
Peter Nordin, Frank Francone and Wolfgang Banzhaf

In Genetic Programming, introns play at least two substantial roles: (1) A structural protection role,
allowing the population to preserve highly-fit building blocks; and (2) A global protection role,
enabling an individual to protect itself almost entirely against the destructive effect of crossover.
We introduce Explicitly Defined Introns into Genetic Programming. Our results suggest that the
introduction of Explicitly Defined Introns can improve fitness, generalization, and CPU time. Further,
Explicitly Defined Introns partially replace the role of Implicit Introns (that is, introns that emerge
from crossover and mutation without being explicitly defined as such). Finally, Explicitly Defined
Introns and Implicit Introns appear, in some situations, to work in tandem to produce better training,
fitness and generalization than occurs without Explicitly Defined Introns.

6.1 Introduction

Biological introns are portions of the genotype (the DNA) that are not expressed in the
phenotype (the organism), [Watson et al. 1987]. In some eucaryotic cells, up to 70% of the
genetic information is snipped out of the genome chemically before the creation of amino
acids. Researchers have suggested that biological introns play some role in providing
genetically safe areas for mutation and crossover, [Watson et al. 1987].

The operators in Genetic Programming – mutation and crossover – were designed by
analogy to biology [Koza 1992]. Furthermore, like DNA, GP is variable in length. One
might, therefore, expect introns to evolve in GP.

But GP introns should look different than biological introns. In most GP implementa-
tions, the genotype and the phenotype are one and the same. Unlike the biological model,
non-essential parts of the GP genome cannot be "snipped out". In GP, therefore, the analog
to biological introns would be evolved code fragments that do not effect the fitness of the
individual. For example: y = y + 0.

The evolution of such code fragments has been repeatedly observed by GP researchers
in tree based GP–some refer to the phenomenon as "bloating", [Tackett 1994], [Angeline
1994]. "Bloating" is the accumulation of apparently useless code in a GP population–that
is, code that does not effect the fitness of the individual. Our research here confirms exist-
ence of the "bloating" phenomenon in linear GP structures, see Figure 6.1.

In this Chapter, we argue that introns appear in GP populations because they have an
important function in evolution. As a result, the algorithm selects for the existence of GP
introns in a wide variety of conditions. Introns are, however, a decidedly mixed blessing in
GP. Because GP introns are stored in individual’s evolved program structures instead of in
a separate genome, a large amount of CPU time is spent calculating intron values.

In a recent paper, we began investigating introns. We devised a way to measure the intron
content of genetically evolved programs using the linear structure of Compiling GP System
(CGPS), [Nordin 1994]. In this paper, we continue that research by introducing Explicitly

Defined Introns (EDIs) into CGPS. An EDI is a structure in the CGPS system that plays no
part in the fitness calculation but that affects the probability of crossover between adjacent
blocks of evolved code–much like the biological intron. It does, however, affect the prob-
ability of crossover between the two Nodes on either side of the EDI (see "Definitions"
and "Genetic Operators", below). By way of contrast, we will refer to introns that emerge
from the code itself as "Implicit Introns" (IIs). The situation is depicted in Figure 6.2. The
circular nodes affect the fitness calculation while the squares affect the crossover points.
For instance the square with (14) inside acts as a string of 14 nodes during crossover but
does not interfere with the fitness evaluation.

Previously, researchers have studied structures similar to our EDIs in fixed length GA
representations, [Levenick 1991], [Forrest and Mitchell 1992]. This chapter is, apparently,
the first application of EDIs to variable length EA structures or to Genetic Programming in
particular.

Our results suggest that EDIs have the following effects in variable length representations:

1. Fitness, Generalization and CPU time frequently improve with the introductionof EDIs.

2. IIs and EDIs frequently work together, with IIs probably serving to chain EDIs together.

3. Under some circumstances, EDIs replace IIs in the population almost completely.

4. Like IIs, EDIs can, and frequently do, protect an entire individual or code block against
the destructive effects of crossover

5. A combination of parsimony pressure and EDIs allow a population to keep the structural
advantages of IIs without carrying some of the computational overhead of IIs.

6.2 Definitions

We have defined EDIs and IIs above. The following additional terms are needed to clarify
the following discussion:

Node: The atomic crossover unit in the GP structure. Crossover can occur on either or
both sides of a Node but not within a Node. Because our particular implementation
of GP works with 32 bit machine code instructions (see below), a Node is a 32 bit
instruction. A Node can be comprised of either Working Code (see definition below)
or an II. An EDI is not a Node because it plays no role in the fitness calculation and
because crossover occurs, effectively, within the EDI, not on either side of the EDI
(see "Genetic Operators", below).

Working Code or Exon: A GP Node that is not an II. Working Code effects the fitness
calculation of the individual for at least one fitness case.

0

100

200

300

400

500

600

700

0 5 10 15 20 25 30 35 40

A
ve

ra
ge

 L
en

gt
h

in
 B

its

Generations

Absolute Complexity and Efficient Complexity

"Absolute Length"
"Efficient Length"

Figure 6.1
Growth of genome size during evolution, absolute and effective size. (Reproduced from [Nordin and
Banzhaf 1995a].)

Absolute Size: The number of Nodes in a GP individual.

Effective Size: The number of Nodes in a GP individual that constitute Working Code–that
is the number of Nodes in a GP individual that make a difference in the result of the
individual’s fitness calculation for at least one of the fitness cases. Figure 6.1 shows
the evolution of effective and absolute size during training.

Intron Equivalent Unit: (IEU). An II or an EDI with a probability of crossover that is
equal to an Implicit Intron comprised of a single Node. We will designate an II with
an IEU value of 1 as II. We will designate an EDI with an IEU value of 1 as EDI(1).
The purpose of defining this unit is to allow us to deal with both IIs and EDIs in one
designation that consistently reflects their effect on the probability of crossover.

Explicitly Defined Intron Value: Each EDI stores an integer value which is initialized
randomly through three different ranges. That ExplicitlyDefined Intron integer value
shall be referred to as an "EDIV." This value affects the probability of crossover at
the EDI, as discussed below in "Genetic Operators".

See Figure 6.2 for an illustration of EDIs, IIs and working code. Section 6.5.2.1 gives
further details on the behavior of EDIs and IIs during evolution.

a=c*d
EDIV
(132) a=a+0

Working
Node

EDI

EDIV
(14) c=c+a

Working
Node

EDI

Linear Genome:

Node
Implicit Intron

Figure 6.2
Explicitly Defined Introns, Implicit Introns, and Working Nodes in a linear Genome. (For the relation
with tree structure based GP, see section 6.6)

6.3 The Experimental Setup

6.3.1 The Problem

We chose a straightforward problem of symbolic regression on a second order polynomial.
Large constants for the polynomial and small terminal set ranges were deliberately chosen
to prevent trivial solutions.

6.3.2 Runs

We chose 10 fitness cases and tested the best individuals for generalization on 10 data
elements that were not included in the training set. Each run was performed on a population
of 3000 individuals. We completed 10 runs each with and without parsimony (values: 0,
1), with and without EDIs enabled, and over three ranges of initialization for EDI values
(values: high, medium, low). The total number of runs was 200 comprised of 240,000
individuals. Some additional runs were performed to investigate specific issues and will be
described below.

6.3.3 Implementation of GP For This Problem

The Evolutionary Algorithm we use in this paper is an advanced version of the CGPS
described in [Nordin 1994], composed of variable length strings of 32 bit instructions for
a register machine. The register machine performs arithmetic operations on a small set of
registers. Each instruction can also include a small integer constant of maximum 13 bits.
The 32 bits in the instruction thus represents simple arithmetic operations such as "a=b+c"
or "c=b*5". The actual format of the 32 bits corresponds to the machine code format of a
SUN-4 [SPARC 1991], which enables the genetic operators directly to manipulate binary
code. For a more thorough description of the system and its implementation see [Nordin
and Banzhaf 1995b].

This implementation of GP makes it easier to define and measure intron sizes in code for
register machines than in, for instance, functional S-expressions (see below). The setup
is also motivated by fast execution, low memory requirement and a linear genome which
makes reasoning about information content less complex.

6.3.4 Intron Measurements

Many classes of code segments with varying degree of intron behavior can be identified
[Nordin and Banzhaf 1995a]. For instance:

1. Code segments where crossover never changes the behavior of the program individual
for any input from the problem domain.

2. Code segments where crossover never changes the behavior of the program individual
for any of the fitness cases.

3. Code segments which cannot contribute to the fitness and where each node can be
replaced by a NoOperation without affecting the output for any input in the problem
domain.

4. Code segments which do not contribute to the fitness and where each node can be
replaced by a NoOperation without affecting the output for any of the fitness cases.

5. More continuously defined intron behavior where nodes are given a numerical value of
their sensitivity to crossover.

The introns that we measure in this paper are of the fourth type.
We determine whether a Node is an II by replacing the Node with a NoOperation

instruction. A NoOperation instruction is a neutral instruction that does not change the
state of the register machine or its registers. If that replacement does not affect the fitness
calculation of the individual for any of the fitness cases, the Node is classified as an Implicit
Intron1.

When this procedure is completed the number of first order introns is summed together
as the intron length of that individual. Effective length is computed as absolute length less
the intron length. The intron checking facility is computationally expensive but it operates
in linear time in relation to the size of individuals.1Note that this technique measures the presence of only first order introns. Examples of such intron segments
with length one, called first order introns, are "a=a+0","b=b*1" etc. Higher order introns can also appear, such
as the second order "a=a-1;a=a+1". In this case, the intron segment only acts as an intron as long as the two
instructions are kept together. We chose to limit our measurement in this manner because observations and
theoretical argumentation support the claim that higher order introns are a small proportion of the total intron
length [Nordin and Banzhaf 1995a].

6.3.5 Genetic Operators

This section gives a brief description of the evolutionary operators used, For more details
on the operators and the system, see [Nordin and Banzhaf 1995b].

Selection: fitness proportionate.

Crossover: Two arbitrary subsegments of Nodes are selected from a copy of each parent
and then swapped to form the two children. If the two chosen segments are of
different length, the length of the children will vary.

Crossover with EDIs: In runs using EDIs, the crossover point is selected just as if there
were a chain of N nodes instead of the EDI with EDI-value ’N’. The crossover
point is thus selected by examining the integer values (the EDIV) stored in the EDIs
between Nodes in an individual. The probability of crossover between two Nodes
is proportional to the EDIV of the EDI separating the Nodes. The EDIV values
from two parents (k and n) are transmitted to the children as follows. EDIV(k) and
EDIV(n) are summed. Then the sum is divided randomly between the EDIs that
appear at the crossover point in the two children. This crossover operator performs
equivalent to crossing over two individuals in the middle of two chains of IIs. We felt
it was important to duplicate this phenomenon because of the frequency with which
we have observed long chains of IIs in our prior work. In other words, crossover acts
just as if every EDI was substituted by a string of normal introns with a length defined
by the EDIV of the EDI. The values transmitted to the children corresponds to the
values that would have been transmitted during a crossover with a normal intron (II)
segments of this length.

Mutation: changes bits inside the 32 bits of the instruction (Node), which can change the
operator, the source and destination registers, and the value of any constants.

The EDIV in each EDI is initialized as a uniform random distribution between a minimum
and maximum value.

6.3.6 Parsimony Pressure

We used external parsimony pressure in some of our experiments. This feature of the system
punishes Absolute Size in an individual by adding a parsimony factor times the Absolute
Size of the individual to the fitness expression. A parsimony factor of one means that the
Absolute Size of the individual is added to the computed fitness. Parsimony was never
applied so as to penalize Explicitly Defined Introns and they could thus grow unaffected
by the parsimony pressure.

Table 6.1 summarizes the parameters used during training in the 200 different training
runs that constitute the basis for our analysis.

Table 6.1
Summary of parameters used during training.

Parameter name:
Objective : Symbolic regression of a polynomial with large constants
Terminal set : Integers in the range 0-10
Function set : Addition Subtraction Multiplication
Raw and stand. fitness : The sum taken over the 10 fitness cases, of the absolute

value of the difference between actual and desired value
Wrapper : None

Maximum population size : 300, 3000
Crossover Prob : 90%
Mutation Prob : 5%
Selection : Fitness proportional selection
Termination criteria : Maximum number of Generations exceeded
Maximum number of generations: 150,1500
Parsimony Pressure : 0, 1, 5
EIDV init value : 10-20, 10-100, 10-1000
Maximum number of nodes: 512
Total number of experiments : 200

6.4 Protection Against Destructive Crossover

6.4.1 Definitions

The following terms have the following meanings:

Destructive Crossover A crossover operation that results in fitness for the offspring that
is less than the fitness of the parents2.

Constructive Crossover A crossover operation that results in fitness for the offspring that
is more than the fitness of the parents.

Neutral Crossover A crossover operation that results in a combined fitness for the off-
spring that is within 2.5% of the fitness of the parents.

Figure 6.3 is a histogram that demonstrates the relative proportions of these three different
types of crossover in a typical early generation in a typical run.

The x-axis gives the change in fitness �fpercent after crossover fafter.
(fbest = 0, fworst =1).�fpercent = fbefore � fafterfbefore � 100 (6.1)

The area over zero represents Neutral Crossover, the area to the left of Zero represents
Destructive Crossover and the area to the right of zero represents Constructive Crossover.2At least 2.5% less fitness than the parents.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

-100 or less -50 0 50 100

N
um

be
r

of
 C

ro
ss

ov
er

 E
ve

nt
s

Fitness Change after Crossover (%)

Effect of Crossover in One Generation

"Crossover Effect"

Figure 6.3
Typical Proportion of Destructive, Neutral and Constructive Crossover in an early generation. (Re-
produced from [Nordin and Banzhaf 1995a].)

A three-dimensional extension of this figure is an important analysis tool for finding
out what takes place during evolution. Figure 6.4 is constructed by compiling together,
one figure of the same type as Figure 6.3 for each generation, thus enabling the study
of distribution of crossover effect during a complete training session. In the example we
see how the destructive crossover at the left decreases as the neutral crossover, in the
middle, increases. The constructive crossover is some magnitudes lower in this figure and
is therefore barely visible.

6.4.2 Effective Fitness and Protection Against Destructive Crossover

Using the concept of destructive crossover, we can formulate an equation describing the
proliferation of individuals from one generation to the next, c.f. the Schema Theorem
[Holland 1975]. For more details, see also [Nordin and Banzhaf 1995a].

Let Cej be the effective size of program j, and Caj its absolute size. Let pc be the stand-
ard genetic programming parameter giving the probability of crossover at the individual
level. The probability that a crossover in a segment of Working Code of program j will
lead to a worse fitness for the individual is the probability of destructive crossover, pdj .
Let fj be the fitness of the individual and f t be the average fitness of the population in the
current generation. If we use fitness proportionate selection and block exchange crossover,
then for any program j the average proportionP t+1j of this program in the next generation is:

Effects of Crossover during Evolution

"Crossover Effect "

-100 or less
-50

0
50

100 0
5

10
15

20
25

30
35

0

1000

2000

3000

4000

5000

6000

7000

Fitness Change after Crossover (%)

Generations

Number of Crossover Events

Figure 6.4
Distribution of Crossover Effects During Training. (Reproduced from [Nordin and Banzhaf 1995a].)P t+1j � P tj � fjf t ��1� pc � CejCaj � pdj� (6.2)

In short, equation 6.2 states that the proportion of copies of a program in the next gener-
ation is the proportion produced by the selection operator less the proportion of programs
destroyed by crossover. We can interpret the crossover related term as a direct subtraction
from the fitness in an expression for reproduction through selection. In other words, repro-
duction by selection and crossover acts as reproduction by selection only, if the fitness is
adjusted by a term: �pc � fj �Cej � 1Caj � pdj (6.3)

This could thus be interpreted as if there were a term equation 6.3 in our fitness proportional
to program size.

We now define “effective fitness” fej as:fej = fj � pc � fj �Cej � 1Caj � pdj (6.4)

It is the effective fitness that determines the number of individuals of a certain kind in the
next generation.

These equations suggest that there may be a number of strategies for an individual to

increase its survival rate and the proportion of the next generations that contain its effective
offspring. For example, it can:

1. Improve its fitness

2. Increase its absolute size

3. Decrease its effective size

4. Rearrange its code segments to be less vulnerable to crossover.

5. Take advantage of special representation to reduce the probability of destructive cros-
sover.

In this paper, we address the later four strategies for an individual to improve its effective
fitness in the following terms:

Global protection of an individual against the destructive effects of crossover, refers to
changes in effective fitness caused by changes in Absolute or Effective Size.

Structural protection refers to changes in effective fitness caused by rearranging the pro-
portion of IIs among code fragments to better protect the high fitness code from crossover.

Finally, EDIs provide a special representation that, we argue, can increase effective
fitness by allowing the individual to improve both its global protection and its structural
protection.

6.4.3 Intron Protection Analysis

Introns thus can protect against Destructive Crossover in at least two different ways:
Global protection is protection of all the Working Code of an individual against destructive
crossover, while structural protection is protection of portions of an individual’s Working
Code against destructive crossover. Either can improve the effective fitness of an individual.

6.4.3.1 Structural Protection Against Crossover
Let A, B, and C represent Nodes of Working Code. Let II represent a Node that is an
Implicit Intron. Consider the following two individuals:A �B � II �C;with 3 possible crossover points: (6.5)A �B �C;with 2 possible crossover points: (6.6)

The probability that crossover will occur at the A-B block of code in equation 6.5 is 33%.
In equation 6.6, it is 50%. Therefore, in equation 6.5, the A - B block of code has greater
structural protection against destructive crossover than the same block of code in equation
6.6. If the A - B block of code is highly fit, then the individual in equation 6.5 has a higher
"effective fitness" than the individual in equation 6.6.

6.4.3.2 Global Protection Against Crossover
IIs can also protect an entire individual from the destructive effects of crossover. Consider
the following two individuals: A� B �C � II (6.7)A� B � C (6.8)

The probability that crossover will occur in a manner that will disrupt the Working Code
(A, B, C) in equation 6.7 is 66%. In equation 6.8, the probability is 100%. Therefore,
the Working Code in equation 6.7 is better protected against destructive crossover than it
is in equation 6.8 and the individual in equation 6.7 has higher "effective fitness" than the
individual in equation 6.8.

6.4.3.3 EDIs and Protection Against Crossover
The probability of crossover between the Nodes separated by an EDI is proportional to the
EDIV of that EDI (see "Genetic Operators", infra).

In the following individual, therefore, the A - B code block is relatively more protected
against being disrupted by crossover than the B - C block.A� EDI(1) � B � EDI(2) � C (6.9)

Likewise, the first of the following individuals is more highly protected against any of its
Working Code (A and B) being disrupted by crossover than the second individual.A� EDI(1) � B �EDI(100) � II (6.10)A� EDI(1) �B � II (6.11)

6.4.3.4 Intron Equivalent Units (IEUs) and Protection Against Crossover
We have defined the IEU value between any two Nodes as the sum of the number of II Nodes
and the sum of the EDIVs between these two Nodes. Because our analysis suggests that
both IIs and EDIs should provide both global and structural protection against destructive
crossover, we predict that the IEU value between two Nodes should be a good measure of
the amount of both global and structural crossover protection between those Nodes.

We also predict that runs that use the EDI component of IEUs instead of the II component
may save CPU time because the fitness calculation of an individual is unaffected by EDIs.
IIs, of course, consume as much CPU time as the Working Code. Similarly the CPU time
consumed by crossover can be reduced by the less expensive computation and selection of
number of Nodes.

Figure 6.5
Destructive, Neutral and Constructive Crossover by Generation. Constructive Crossover Is Multiplied
By 10 For Scaling Purposes. EDI enabled. Parsimony = 0.

6.5 Experimental Results

We divide this discussion into three sections. The first addresses the global effect of
Intron Equivalent Units on protecting the entire individual from the destructive effects of
crossover. The second addresses the structural effect of IEUs on protecting blocks of code
from the destructive effects of crossover. The third discusses the effects of EDIs on fitness,
generalization and CPU time.

6.5.1 Global Protection Against Crossover

Throughout most generations of all runs that we have measured, Destructive Crossover
is by far the most prevalent effect of the crossover operation. (See Figures 6.3 and 6.4,
infra). However, toward the end of most runs (with one notable exception discussed below)
Destructive Crossover falls rapidly to but a fraction of its initial state. Figure 6.5 shows the
relative amounts of the different types of crossover by generation for a typical run.

In Figure 6.5, Constructive Crossover appears much higher than its actual level because,
for scaling purposes, it is multiplied by 10.

At about generation 125, the proportion of Destructive Crossover events in Figure 6.5
starts to fall rapidly. By generation 141, it is only 10% of the total incidents of crossover.
Obviously, something is protecting the population from Destructive Crossover. The pro-
tection comes, we believe, from the concurrent growth of IEUs. Figure 6.6 shows the
growth of IEUs for the same run. At about generation 125, both IIs, absolute size and
EDIV increase rapidly. The IEU is simply the number of IIs plus the total EDIV. Thus, the

Figure 6.6
Average Absolute Size, Average Implicit Intron Size and Average EDIV Value by Generation. EDI
enabled. Parsimony = 0. For scaling purposes, EDIV is divided by 100.

Table 6.2
Percent of Runs Where Destructive Crossover Disappeared. (Zero Destructive Crossover Events per Generation.)
In the last line the Destructive Crossover did not fall but stabilized at around 70%.

EDI enabled Parsimony No. Runs Population Percent
Yes 0 10 300 each 100%
Yes 1 10 300 each 100%
No 0 10 300 each 100%
No 1 10 300 each 0%

predicted global protection effect of IEUs on destructive crossover appears validated.
In these examples we continue measurements after the best individual is found. Note,

however, that there is no way for the system to “know” that this has happened. The system
dynamics are the same as if the system gets stuck in a local optima for a shorter or longer
period. The dynamics of rapid intron growth is typical for a system were fitness is hard to
improve. The same phenomenon can be observed when the system is temporarily stuck at
a local optima.

To test the persistence of this phenomenon, we performed the following forty runs for
up to 1500 generations with the middle range of EDIV initialization, see table 6.2. In thirty
out of the forty runs described in Table 6.2, Destructive Crossover eventually fell to less
than 10% of the total Crossover Events. In those runs that we have examined, the fall in
Destructive Crossover was always accompanied by a comparable increase in the Average
IEU value for the population.

The ten runs in which Destructive Crossover never fell, were runs in which there were
no EDIs and there was a parsimony factor. See Table 6.2. These runs are the exceptions
that prove the rule. In these runs, the parsimony measure forces the number of IIs to

almost zero early in training. There were, of course, no EDIs in these runs. As a result, the
entire population has a low IEU value throughout the run. Destructive Crossover, therefore,
remains very high.

On the other hand, when EDIs are enabled, Destructive Crossover does fall below 10%
in every run – even where there is a parsimony penalty. In these runs, IIs never grow
rapidly – instead the EDIVs undergo the rapid growth late in training. Thus, the total Intron
Equivalent Units (IIs plus EDIVs) undergo rapid growth late in training in these runs. In so
doing, they apparently inhibit Destructive Crossover in the same way that IIs do when there
is no parsimony factor, see Table 6.2. In short, whenever IEUs grew rapidly, Destructive
Crossover fell at the same time. Whenever IEUs did not grow rapidly, Destructive Cros-
sover did not fall.

Table 6.2 suggests that the correlation between rapid IEU growth and an equally rapid
decline in destructive crossover is 1.0. This fact confirms our prediction about the effect of
IEUs on global protection against crossover.

6.5.2 Structural Protection Against Crossover

We argued above that IEUs, which include both IIs and EDIs, have the theoretical ability
to protect blocks of code from the destructive effects of crossover. We predict that the
evolutionary algorithm may use this capability to protect blocks of code that bear the
highest likelihood of producing fitter offspring. In Altenberg’s terminology we predict that
IEUs may increase survivability of blocks of code with high constructional fitness and,
therefore, increase the evolvability of the population as a whole, [Altenberg 1994].

6.5.2.1 Constructional Fitness and Protection Against Crossover
Assume that the code block, A - B, is Working Code and has a relatively high constructional
fitness. Assume also that the code block K - A is also Working Code but has a relatively
low constructional fitness. Consider the following two individuals with the following IEU
configurations: m = n and k > j:Parent1 : K � EIU (n) �A �EIU (j) �B; (6.12)Parent2 : K �EIU (m) �A �EIU (k) � B: (6.13)

The offspring of Parent 1 are more likely to survive than the offspring of Parent 2 because
they are more likely to contain the more fit block, A - B. Thus, we would expect the A - B
code block from Parent 1 to multiply through the population more rapidly than the A - B
code block from Parent 2.

At first blush, this would imply that the Average IEU per individual in a populationshould
decrease as training continues. After all, the A - B code block from the first configuration
will take its low EIU value with it when it replicates unbroken. However, there is another
factor at work.

Consider two similar individuals but with m > n and j = k:Parent1 : K � EIU (n) �A� EIU (j) � B (6.14)Parent2 : K �EIU (m) �A �EIU (k) � B: (6.15)

In this configuration, Parent 2’s offspring are more likely to survive because the highly fit
block, A - B is less likely to be disrupted by crossover. As m increases, so does the amount
of protection accorded to the A - B block. This factor would tend to increase the IEU in
low fitness blocks of code as training continues.

Two countervailing factors should, therefore, be at work in setting the Average IEU Value
for a population during the early, constructional phases of training–pressure to decrease
the IEU values in blocks with high constructional fitness and pressure to increase the IEU
values in blocks with low constructional fitness. However, the lowest possible value of j
and k is 1. On the other hand, there is no upper limit to the value of m or n. Accordingly,
selection pressure should work by providing pressure to increase the values of m and n.

We do not, however, expect the balance of these two factors to result in an exponential
increase in overall IEU values during the early and constructional phase of training [Al-
tenberg 1994]. There is yet a third factor at work. While the exponential increase strategy
works well for highly fit individuals at the end of training (Figure 6.6), it would be coun-
terproductive when constructive crossover is still likely early in training. Consider Figures
6.5 and 6.6. The result of rapidly increasing IEU values is a dramatic increase in neutral
crossover. In the early stages of training, individuals that have such high IEU values that
they are protected globally from crossover will not survive long. Their contemporaries,
who still allow for constructive crossover, will eventually surpass their performance.

One other factor must be considered. There is one significant difference in the way IIs
and EDIs function. Where parsimony does not altogether suppress the emergence of IIs,
IIs are capable of chaining EDIs together. However, EDIs are not capable of chaining
together other EDIs. We expect, therefore, to find differences in the behavior of EDIs and
IIs depending on the parsimony factor. It is also possible that we will find EDIs and IIs
working together in chains, instead of entirely supplanting each other.

Thus, we expect that the amount of IEU in a population will be a result of the balance of
the above three factors plus the ability of IIs to string together EDIs. This theory suggests
that, on balance, the evolutionary algorithm should select for the presence of IIs and IEUs
during the constructional phase of training, but not exponentially. A finding that the the
evolutionary algorithm was not selecting for or against the amount of IEU in the popula-
tion or that it was selecting against the presence of IEU would be inconsistent with our
hypothesis

6.5.2.2 Testing Intron Equivalent Unit Contribution To Constructional Fitness
Although the global protection effect, discussed above, is dramatic, it really only signals
that the training is decisively over. Spotting the effect is rather easy as long as there is a

way to measure Intron Equivalent Units. Measuring the structural effect of IIs and EDIs is
considerably more difficult than measuring the global effect. Unlike the global protection
effect, we would not expect the structural protection effect to cause easily measurable
exponential increases in EDIVs or the number of IIs. We were, nevertheless, able to devise
two tests for our hypothesis.

Test 1. Measuring Selection for IEU Values.
We discarded the absolute level of IEUs per individual in the population as a good measure
of whether or not the evolutionary algorithm is or is not selecting for the presence of IEUs
because of the "hitchhiking" phenomenon. Researchers have pointed out that one way
useless code replicates throughout the population is by hitchhiking with adjacent blocks
of highly fit code [Tackett 1994]. Our findings are not in any way inconsistent with this
observation. But the hitchhiking phenomenon implies that Average IEU per individual
would be a poor way to measure whether the evolutionary algorithm is selecting for the
presence of IEUs. Because the average amount of Working Code changes substantially as
training progresses, we would expect the amount of hitchhiking IEUs in the population also
to fluctuate. Thus, the hitchhiking phenomenon precludes Average IEU per individual as a
good measure of whether the evolutionary algorithm is selecting for or against the presence
of IEUs.

Instead, we chose Average IEUs per Node in the population as our measure. In other
words, we look at the average of the sum of the IIs and the EDIVs per Node. This
measure eliminates the possibility that we are really measuring changes in IEUs caused by
hitchhiking instead of measuring whether or not the evolutionary algorithm is selecting for
or against the presence of IEUs. Here are the predictions we make regarding this measure:� If our hypothesis is false and hitchhiking is the only source for IEU growth, then IEU
per Node should remain more or less constant or fluctuate randomly until the late stages of
training.� If our hypothesis is correct, on the other hand, IEU per node should increase during early
training, but not exponentially.

We calculated Average IEU per Node over 80 runs with and without parsimony and with
and without EDIs. We then plotted that figure, along with Average Best Individual Fitness,
by generation. The results are reported below.

The tests using no EDIs and a parsimony measure were not helpful in evaluating our
hypothesis one way or the other. There were no EDIs to measure and the parsimony
measure suppressed the growth of IIs. Since these are the only two components of IEUs,
we regard any result from these runs as unhelpful either way.

The other three tests were considerably more helpful. Figures 6.7, 6.8, and 6.9 show the
results of these three tests over 60 runs with 180,000 individuals in their populations.

The results with all three parameter sets are consistent with our hypothesis. Figures
6.7 and 6.8 illustrate this with the greatest clarity. Average IEU per Node increases during
training until the Average Best Individual Fitness over the 10 runs stops improving. At

Figure 6.7
IEU per Node and Best Individual Fitness By Generation Averaged over Ten Runs with No EDI and
No Parsimony

Table 6.3
EDI parameters

EDI enabled ? Parsimony No Runs Population
Yes 0 10 3000
Yes 1 10 3000
No 0 10 3000

that point IEU per Node drops. After that IEU per Node again rises. A climb in IEU per
Node until Best Individual Fitness stops improving is consistent with our prediction that
the evolutionary algorithm will select for the existence of IEUs during the constructional
phase of training.

Figure 6.9, which presents the results with EDIs enabled and no parsimony measure, also
shows a clear pattern. The figure is built from data over 40 runs. The data in figure 6.9 is
scaled or normalized. The normalization point is the generation where the best individual
was found.

In summary, the results of Test 1 suggest that IIs and EDIs are not merely passive units
during training. If they were, we would not expect to find evidence that the evolutionary
algorithm was actively selecting for their presence. We conclude, therefore, that Test 1 is
consistent with our hypothesis and inconsistent with the notion that IIs and EDIs are only
to be regarded as useless code.

Test 2. Measuring Interactions between IIs and EDIs.
Our hypothesis also predicts that EDIs and IIs may interact with each other–either replacing
each other or working together or both. If EDIs and IIs are merely useless code, IIs should

Figure 6.8
IEU per Node and Best Individual Fitness By Generation Averaged over Ten Runs with EDI Enabled
and Parsimony = 1

Table 6.4
Effect of adding EDIs on the Percentage of the Average Absolute Size of Individuals that is Composed of IIs. For
runs that found a perfect individual.

EDIs Enabled ? Parsimony Implicit Introns Sample Size (No. of Individuals)
No 0 53% 9,000
Yes 0 45% 9,000
No 1 25% 21,000
Yes 1 19% 18,000

come and go of their own accord unaffected by the presence or lack EDIs in the population.
We tested for such interactions in two ways. First, we measured the percentage of

average Absolute Size of the population that was comprised of Implicit Introns. This test
was performed on the same runs used in Test 1. The test was performed with and without
EDIs enabled. We then measured the effect of adding EDIs on the percentage of IIs3. Table
6.4 contains the results4.

In runs that found a perfect individual, the addition of EDIs reduced the percentage of
IIs in the population at the time a perfect individual was found to a significant degree.

When the same figures for all forty runs was examined, the same pattern was found, the
percentage of IIs in the population drops when EDIs are added. However, the drop in all
runs was less than half the drop for the runs that found a perfect individual. This suggests
that the runs that did best (that is, runs that found a perfect individual), were the runs in3Because we do not include EDIs in the measure of Absolute Size, the addition of the EDIs cannot effect this
measurement except indirectly, by effecting the number of IIs.4Because the point where a run finds the best individual appeared to be important in our prior reported results,
we measured the change in percentage at the point in each run where best individual fitness stopped improving.

Figure 6.9
IEU per Node and Best Individual Fitness By Generation Averaged over Ten Runs with EDI Enabled
and No Parsimony. Scaled and Normalized Around Generation of Best Individual.

which EDIs replaced IIs to the greatest extent.
However this data is viewed, it supports the notion that, to some extent, EDIs replace IIs

when EDIs are added to the population and may do so more in runs that successfully find a
perfect individual. This is consistent with our hypothesis and inconsistent with the notion
that IIs and EDIs are merely "useless" code.

The second method we used to test for interactions was as follows. We looked for
evidence that IIs and EDIs work together. One such interaction is very suggestive. Refer
back to Figure 6.6. With no parsimony measure in this run, IIs and EIVs apparently change
their values in lockstep. When one changes, so does the other. When we added a parsimony
factor, the result was very different. Figure 6.10 details that run using the same random
seed.

Note that before the discovery of a perfect individual, the EDIV and the II values
in Figure 6.10 move in lockstep. What is important here is that, despite the parsimony
pressure, IIs persisted in the population in a proportion more typical of a run without a
parsimony factor. As soon as the best individual is found, the number of IIs drops to,
effectively, zero – much more typical of our parsimony runs.

We interpret Figures 6.6 and 6.10 as evidence that the presence of EDIs can improve the
survival value of IIs until a perfect individual is found. After a perfect individual is found,
IIs lose that selection advantage and revert to their normal pattern in runs using parsimony.
We speculate that this effect of adding EDIs is based on the ability of IIs to string together
long chains of EDIs and thereby rapidly increase or decrease the amount of protection
accorded to various blocks of code. EDIs, by themselves do not have this ability.

In any event, were EDIs and IIs merely blocks of useless code, we would not expect such

Figure 6.10
Explicitly Defined Intron Value and Implicit Intron Size for Typical Run With EDI Enabled and
Parsimony = 1.

an interaction between them. This evidence, also, is consistent with our hypothesis.
One intriguing possibility raised by Figure 6.10 is that the average II values in a population

may be a very practical way to improve training, at least where a parsimony factor is used.
There are two possibilities.

First, we ran these same tests with a much higher parsimony measure–parsimony factor
equal to 5. In those runs, the IIs were suppressed altogether and did not demonstrate
the pattern in Figure 6.10. Fitness and generalization were both worse when the higher
parsimony factor was used. It may be that the pattern in Figure 6.10 means that the
parsimony factor is "just right." Looking for this pattern in preliminary runs may be a good
way to set the parsimony factor.

Second, if the pattern in Figure 6.10 persists for other types of problems – that is, if II
size generically fluctuates until the best individual is found and then falls to close to zero,
this measure may be a way to determine when to stop training. Having a measure of when
the population can do no better would be an invaluable tool in GP training. We regard this
as an important area for further research.

Conclusion Regarding The Structural Role of IEUs
Both of the tests we devised tend to reject the hypothesis that, in the early stages of training,
IIs and EDIs are only useless code that happens to be adjacent to highly fit blocks of code.
Rather, the results suggest that IIs and EDIs can play an important role in finding the most
highly fit individual.

Proving that EDIs and IIs are not useless do not, by itself, prove our position that the
role played by IIs and EDIs is to protect code blocks with high constructional fitness from

Table 6.5
Average Fitness of Best Individual, All Runs (smaller is better)

EDI Enabled Parsimony EDI Range Average Fitness
Yes 1 Medium 108
Yes 0 Narrow 122
No 1 N/A 156
Yes 1 Narrow 186
Yes 0 Wide 196
No 0 N/A 280
Yes 1 Wide 290
Yes 0 Medium 354

Table 6.6
Average Generalization of Best Individual, All Runs (smaller is better)

EDI Enabled Parsimony EDI Range Average Generalization
Yes 0 Narrow 413
Yes 1 Medium 473
Yes 0 Wide 537
No 1 N/A 542
Yes 1 Narrow 632
Yes 1 Wide 815
No 0 N/A 860
Yes 0 Medium 1176

the destructive effects of crossover. It is merely consistent with such a role. Some of the
evidence is highly suggestive of such a role and the theoretical reasoning that they can play
such a structural role is strong. However, we regard this as an area ripe for further research.

6.5.3 Effect of EDIs on Fitness, Generalization and CPU Time

The addition of EDIs profoundly affect every measure of performance. In summary, the
best performances in the various categories in rank order are set forth in Tables 6.5, 6.6,
and 6.7: Table 6.5 shows the average fitness for 10 runs each of different combinations of
parsimony, EDI, and initializations. The best result were achieved with EDIs, parsimony
pressure and a medium sized initializations range of EDIVs, see table 6.1 for EDIV init
values.

Table 6.6 illustrates the performance of the best individuals on unseen data. Each
average is over 10 runs and shows best performance for a system with EDIs.

The last table shows the CPU time needed to reach a perfect individual. Unlike IIs,
EDIs does not affect the fitness calculation and the system can therefore search faster. The
average CPU time is lowest when EDIs are enabled.

By any measure, EDIs proved capable of improving the performance of the algorithm.
EDIs were enabled for the best two categories for each measure of performance.

However, runs with EDIs seem quite sensitive to the range with which the EDIs were
initialized. One example illustrates possible pitfalls of training with EDIs and directions

Table 6.7
Average Time in Seconds To Find Perfect Individual.

EDI Enabled Parsimony EDI Range Average CPU Time
Yes 1 Wide 31
Yes 1 Narrow 56
No 1 N/A 56
Yes 1 Medium 59
Yes 0 Medium 98
Yes 0 Wide 116
No 0 N/A 164
Yes 0 Narrow 179

for further research. By far the best average CPU time to find a perfect individual was with
parsimony equal to 1 and the "Wide" initialization range for EDIs. Yet the average fitness
in that same category was toward the bottom of the list. The reason is that only four of the
ten runs in this category found a perfect individual. Those four runs, however, found the
perfect individuals very quickly.

The reason for this apparent discrepancy may be that protection against destructive
crossover is a two edged sword. While the wide range of EDIs helped these runs to find
a perfect individual very quickly, it may also have helped the remaining 6 runs find local
minima quickly–and get stuck there. A little less protection against crossover (the narrow
and medium ranges for the same parameters) resulted in slower CPU performance but 60%
of the runs found perfect individuals.

6.6 Future Work

We would like to extend our current results to a more canonical GP system with hierarchical
crossover and tree representation [Koza 1992]. That would also shed light on any potential
differences in behavior during evolution induced by representation and crossover operators.
We have so far done a few initial experiments with a canonical GP system doing symbolic
regression. The results indicate a distribution of destructive crossover similar to that in
the system used in this paper. Figure 6.11 shows the distribution of crossover effect of
S-expression based GP system doing symbolic regression over 60 generations. Figure 6.11
suggests that our results may apply to a wider domain of systems, see also [Rosca 1995].
In that regard, we plan to perform intron size measurements in a tree based GP system.

In addition, we believe that further investigation into the structural effects of IEUs is
warranted, as well as investigations into continuously defined intron properties, see section
6.3.4. We would also like to study how exons and introns are distributed in the genome
during evolution.

Finally, we believe that EDIs must be tested on real world problems with more intractable
solution spaces.

Effects of Crossover during Evolution

"Crossover Effect "

-100 or less
-50

0
50

100 0
10

20
30

40
50

60

0

100

200

300

400

500

600

700

Fitness Change after Crossover (%)

Generations

Number of Crossover Events

Figure 6.11
Crossover Effects In S-Expression Style GP

Acknowledgments

We would like to thank Walter Tackett for the use of his Genetic Programming system,
from the GP-archive. This research has been supported by the Ministry for Wissenschaft
und Forschung (MWF) of Nordrhein-Westfalen, under grant I-A-4-6037.I .

Biblography

Altenberg, L. (1994) The Evolution of Evolvability in Genetic Programming. In Advances in Genetic
Programming, K. Kinnear, Jr. (ed.), Cambridge, MA: MIT Press. pp47-74.

Angeline P.J. (1994) Genetic Programming and Emergent Intelligence In Advances in Genetic Pro-
gramming, K. Kinnear, Jr. (ed.), Cambridge, MA: MIT Press.

Forrest, S. and M. Mitchell (1992) Relative building block fitness and the building block hypothesis
In Foundations of Genetic Algorithms 2, D. Whitley (ed.). San Mateo, CA: Morgan Kaufmann
Publishers Inc., pp 109-126.

Holland, J. (1975) Adaption in Natural and Artificial Systems, Ann Arbor, MI: The University of
Michigan Press.

Koza, J. (1992) Genetic Programming, Cambridge, MA: MIT Press.

Levenick, J.R. (1991), Inserting Introns Improves Genetic Algorithm Success Rate: Taking a Cue
From Biology. In Proceedings of the Fourth International Conference on Genetic Algorithms,Belew,

R.K. and Booker, L.B., editors, Morgan Kauffman. San Mateo, California, pp. 123-7.

Nordin J.P. (1994) A Compiling Genetic Programming System that Directly Manipulates the Machine-
Code. In Advances in Genetic Programming, K. Kinnear, Jr. (ed.), Cambridge, MA: MIT Press.

Nordin J.P, Banzhaf W. (1995a) Complexity Compression and Evolution. In proceedings of Sixth
International Conference of Genetic Algortihms, Morgan Kaufmann Publishers Inc.

Nordin J.P, Banzhaf W. (1995b) Evolving Turing Complete Programs for a Register Machine with
Self-Modifying Code. In proceedings of Sixth International Conference of Genetic Algortihms,
Morgan Kaufmann Publishers Inc.

Rosca J.P. (1995) Entropy-Driven Adaptive Representation. In Proceedings of the Workshop on
Genetic Programming: From Theory to Real-World Applications Technical Report 95.2 June 1995
University of Rochester, USA

The SPARC Architecture Manual,(1991), SPARC International Inc., Menlo Prak, California.

Tackett, W.A. (1995). Greedy Recombination and Genetic Search on the Space of Computer Pro-
grams. In Foundations of Genetic Algorithms III, Whitley, D. and Vose, M. Eds.. Morgan Kaufmann,
San Mateo, California.

Watson J.D, Hopkins N.H, Roberts J.W, Wiener A.M, (1987) Molecular Biology of the Gene, Menlo
Park, CA: The Benjamin/Cummings Publishing Company, Inc.

