machine Code?

All commercial computers are built around a CPU that executes native machine code. In
fact, every task computers perform, including genetic programming, will in the end be
executed as machine code.

It is, of course, possible to perform genetic programming using high-level data struc-
tures that represent computer programs. Most Genetic Programming systems, including all
tree-based systems, represent evolving programs in this manner [Banzhaf et al. 1998:309-
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338][Koza 1992] [Keith and Martin, 1994]. Figure 12.1 demonstrates this approach. In
such systems, high-level data structures that represent programs are converted into ma-
chine code at runtime (Step 1). Then, the resulting native machine code is evaluated for
fitness (Step 2) This approach provides flexibility. The trade-off is that Stepekrysom-
putationally intensive.

Butitis often advantageous evolve machine code directly in Genetic Programming. Fig-
ure 12.2 demonstrates the AIM-GP approach. In the direct binary approach of AIM-GP,
there is no conversion step. The population of evolving programs is maintained, trans-
formed, and evaluated in native machine code.



12.2.1 Advantages of Evolving Machine Code

In general the reasons for evolving machine code, rather than higher level languages, are
similar to the reasons for programming by hand in machine code or assembler. The most
important reason for using the direct machine code approach is speed. There are, however,
other reasons also to evolve machine code directly:

1. The most efficient optimization is done at the machine code level. This is the lowest
level for optimization of a program and it is also where the highest gains are possible.
The optimization could be for speed, space or both. Genetic programming could be used
to evolve short machine code subroutines with complex dependencies between registers,
stack and memory.

2. High level tools could simply be missing for the target processor. This is sometimes the
case for processors used for embedded control systems.

3. Machine code is hard to learn, program and master. This may be a matter of taste but
it may be easier to let the computer itself evolve small machine code programs rather than
writing machine code by hand.

4. Machine code genetic programming is inherefitigar. That is, both the genome and

the phenome are linear. Another reason to use a linear approach is that there is some
evidence that the linear structure with side effects may yield a more efficient search for
some applications, see section 12.7.

Some of these benefits may be achieved with a traditional tree-based Genetic Programming
system evolving using a constrained crossover operator. However, there are additional
reasons, in addition to speed, for working with binary machine code:

¢ A binary machine code system is usually memory efficient compared to a traditional
Genetic Programming system. This is partly because knowledge of the program encoding
is supplied by the CPU designer in hardware. Hence there is no need to define the lan-
guage and its interpretation. In addition, the system manipulates the individual as a linear
array of op-codes, which is more efficient than the more complex symbolic tree structures
used in traditional Genetic Programming systems. Finally, CPU manufacturers have spent
thousands of man-years to ensure that machine instruction codes are efficient and compact.
Genetic Programming systems that use machine code instructions benefit directly from the
manufacturers’ optimization efforts.

e Memory consumption is usually more stable during evolution with less need for garbage
collection etc. This could be an important property in real time applications.

¢ The use of machine code ensures that the behavior of the machine is correctly modeled
since the same machine is used during fithess evaluation and in the target application.



On a more abstract level, machine code is the "natural” language of all computers. Higher
level languages such as C, Pascal, LISP and even Assembler are all attempts to make it
easier for humans to think about programming without having to deal with the complexity
of machine code. Traditional genetic programming systems "think” about programming in

a manner analogous to higher level computer languages. It may well be that these high-
level, human techniques of thinking about programming are completeboessary when

a computer is doing the programming. In fact, such higher level constructs may prevent the
computer from programming as efficiently as it might.

12.3 Why is Binary Manipulation so Fast?

The approach of direct binary manipulation is between sixty and two-hundred times faster
than comparable tree based interpreting systems. A partial explanation for its speed may
be found in how an interpreter works.

To evaluate the expression= y + z in an interpreting system would normally require
at least five different steps:

1. Load operang from memory (e.g. stack)

2. Load operand from memory

3. Look up symbol “+” in memory and get a function pointer
4. Call and execute the addition function

5. Store the resulting value somewhere in memory

It is not difficult to calculate the best performance possible from an interpreting system for
this evaluation. A memory operation normally takes at least three clock cycles for the CPU,
even when there is @ache hit The three memory operations listed above will, therefore,
take nine clock cycles at best. Looking up the function pointer requires another memory
access in an ideal hash table which means thre#iaddl clock cycles. Calling and ex-
ecuting a function usually takes from six to fifteen additional clock cycles depending on
compiler conventions and type of function. All in all, this means that the best performance
from an interpreting system for this simple function is about twenty clock cycles.

By way of contrast, Genetic Programming systems that work directly on the binary ma-
chine code execute the= y + z expression as a single instruction in one (1) clock cycle.
AIM-GP should therefore be at least twenty times faster than an interpreting system. In
fact, the speedup is by somewhat more than a factor of twenty. The remaining difference
in performance is probably due to cache issues. All timing issues on modern CPUs are
very sensitive to cache dependencies. Thus, any analysis that assumes cache hits must be
viewed as the minimum speedup possible from the AIM-GP approach.
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12.4 Overview of AIM-GP

AIM-GP was formerly known as "Compiling Genetic Programming Systems” or "CGPS".
While AIM-GP is the best known system that works in a machine code type environment,
there are others such systems. All such systems use a linear representation of the genome
in contrast to the common tree-based Genetic Programming representation.

Genetic Programming systems that operate in a machine-code type environment may, in
principle, be classified into three categories:

1. Approaches that evolve programs with a small virtual (toy) machine for research pur-
poses [Cramer, 1985][Huelsberger, 1996].

2. Approaches that evolve programs using a simulation of a real machine or with a virtual
machine designed for real applications [Crepeau, 1995].

3. Approaches that manipulate the native machine code of a real processor such AIM-GP.
This third approach is, of course, the focus of the remainder of this chapter.

AIM-GP may be regarded as a large alphabet genetic algorithm operating on a variable-
length, linear string of machine code instructions. Each individual consists of a header,
body, footer, return instruction, and buffer. Figure 12.3 shows the structure of an evolved
program in AIM-GP: The body contains machine code instructions contained in the ter-
minal set of an AIM-GP run. All genetic operators are applied tokibdy of evolved
programs in AIM-GP. For basic details regarding AIM-GP see [Nordin, 1997, Banzhaf et.
al., 1998, Section 11.6.2-11.6.3].

AIM-GP evolvesimperativeprograms. Imperative programs consist of instructions af-
fecting astate For example, instructions that assign values to variables or operating on the
values contained in CPU registers are imperative instructions. Most commercial program-
ming languages, such as C++, Pascal and Fortran, are imperative languages.
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State transformations in CPU registers caused by AIM-GP program

Figure 12.4 is an example of how a sequence of AIM-GP instructions might trans-
form the state of the registers of a hypothetical CPU. By way of contrast, traditional tree
based Genetic Programming approaches are often inspirehbiyonalprogramming ap-
proaches [Koza 1992]. More=cently, there has been a trend in tree based Genetic Pro-
gramming to view the tree more like a list of imperative instructions operating on state,
than a functiontree. This includes approaches using memorgadhdiar encodindGruau,
1995].

AIM-GP systems are now running on several different platforms and architectures. So far
implementations exist for the following platforms using five different processor families:

¢ SUN-SPARC
¢ MOTOROLA POWER-PC
o INTEL 80X86

Sony PlayStation

Java Bytecode

The POWER-PC, Sony PlayStation and SPARC are all RISC architectures while INTEL
80X86 is a CISC architecture. The POWER-PC version works both on the Macintosh
architecture and in a PARSYTEC parallel machine.



Java byte code occupies a spot by itself. It has a handful of instructions longer than a
byte. So it could be seen as a CISC architecture even though it is possible to implement
powerful systems using only the instructions of the fixed one-byte size. Furthermore, when
running on the Java Virtual Machine, Java byte code is not precisely native machine code
although it bears many similarities.

12.5 Making Machine Code Genetic Programming Work on CISC Processors

Many of the additions to AIM-GP reported here are the result of porting AIM-GP to CISC
architectures. In particular, Instruction Blocks and Instruction Annotation made the transi-
tion straightforward and flexible.

12.5.1 The Importance of Extending AIM-GP to CISC Processors

The first AIM-GP systems was only able to evolve programsrdduced instruction set
computer(RISC) architectures. A RISC processor has instructioregofal lengthand a
relatively simple instruction grammar. By way of contrast, a CISC (Complex Instruction
Set Computer) has instructions of varying length and, for lack of a better term, a messier
instruction syntax.

The PC de-facto-standaris built on CISC and so are also many computers used for
embedded applications. Other commonly-used computer architectures operate with vari-
able length instructions, for example, the Motorola 68XXX and to some extent Java byte
code. Being able to handle CISC processors is important for any Genetic Programming
paradigm.

In addition to making AIM-GP work on the most common computer architectures, CISC
processors also have large instruction sets with many special instructions. These special
instructions are very useful in extending the capabilities of binary machine code induction
systems like AIM-GP. For example, the INTEL X86 has a set of powerful string and loop
instructions, which are never found on RISC machines:

¢ CMPS/CMPSB/CMPSW/CMPSD-Compare String Operands. These instructions can
be used to compare strings for example in text search applications.

e STOS/STOSB/STOSW/STOSD Store String, LODS/LODSB/LODSW/LODSD Load
String and MOVS/MOVSB/MOVSW/MOVSD-Move Data from String to String. Can be
used when copying strings for instance in text data mining.

e LOOP/LOOP cc-Loop instructions allows for very compact and efficient loop con-
structs.

These single, powerful instructions, available only in CISC architectures, are important
because such single instructions, when included in the function set, perform the same role
as an external function call in a less complex and much faster manner.



12.5.2 Challenges in Moving AIM-GP to CISC Processors

Moving AIM-GP to CISC processors posed some real technical problems. Most approaches
to AIM-GP perform crossover and mutation directly on the native machine code. It is easy
to find where you are in RISC machine code since all instructions are the same length.
Thus, if you know where the evolved program begins, you can easily find the instruction
boundaries during crossover and mutation. For example, where all instructions are 32 bits
long, the programmer always knows that a new instruction begins every 4 bytes.

CISC instructions are completely different. One encounters instructions that are 8 bits,
16 bits, 24 bits, 32 bits and more in length. Finding the instruction boundaries requires the
programmer either to parse the entire evolved program to locate the instruction boundaries
or to maintain information about program structure. Disciplifigthe commercial ver-
sion of AIM-GP) maintains that information both implicitly (with Instruction Blocks) and
explicitly (with Instruction Annotations). The next two sections of this chapter describe
these innovations.

12.5.3 Instruction Blocks

To perform crossover and mutation in AIM-GP, we must know where the boundaries be-
tween instructions reside. Locating these boundaries can be difficult in CISC programs
because of the variable instruction lengths. Figure 12.5 represents an evolved program
comprised of variable length CISC instructions:

In Discipulug™ | we imposed order on this scheme by combining one or more variable
length instructions into fixed lengtimstruction Blocks For example, in one scheme, we
might fix the Instruction Block length at 32 bits. Each Instruction Block may contain any
combination of instructions that are, taken together, 32 bits in length. Various examples of
four different ways to put together an Instruction Block are illustrated in Figure 12.5. The
Instruction Blocks may also contain NOPs (No Operation Instructions).

After grouping CISC instructions into Instruction Blocks, an Evolved program may be
represented as in Figure 12.7:

Crossover With Instruction Blocks

The fixed length Instruction Blocks shown in Figure 12.7 simplify the crossover operator
and memory management. They also make it straightforward to use new crossover methods
such as aligned (homologous) crossover, as seen below Section 12.6.3.

Crossover with fixed length Instruction Blocks works only on the boundaries of the in-
struction blocks. This allows crossover to calculate and access each crossover pointdirectly
as shown in Figure 12.8. The size of the Instruction Blocks may be a settable parameter.
In that case, the block size must be set so that the largest instruction used will fit in the
block. However it should be small enough to allow the crossover operator to do useful
recombination.

Mutation With Instruction Block#s noted above, the crossover operator works blindly
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in betweerthe blocks. On the other hand, mutation operates inside the Instruction Blocks.
Discipulug™ implements three different types of mutation:

¢ Block Mutationreplaces an existing Instruction Block with a newndamly-generated
Instruction Block.

¢ Instruction Mutatiorreplaces a single instruction (inside of an Instruction Block) with a
new, randomly-generated instruction.

o Data Mutatiorreplaces one of the operands of a single instruction with anotimeipnaly-
generated operand.

12.5.4 Instruction Annotations

To perform Instruction Mutation or Data Mutation, AIM-GP operates inside the Instruction
Blocks. Because there may be more than one instruction within an Instruction Block, the
mutation operator needs to know where the boundaries of instructions reside. There are
two ways to do this:

e The point where one instruction finishes and another one begins may be determined
by "decompiling” the binary code and determining the length of each instruction from a
lookup table.

e The simpler way is to add extra information to each instruction in a separate array. This
annotation arraygives information about the position of instruction boundaries within an
Instruction Block. The annotation information is a short binary string. Each binary digit
corresponds to aytein the block. If the binary digit is & then a new instruction starts

in this byte. If the binary digit i¥ then the previous instruction continues in this byte, see
Figure 12.9.

When evolving Java byte code, annotation information is very useful. The Java virtual
machine is a stack machin€urrent stack deptis an example of annotation information
kept with every instruction in our Java AIM-GP approach. We have also used annotation
information to keep track of jump offsets in the Java system.

A word of caution is in order. If too much annotation informationis used then the system
probably contains aompilertranslating annotation information into an executable. If this
is the case then manipulating binary code might not be worth the extra complexity. So,
there is a trade-off between annotation information, expressiveness and efficiency.

12.5.5 The Benefits of "Glue”

Both Instruction Blocks and Instruction Annotations are different wayghoe” multi-
ple instructions together into functional groupings. Instruction Blocks comprise implicit
"glue” because their constant length isagoized by the crossover operator. Instruction
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Annotations may be used as explicit "glue”, delineating the start of compound instructions.
Such glued instructions are very useful since they can be seen as small and very efficient
user-defined functions. Compound instructions are also useful for special tricks such as
ADFs, jumps and string manipulation.

Glued instructions also have benefits for applications on RISC architectures. In partic-
ular, the ability to glue instructions together can yield more efficient constructs than using
functions calls for the same feature. Previously, spdeg functions callsn assembler,
were used for user-defined-functions, ADFs, and protected functions [Nordin 1997]. How-
ever, a good deal of overhead is involved in a function call and it is also a more complex
solution. A glued block does the same job and is usually more efficient than using function
calls.

Finally, glued instructions held together in Instruction Blocks also appear to assist the
Genetic Programming algorithm by making it easy to protectbadting blocksagainst



crossover. One building block observed by the authors that evolves repeatedly is a block
comprised of an absolute value instruction followed by a square root instruction. Of course,
the absolute value ensures that the square root function (which only accepts positive num-
bers) will return a number and not an error symbol. A block consisting of these two in-
structions is nothing but a protected function that evolves spontaneously through mutation
over-and-over in AIM-GP runs that have Instruction Blocks.

12.6 Other AIM-GP Innovations

A number of other additions to the AIM-GP architecture are of note and are detailed in this
section.

12.6.1 Memory Access and Large Input Sets

A CISC processor usually has fewer registers than a RISC processor. The CPU com-
pensates for this by more efficient instructions for mixing values in memory with register
operations. Such operations can be especially efficient ifdlobeis aligned. In that case,
these operations are almost as fast as a register-to-register operation.

Previously, with the RISC approach, the maximum number of inputs available in AIM-
GP systems was around fourteen variables. The fast and convenient megoesg avail-
able on CISC machines makes it easy to expand the number of inputs efficiently. Currently
Discipulug§™ may use up to sixty-four inputs although that number may be easily in-
creased.

AIM-GP has with this version been used for data mining applications with wide input
sets consisting of 40 columns or more. In such applications Genetic Programming seems
to work well without any specific externakriable selection algorithminstead Genetic
Programming does an excellent job selecting relevant input columns and omitting irrelevant
inputs from the resulting program.

12.6.2 Decompilation

Evolved machine code can be disassembled into compilable C-code. Decompilation is very
useful for platform portability of the evolved programs. In Discipdifswe decompile to
ANSI C programs. As a result, the decompiled programs may be compiled directly to most
processors for which a C compiler is available.
The example below is a decompiled evolved program from DiscipfusEven though
this programs was evolved on a Pentium machine, the decompilation converts register and
memory references in the machine code into values that may be used by most processors.
It this example, thef array in the program below, stands for the eight FPU registers
available in the Pentium FPU while thearray represents the array of input values. Thus,



the instructionf[0]* = v[27] means that registér should be assigned the value of input
number27 multiplied by the preexisting value in register

#define LOG2(x) ((float) (log(x)/log(2)))
#define LOG10(x) ((float) logl0(x))
#define LOG_E(x) ((float) log(x))
#define Pl 3.14159265359

#define E 2.718281828459

float DiscipulusCFunction(float v[])
{

double f[8];

double tmp = O;

f[1]=A[2]=H3]=f[4]=F[5]=f[6]=f[7]=0;
fl0]=v[O];

10: f{0]-=f[O];
fl0]*=f[0];

11: f[0]-=0.5;
12: tmp=f[1]; f[1]=f[0]; f[O]=tmp;
fl0]-=f[0];

13: f{O]*=f[O];
14: f[O]+=f[O];
f[0]=fabs(f[0]);
I5: tmp=f[0]; f[O]=f[0]; f[O]=tmp;
fl0]*=f[0];

16: f[0]*=0;

I7: f[0]-=0.5;
18: flO]*=v[27];
19: f{O]*=f[O];
110: flO]*=v[32];
111: flO]*=v[4];
112: f{0]+=f[1];
113: f{0]+=f[0];
f[0]=fabs(f[0]);
114: f[0]-=f[1];
flO]+=f[1];

115: flO]*=v[61];
116:

117:



12.6.3 Homologous Crossover

One of the principal criticisms of standard Genetic Programming is that the crossover op-
erator is too "brutal”. It performs crossover by exchanging any sub-tree regardless of the
context in which the sub-tree operated. The standard crossover operator exchanges sub-
trees with such little selectivity that crossover could be argued to be more of a mutation
operator and Genetic Programming more like a hill-climbing algorithm with a population
than a system working with recombination [Banzhaf et al. 1998:143-173]. The same ar-
gument can be made regarding the usual two-point string crossover in AIM-GP [Nordin
1997].

Natural crossover does not usually exchange "apples” and "pies”. Foot-genes are rarely
crossed-over with nose-genes. In natural crossover, the DNA of the parents are aligned
before a crossover takes place. This makes it likely that genes describing similar features
will be exchanged during sexual recombination. Thus, biological crossokenislogous
[Banzhaf et al.:48-54].

In nature, most crossover events are successful. That is, they result in viable offspring.
This is in sharp contrast to Genetic Programming crossover, where 75% of the crossover
events are what would be termed in bioldgshal.

Homologous Crossover MechanistAIM-GP now contains a mechanism for crossover
that fits the medium of Genetic Programming and that may achieve results similar to ho-
mologous crossover in nature. In nature, homologous crossover works as follows:

¢ Two parents have a child that combines some of the genomes of each parent.

¢ The natural exchange is strongly biased toward experimenting with features exchanging
very similar chunks of the genome, specific genes performing specific functions, that have
small variations among them, e.g., red eyes would be exchanged against green eyes, but
not against a poor immune system.

Homologous crossover exchanges blocks at the same position in the genome allowing cer-
tain meaning to be developed at certain loci in the genome. Homologous crossover can be
seen as an emergent implicit grammar where eachiposloci, represents a certatype

of featurein many ways similar to howyrammar based GBystems work [Banzhaf et. al.
1997]. Homologous Crossover Effecthe authors have noted several effects of making
the homologous crossover operator the dominant crossover operator. They are:

¢ Significant and consistent improvement in search performance.

¢ Lesshloator code growth. This makes sense if bloat is partly seen as a defense against
the destructive effects of crossover. A reasonable hypothesis is that the homologous crossover
exchanging blocks at the same position will be less destructive after some initial stabilizing

of features at loci.



o Implementation efficiency. The execution of the evolved programs is so fast in AIM-GP
that even the time to perform crossover becomes significant (20%). Homologous crossover
is faster than standard crossover since it exchanges segments with the same size. Therefore,
no blocks of machine code need to be shifted forward or back.

Tree Based Homologous Crossovelomologous crossover is easy to formulate and im-
plement in a linear imperative system such as AIM-GP since two evolved programs can be
aligned in a manner analogous to DNA crossover in nature. With tree based systems it is
not as easy to find a natural way to align the two parents. However, so-caléegoint
crossoveris a very interesting development in tree-based Genetic Programming that, we
speculate, may act in a manner similar to linear homologous crossover [Poli and Langdon,
1998]. In one-point crossover, the nodes of the two parents are traversed to identify nodes
with the same position and shape (arity). In this way, the trees can be partly aligned.

Such a tree based system has an interesting property in that it allows the insertion of a
sub-trees of any size without violating alignment. This is not as easy in a linear system such
as DNA or AIM-GP. The only way to achieve the same effect in AIM-GP is toABEs
Using ADFs allows the homologous insertion of a block calling an ADF with arbitrary size,
see Section 12.6.5. A mechanism like this is important since a new individual with very
different alignment will have severe difficulties surviving in a population with a majority of
differently aligned individuals. In this way alignment can be seen as a kind of speciation.

12.6.4 Floating Point Arithmetic

Many conventional Genetic Programming systems operate with floating-point arithmetic.
Until recently, AIM-GP has used the ALU (Integer and Logic Unit). However, floating-
point arithmetic has many benefits. One of them is access to efficient hardware, which
implements common mathematical functions such as SIN, COS, TAN, ATN, SQRT, LN,
LOG, ABS, EXP etc. as single machine code instructions. There are also a dozen well-used
constants, such as PI, available.

Another substantial benefit of floating-point representations is portability of evolved
code. All floating-point units adhere to a common standard about how to represent num-
bers and how certain functions (such as rounding) should be performed. The standard also
describes what to do with exceptions (e.g. division by zero). All floating-point exceptions
are well-defined and result in an error symbol (for instance INF) being placed into the result
register. This causes fewer problems with protected functions because execution continues
with the symbol in the register. When the function returns the symbol, this can be detected
outside the evolved program and punished by a poor fithess evaluation.

Processor manufacturers have recently discovered the benefitmditional loadsin
the FPU. Such instructions loads a value into a register if a certain condition holds. The
calculation following the conditional load can then take very different paths depending
on if the value was loaded or not. This way the instruction works as an efficient single
instructionif-statement



Even if floating point processors have many powerful new instructions, it is still impor-
tant to select instructions with care. For instance the FPU of the INTEL processor has eight
registers organized as a stack. But stack type instructions cause some problems in evolu-
tion. Best results in evolution have to date been obtained by omitting instructions that push
or pop the stack. Instead it is more efficient to use the FPU registers as normal registers
machine registers and load input directly into them.

Constants are more difficult to implement in AIM-GP floating point systems than in
integer based systems. In integer systems thergranediate datavailable as part of the
instructions. These immediate data may be used as constants in the individual and mutated
to explore the search space of integer constants during evolution. In the floating-point
instruction set, there are no constants in the instruction format. Instead constants must be
initialized at the beginning of a run and then, during the run, loaded from memory much
like the input variables.

Another possible feature when using CISC processors and floating-point units is the
ability to use multiple outputs. The transfer of a function’s result on a CISC floating-point
application is communicated through memory. This technique enables the use of multiple
outputs by assignment of memory in the individual. In principle there is no limit on the
number of items in the output vector. A multiple output system is important in for instance
control applications where it is desirable to control for instance several motors and servos.

12.6.5 Automatically Defined Functions

Even though the value of ADFs has been questioned in a register machine approach such
as AIM-GP (see Section 12.7 below), it may have benefits in connection with homologous
crossover. Previously ADFs have been implemented by calling a special subfunieiah, a
function which then in turn calls one of a fixed humber of ADFs in the individual, see
Figure 12.10. The reason for having an extra function in-between is that necessary bound-
ary checks can be made in the leaf functions. Calling a function represents a considerable
overhead. ADFs can be implemented more elegantly with blocks.

We need two blocks to realize ADFs. One block containirg/d and one containing a
return instructions. These blocks are then arbitrarily inserted into the individual. To work
properly during evolution there must be control instructions in these blocks that check that
there is no stack underflow or stack overflow. (The allowed calling depth need only be a
few levels.) The blocks are initialised to call forward 5 or 10 blocks. A second check (also
within the instruction blocks) is therefore needed to make sure that no call is made past
the boundary of the individual. In this way no special ADF structure in the individual is
necessary. Instead the subroutines are chaotically intermixed in a single individual. The
benefits are a larger freedom for the system to control how many ADF's will be used and
in what way. The block approach is also faster since multiple function calls are eliminated.
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Figure 12.10
The structure of a population consisting of individuals with two ADF parts and a main part in AIM-GP

12.7 AIM-GP and Tree—Based GP

The greatest advantage of AIM-GP is the considerable speed enhancement compared to
an interpreting system, as discussed above. An interesting question is whether the perfor-
mance of the register machine system is comparablepan-generation or per-evaluation
basis

AIM-GP has possible advantages over Tree based Genetic Programming other than
speed. Consider that a four line program in machine language may look like this:

1) x=x-1
(@) y=xx
(3 x=xry

(4)  y=x+y
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Figure 12.11
The dataflow graph of ther — 1)2 + (= — 1) polynomial

The program uses two registersy, to represent the function. In this case the polynomial
is:
g(z) = (@ = 1)’ + (z = 1) (12.1)

The input to the function is pced in register and the output is what is left in register
y after all four instructions have been executed. Regigterinitially zero. Note that the
registers are variables that could be assigned at any point in the program. Register
example, is used as temporary storage in instruction numbergweo ¢ x x) before its
final value is assigned in the last instruction£ = + y). The program has more of a
graph structure than a tree structure, where the register assignments represent edges in the
graph. Figure 12.11 shows a dataflow graph of(the- 1)* 4 (z — 1) computation. In
that figure, the machine code program closely corresponds to this graph. Compare this to
an equivalent individual in a tree—based Genetic Programming system as in figure 12.12.
It has been argued that the more general graph representation of the register machine is an
advantage compared to the tree representation of traditional GP. For this reason there is less
need to use an explicit ADF feature in AIM-GP

In fact, the temporary storage of values in registers may be seen as a “poor man’'s ADF”
The reuse of calculated values can, in some cases, replace the need to divide the programs



Figure 12.12
The representation ¢f> — 1)2 + (z — 1)2 in a tree—based genome

into subroutines or subfunctions. Reuse of useful instruction sequences is repeatedly ob-
served in evolved AIM-GP programs.

To determine if this theoretical advantage of AIM-GP over tree-based Genetic Program-
ming has any empirical support, we carefully tuned two Genetic Programming systems,
one standard tree—based as well as one register based and evaluated their performance on
a real world test problem. This problem is from the speechgeition domain and has
been used previously as a benchmark problem in the machine learning community, with
connectionist approaches. The problem consists of pre-processed speech segments, which
should be classifiedccording to type ophoneme.

The PHONEME recognition data set contains two classes of data: nasal vowels (Class
0) and oral vowels (Class 1) from isolated syllables spoken by different speakers. This
database is composed of two classes in 5 dimensions [ELER®5]. The classification
problem is cast into a symbolic regression problem where the members of class zero have
an ideal value of zero while the ideal output value of class one is 100.

The function set consisted, in both cases, of the arithmetic operator times, subtract, plus
and the logical shiftleft (SLL) and logical shift right (SRL) operators. The selection method
used was a steady state tournament of size four. Homologous crossover was not used. The
population size was chosen to 3000 individuals aadh experiment was run fa&000
generation equivalents.

Each system performed 10 runs on the problem and the average of the 10 runs was
plotted. Figure 12.13 shows the average over 10 runs of the best individual fithess for the
two systems.
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Comparison of fitness of the bestindividual with a tree and register based Genetic Programming system over 1000
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Evolution of best fitness over 1000 generation equivalents



The tree—based system starts out with a sharper drop in fithess but at generation 180 the
register based system has a better fitness. The average of best fitness at termination after
1000 generation equivalents is 657.9 for the tree—based Genetic Programming and 450.9
for register based GP. This means that the average fitness advantage is 31% in favor of the
register based system.

The results show that the register machine system, on this problem, converges to an equal
or better fitness value than the tree—based system. These results suggest that AIM-GP could
have advantages in addition to its superior speed.

12.8 Future Work

Many of the AIM-GP techniques currently in use are proven in practical applications. More
thorough evaluations are planned. New additions to the system have opened-up completely
new possibilities in several application areas:

e The introduction of blocks improves portability and we plan to exploit this by porting the
system to embedded processors. Programming very complex tasks e.g. spegchioec

is difficult to do in machine code with limited hardware resources. While AIM-GP has
proven that it can evolve efficient solutions (as efficient short machine code programs) to
such hard problems [Conrads et al., (1998)]. Applied in an inexpensive embedded proces-
sor such as the PIC, it could have many commercially applications.

e AIM-GP has previously been used in control domains such as on-line control on au-

tonomous robots. We have begun work which will extend this domain to more complex

walking robots. Autonomous robots need high processing capabilities in compact memory
space and AIM-GP is therefore well suited for on-board learning.

¢ Genetic Programming differs from other evolutionary techniques and other “soft-computing”
techniques in that it produces symbolic information (e.g. computer programs) as output. It
can also process symbolic information as input very efficiently. Despite this unique strength
genetic programming has so far been applied mostly in numerical or Boolean problem do-
mains. We plan to evaluate the use of machine code evolution for text data mining of e.g.
the Internet.

Other potential applications for AIM-GP are in special processors, such as:

Video processing chips, compression, decompression (e.g. MPEG), blitter chips

Signal processors

Processors for special languages, for example, LISP-processors and data flow processors

New processor architectures with very large instruction sizes



o Parallel vector processors
e Low power processors for example 4-bit processors in watches and cameras

e Special hardware, e.g. in network switching

12.9 Summary and Conclusion

We have presented additions to the AIM-GP making the approach more portable and en-
abling its use with CISC processors. Additions consist of blocks and annotations which en-
able safe use of genetic operators despite varying length instructions. Benefits of the CISC
architecture are the large number of instructions in the instruction set, increasing the likeli-
hood that the instructions needed for a specific application can be found. Complex instruc-
tions include LOOP instructions and special instructions for string manipulation. The use
of the FPU further expands the directly possible instruction set by inclusion of important
mathematical functionssuch &N, COS, TAN, AT N, SQRT, LN, LOG, ABS, EXP

etc. All these additions are important for the practical applicability of one of the fastest
methods for Genetic Programming.
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