Peter Nordin, Frank Francone and Wolfgang Banzhaf

In Genetic Programming, introns play at least two substantial roles: (1) A structural protection role,
allowing the population to preserve highly-fit building blocks; and (2) A global protection role,
enabling an individual to protect itself almost entirely against the destructive effect of crossover.
We introduce Explicitly Defined Introns into Genetic Programming. Our results suggest that the
introduction of Explicitly Defined Introns can improve fitness, generalization, and CPU time. Further,
Explicitly Defined Introns partially replace the role of Implicit Introns (that is, introns that emerge
from crossover and mutation without being explicitly defined as such). Finally, Explicitly Defined
Introns and Implicit Introns appear, in some situations, to work in tandem to produce better training,
fitness and generalization than occurs without Explicitly Defined Introns.

6.1 Introduction

Biological introns are portions of the genotype (the DNA) that are not expressed in the
phenotype (the organism), [Watson et al. 1987]. In some eucaryotic cells, upto 70% of the
genetic information is snipped out of the genome chemically before the creation of amino
acids. Researchers have suggested that biological introns play some role in providing
genetically safe areas for mutation and crossover, [Watson et a. 1987].

The operators in Genetic Programming — mutation and crossover — were designed by
analogy to biology [Koza 1992]. Furthermore, like DNA, GP isvariable in length. One
might, therefore, expect intronsto evolvein GP.

But GP introns should look different than biological introns. In most GP implementa-
tions, the genotype and the phenotype are one and the same. Unlike the biological modd,
non-essentia parts of the GP genome cannot be "snipped out”. 1n GP, therefore, the analog
to biological intronswould be evolved code fragments that do not effect the fitness of the
individual. For example: y = y + 0.

The evolution of such code fragments has been repeatedly observed by GP researchers
in tree based GP-some refer to the phenomenon as "bloating”, [Tackett 1994], [Angeline
1994]. "Bloating" is the accumulation of apparently useless code in a GP popul ation-that
is, code that does not effect the fitness of the individual. Our research here confirms exist-
ence of the "bloating" phenomenon in linear GP structures, see Figure 6.1.

In this Chapter, we argue that introns appear in GP populations because they have an
important function in evolution. Asaresult, the algorithm selects for the existence of GP
intronsin awide variety of conditions. Intronsare, however, adecidedly mixed blessingin
GP. Because GP introns are stored in individual’ sevolved program structuresinstead of in
a separate genome, alarge amount of CPU timeis spent calculating intron values.

Inarecent paper, we began investigatingintrons. We devised away to measure theintron
content of genetically evolved programs using thelinear structure of Compiling GP System
(CGPS), [Nordin 1994]. In this paper, we continue that research by introducing Explicitly

Defined Introns (EDIs) into CGPS. An EDI isastructurein the CGPS system that plays no
part in the fitness cal cul ation but that affects the probability of crossover between adjacent
blocks of evolved code-much like the biological intron. It does, however, affect the prob-
ability of crossover between the two Nodes on either side of the EDI (see "Definitions’
and "Genetic Operators', below). By way of contrast, we will refer to intronsthat emerge
from the code itself as"Implicit Introns® (11s). The situationisdepicted in Figure6.2. The
circular nodes affect the fitness calculation while the squares affect the crossover points.
For instance the square with (14) inside acts as a string of 14 nodes during crossover but
does not interfere with the fitness evaluation.

Previoudly, researchers have studied structures similar to our EDIs in fixed length GA
representations, [Levenick 1991], [Forrest and Mitchell 1992]. This chapter is, apparently,
thefirst application of EDIsto variablelength EA structures or to Genetic Programming in
particular.

Our resultssuggest that EDIshavethefollowing effectsin variablelength representations:

1. Fitness, Generalization and CPU time frequently improve with theintroductionof EDIs.
2. llsand EDIs frequently work together, with I1s probably serving to chain EDIstogether.
3. Under some circumstances, EDI s replace 11sin the popul ation almost compl etely.

4. Likells, EDIs can, and frequently do, protect an entireindividual or code block against
the destructive effects of crossover

5. A combination of parsimony pressure and EDIs allow a popul ationto keep the structural
advantages of 11swithout carrying some of the computational overhead of 1ls.

6.2 Déefinitions

We have defined EDIs and |1s above. The following additiona terms are needed to clarify
the following discussion:

Node: The atomic crossover unit in the GP structure. Crossover can occur on either or
both sides of a Node but not within a Node. Because our particular implementation
of GP works with 32 bit machine code instructions (see below), a Node is a 32 bit
instruction. A Node can be comprised of either Working Code (see definition bel ow)
or an Il. An EDI is not a Node because it plays no role in the fitness cal cul ation and
because crossover occurs, effectively, within the EDI, not on either side of the EDI
(see "Genetic Operators', below).

Working Code or Exon: A GP Node that is not an Il. Working Code effects the fitness
calculation of theindividual for at least one fitness case.

Absolute Complexity and Efficient Complexity
700 T T T T T T

T
"Absolute Length/ ——
"Efficient Lengtpp" -----

Average Length in Bits

100 |/ p

0 L L L L L L L
0 5 10 15 20 25 30 35 40
Generations

Figure6.1
Growth of genome size during evolution, absolute and effective size. (Reproduced from [Nordin and
Banzhaf 19954a].)

Absolute Size: The number of Nodes in a GP individual.

Effective Size: Thenumber of NodesinaGPindividual that constitute Working Code-that
isthe number of Nodesin a GP individual that make a difference in the result of the
individual’ sfitness calculation for at |east one of the fitness cases. Figure 6.1 shows
the evolution of effective and absolute size during training.

Intron Equivalent Unit: (IEU). An Il or an EDI with a probability of crossover that is
equa to an Implicit Intron comprised of asingle Node. Wewill designate an Il with
an |EU value of 1 as|l. We will designate an EDI with an IEU value of 1 as EDI(1).
The purpose of defining thisunitisto allow usto deal with both I1sand EDIsin one
designation that consistently reflects their effect on the probability of crossover.

Explicitly Defined Intron Value: Each EDI stores an integer value which is initialized
randomly throughthree different ranges. That Explicitly Defined Introninteger value
shall be referred to as an "EDIV." This value affects the probability of crossover at
the EDI, as discussed below in "Genetic Operators”.

See Figure 6.2 for an illustration of EDIs, |1s and working code. Section 6.5.2.1 gives
further details on the behavior of EDIs and I1s during evolution.

Linear Genome:

EDIV EDIV
(132) = 1

Working EDI Implicit Intron EDI Working
Node Node Node

Figure6.2
Explicitly Defined Introns, Implicit Introns, and Working Nodesin alinear Genome. (For therelation
with tree structure based GP, see section 6.6)

6.3 TheExperimental Setup

6.3.1 TheProblem

We chose a straightforward problem of symbolic regression on a second order polynomial.
Large constants for the polynomial and small terminal set ranges were deliberately chosen
to prevent trivial solutions.

6.3.2 Runs

We chose 10 fitness cases and tested the best individuals for generadization on 10 data
elements that were not included inthetraining set. Each run was performed on apopulation
of 3000 individuals. We completed 10 runs each with and without parsimony (values: O,
1), with and without EDIs enabled, and over three ranges of initiaization for EDI values
(values: high, medium, low). The total number of runs was 200 comprised of 240,000
individuals. Some additiona runswere performed to investigate specific issuesand will be
described below.

6.3.3 Implementation of GP For ThisProblem

The Evolutionary Algorithm we use in this paper is an advanced version of the CGPS
described in [Nordin 1994], composed of variable length strings of 32 bit instructionsfor
aregister machine. The register machine performs arithmetic operations on a small set of
registers. Each instruction can also include a smal integer constant of maximum 13 bits.
The 32 bitsin the instruction thus represents simple arithmetic operations such as "a=b+c"
or "c=b*5". The actual format of the 32 bits corresponds to the machine code format of a
SUN-4 [SPARC 1991], which enables the genetic operators directly to manipulate binary
code. For a more thorough description of the system and its implementation see [Nordin
and Banzhaf 1995b].

This implementation of GP makes it easier to define and measure intron sizes in code for
register machines than in, for instance, functional S-expressions (see below). The setup
is aso motivated by fast execution, low memory requirement and a linear genome which
makes reasoning about information content |ess complex.

6.3.4 Intron Measurements

Many classes of code segments with varying degree of intron behavior can be identified
[Nordin and Banzhaf 1995a]. For instance:

1. Code segments where crossover never changes the behavior of the program individual
for any input from the problem domain.

2. Code segments where crossover never changes the behavior of the program individual
for any of the fitness cases.

3. Code segments which cannot contribute to the fitness and where each node can be
replaced by a NoOperation without affecting the output for any input in the problem
domain.

4. Code segments which do not contribute to the fitness and where each node can be
replaced by a NoOperation without affecting the output for any of the fitness cases.

5. More continuously defined intron behavior where nodes are given a numerica value of
their sensitivity to crossover.

The introns that we measure in this paper are of the fourth type.

We determine whether a Node is an Il by replacing the Node with a NoOperation
instruction. A NoOperation instruction is a neutral instruction that does not change the
state of the register machine or itsregisters. If that replacement does not affect the fithess
calculation of theindividual for any of thefitness cases, theNodeis classified asan Implicit
Intron'.

When this procedure is completed the number of first order intronsis summed together
astheintron length of that individual. Effective length is computed as absolute length less
the intron length. Theintron checking facility is computationally expensive but it operates
inlinear timein relation to the size of individuals.

1 Notethat this technique measures the presence of only first order introns. Examples of such intron segments
with length one, called first order introns, are "a=a+0","b=b*1" etc. Higher order introns can also appear, such
as the second order "a=a-1;a=a+1". In this case, the intron segment only acts as an intron as long as the two
instructions are kept together. We chose to limit our measurement in this manner because observations and
theoretical argumentation support the claim that higher order introns are a small proportion of the total intron
length [Nordin and Banzhaf 1995a).

6.3.5 Genetic Operators

This section gives a brief description of the evolutionary operators used, For more details
on the operators and the system, see [Nordin and Banzhaf 1995b].

Selection: fitness proportionate.

Crossover: Two arbitrary subsegments of Nodes are selected from a copy of each parent
and then swapped to form the two children. If the two chosen segments are of
different length, the length of the children will vary.

Crossover with EDIs. Inrunsusing EDIs, the crossover point is selected just as if there
were a chain of N nodes instead of the EDI with EDI-value 'N’. The crossover
point is thus selected by examining the integer values (the EDIV) stored in the EDIs
between Nodes in an individual. The probability of crossover between two Nodes
is proportional to the EDIV of the EDI separating the Nodes. The EDIV values
from two parents (k and n) are transmitted to the children as follows. EDIV (k) and
EDIV(n) are summed. Then the sum is divided randomly between the EDIs that
appear at the crossover point in the two children. This crossover operator performs
equivalent to crossing over two individual sinthemiddle of two chainsof I1s. Wefelt
it was important to duplicate this phenomenon because of the frequency with which
we have observed long chains of I1sin our prior work. In other words, crossover acts
just asif every EDI was substituted by a string of normal intronswith alength defined
by the EDIV of the EDI. The values transmitted to the children corresponds to the
values that would have been transmitted during a crossover with anormal intron (11)
segments of thislength.

Mutation: changes bitsinside the 32 bits of theinstruction (Node), which can change the
operator, the source and destination registers, and the value of any constants.

The EDIV in each EDI isinitiaized as auniform random distributi on between a minimum
and maximum value.

6.3.6 Parsimony Pressure

Weused external parsimony pressurein some of our experiments. Thisfeature of thesystem
punishes Absolute Size in an individual by adding a parsimony factor times the Absolute
Size of theindividua to the fitness expression. A parsimony factor of one means that the
Absolute Size of the individud is added to the computed fithess. Parsimony was never
applied so as to penalize Explicitly Defined Introns and they could thus grow unaffected
by the parsimony pressure.

Table 6.1 summarizes the parameters used during training in the 200 different training
runsthat constitutethe basis for our analysis.

Table6.1
Summary of parameters used during training.

Parameter name:

Objective: Symbolic regression of a polynomial with large constants

Terminal set : Integersin the range 0-10

Function set : Addition Subtraction Multiplication

Raw and stand. fitness : The sum taken over the 10 fitness cases, of the absolute
value of the difference between actual and desired value

Wrapper : None

Maximum population size : 300, 3000

Crossover Prob : 90%

Mutation Prob : 5%

Selection : Fitness proportional selection

Termination criteria: M aximum number of Generations exceeded

Maximum number of generations: 150,1500

Parsimony Pressure : 0,15

EIDV init value: 10-20, 10-100, 10-1000

M aximum number of nodes: 512

Total number of experiments: 200

6.4 Protection Against Destructive Crossover

6.4.1 Definitions

The following terms have the following meanings:

Destructive Crossover A crossover operation that resultsin fitness for the offspring that
isless than the fitness of the parents”.

Constructive Crossover A crossover operation that resultsin fitnessfor the offspring that
is more than the fitness of the parents.

Neutral Crossover A crossover operation that results in a combined fitness for the off-
spring that iswithin 2.5% of thefitness of the parents.

Figure 6.3 is a histogram that demonstrates the rel ative proportionsof these three different
types of crossover in atypical early generationin atypical run.

The x-axis gives the change in fitness A f; . ccr¢ after crossover fo e
(fbest = 0: fworst =0)

Afpercont = % 100 (6.1)

The area over zero represents Neutral Crossover, the area to the left of Zero represents
Destructive Crossover and the areato the right of zero represents Constructive Crossover.

2 At least 2.5% less fitness than the parents.

Effect of Crossover in One Generation
4500 T T

T
"Crossover Effect” ——

4000 H B
3500 (| q

3000 B

T

2500 B

T

2000 H B

Number of Crossover Events

1500 4

1000 H B

500 B

I !

0
-100 or less 50 100

0
Fitness Change after Crossover (%)

Figure6.3
Typical Proportion of Destructive, Neutral and Constructive Crossover in an early generation. (Re-
produced from [Nordin and Banzhaf 1995a).)

A three-dimensiona extension of this figure is an important analysis tool for finding
out what takes place during evolution. Figure 6.4 is constructed by compiling together,
one figure of the same type as Figure 6.3 for each generation, thus enabling the study
of distribution of crossover effect during a complete training session. In the example we
see how the destructive crossover at the left decreases as the neutral crossover, in the
middle, increases. The constructive crossover is some magnitudes lower in thisfigure and
istherefore barely visible.

6.4.2 EffectiveFitnessand Protection Against Destructive Crossover

Using the concept of destructive crossover, we can formulate an equation describing the
proliferation of individuals from one generation to the next, c.f. the Schema Theorem
[Holland 1975]. For more details, see also [Nordin and Banzhaf 1995g].

Let C.; betheeffective size of program j, and C',; itsabsolutesize. Let p.. bethe stand-
ard genetic programming parameter giving the probability of crossover at the individua
level. The probability that a crossover in a segment of Working Code of program j will
lead to a worse fitness for the individua is the probability of destructive crossover, pg;.
Let f; bethefitness of the individual and f1 be the average fitness of the populationin the
current generation. If we use fitness proportionate sel ection and block exchange crossover,
thenfor any program j the average proportion P].“rl of thisprogramin thenext generationis:

Effects of Crossover during Evolution

"Crossover Effect " ——

Number of Crossover Events
7000 -

6000
5000
4000
3000
2000
1000

35

25

20
15 Generations

-100 or less

Fitness Change after Crossover (%50

Figure6.4
Distribution of Crossover Effects During Training. (Reproduced from [Nordin and Banzhaf 19953].)

. Ce .
P].t+1%p]?.%. (1_pc.0—;.pdj) (6.2)
In short, equation 6.2 states that the proportion of copies of a program in the next gener-
ation is the proportion produced by the selection operator less the proportion of programs
destroyed by crossover. We can interpret the crossover related term as a direct subtraction
from thefitness in an expression for reproduction through selection. In other words, repro-
duction by selection and crossover acts as reproduction by selection only, if the fitness is
adjusted by aterm:

1
Caj
Thiscouldthusbeinterpreted asif therewere aterm equation 6.3 in our fitness proportional

to program size,
We now define “effective fitness’ f.; as:

—pe - f; - Cej - “Paj (6.3

1
Caj
It is the effective fitness that determines the number of individuals of a certain kind in the

next generation.
These equations suggest that there may be a number of strategies for an individual to

fog=Ff—pc-f; - Cej - P (6.4)

increase itssurvival rate and the proportion of the next generationsthat contain its effective
offspring. For example, it can:

1. Improveitsfitness

2. Increase its absolute size

3. Decrease itseffective size

4. Rearrange its code segments to be less vulnerable to crossover.

5. Take advantage of special representation to reduce the probability of destructive cros-
SOve.

In this paper, we address the later four strategies for an individual to improve its effective
fitnessin the following terms:

Global protection of an individual against the destructive effects of crossover, refersto
changes in effective fitness caused by changes in Absolute or Effective Size.

Structural protection refers to changesin effective fitness caused by rearranging the pro-
portion of I1samong code fragmentsto better protect the high fitness code from crossover.

Finaly, EDIs provide a specia representation that, we argue, can increase effective
fitness by allowing the individual to improve both its global protection and its structural
protection.

6.4.3 Intron Protection Analysis

Introns thus can protect against Destructive Crossover in at least two different ways:
Global protectionis protection of all the Working Code of an individua against destructive
crossover, while structural protection is protection of portions of an individual’s Working
Code against destructive crossover. Either can improve the effective fitness of an individual .

6.4.3.1 Structural Protection Against Crossover
Let A, B, and C represent Nodes of Working Code. Let 1l represent a Node that is an
Implicit Intron. Consider the following two individuas:

A — B —1I—C,with 3 possible crossover points. (6.5)

A — B — C,with 2 posstble crossover points. (6.6)

The probability that crossover will occur at the A-B block of code in equation 6.5 is 33%.
In equation 6.6, it is 50%. Therefore, in equation 6.5, the A - B block of code has greater
structural protection against destructive crossover than the same block of code in equation
6.6. If the A - B block of codeis highly fit, then theindividual in equation 6.5 has a higher
"effective fitness" than theindividual in equation 6.6.

6.4.3.2 Global Protection Against Crossover
I1s can aso protect an entire individual from the destructive effects of crossover. Consider
the following two individuas:

A-B-C—1II (6.7)
A-B-C (6.8)

The probability that crossover will occur in a manner that will disrupt the Working Code
(A, B, C) in equation 6.7 is 66%. In equation 6.8, the probability is 100%. Therefore,
the Working Code in equation 6.7 is better protected against destructive crossover than it
isin equation 6.8 and the individual in equation 6.7 has higher "effective fitness' than the
individual in equation 6.8.

6.4.3.3 EDIsand Protection Against Crossover
The probability of crossover between the Nodes separated by an EDI is proportiond to the
EDIV of that EDI (see "Genetic Operators”, infra).

In the following individua, therefore, the A - B code block is relatively more protected
against being disrupted by crossover than the B - C block.

A— EDI(1)— B— EDI(2) — C (6.9)

Likewise, the first of the following individuasis more highly protected against any of its
Working Code (A and B) being disrupted by crossover than the second individual.

A— EDI(1) — B — EDI(100) — II (6.10)
A—EDI(1)—B—1I (6.11)

6.4.34 Intron Equivalent Units (IEUs) and Protection Against Crossover
We have defined the | EU val ue between any two Nodes as the sum of the number of 11 Nodes
and the sum of the EDIV's between these two Nodes. Because our anaysis suggests that
both Ils and EDIs should provide both global and structural protection against destructive
crossover, we predict that the IEU val ue between two Nodes should be a good measure of
the amount of both global and structural crossover protection between those Nodes.
Wealso predict that runsthat usethe EDI component of IEUsinstead of thell component
may save CPU time because the fitness cal culation of an individua is unaffected by EDIs.
Ils, of course, consume as much CPU time as the Working Code. Similarly the CPU time
consumed by crossover can be reduced by the less expensive computation and selection of
number of Nodes.

100000 ,
a0000 H Congtructive Crossover™ 10
80000
70000
60000
50000

40000 :
30000 MNeutral Crossover

Percent* 1000

20000 :
10000 Perfect Individual Found

Generation

Figure6.5
Destructive, Neutral and Constructive Crossover by Generation. Constructive Crossover s Multiplied
By 10 For Scaling Purposes. EDI enabled. Parsimony = 0.

6.5 Experimental Results

We divide this discussion into three sections. The first addresses the globa effect of
Intron Equivalent Units on protecting the entire individual from the destructive effects of
crossover. The second addresses the structura effect of IEUs on protecting blocks of code
from the destructive effects of crossover. The third discusses the effects of EDIs on fitness,
generalization and CPU time.

6.5.1 Global Protection Against Crossover

Throughout most generations of al runs that we have measured, Destructive Crossover
is by far the most prevalent effect of the crossover operation. (See Figures 6.3 and 6.4,
infra). However, toward the end of most runs (with one notabl e exception discussed bel ow)
Destructive Crossover fallsrapidly to but afraction of itsinitial state. Figure 6.5 showsthe
relative amounts of the different types of crossover by generation for atypical run.

In Figure 6.5, Constructive Crossover appears much higher than itsactual level because,
for scaling purposes, it is multiplied by 10.

At about generation 125, the proportion of Destructive Crossover events in Figure 6.5
startsto fall rapidly. By generation 141, it is only 10% of the total incidents of crossover.
Obviously, something is protecting the popul ation from Destructive Crossover. The pro-
tection comes, we believe, from the concurrent growth of 1IEUs. Figure 6.6 shows the
growth of 1EUs for the same run. At about generation 125, both 11s, absolute size and
EDIV increase rapidly. The IEU issimply the number of l1splusthetota EDIV. Thus, the

300
Pt dncfirad! Fournd

250 : Awerage Explicitly Defined Intron Walue (EDIV)
: (divided by 100)
200

Z 150 Awerage Absolute Size

100

i

Awverage ImplicitIntron Size

50

0 W@ 0 @ @ 0 0 0 D 10— 0 O D
[i IR B = ol S Ve R o B =R S g - = R — R W I P R

Generation

Figure 6.6
Average Absolute Size, Average Implicit Intron Size and Average EDIV Value by Generation. EDI
enabled. Parsimony = 0. For scaling purposes, EDIV is divided by 100.

Table 6.2
Percent of Runs Where Destructive Crossover Disappeared. (Zero Destructive Crossover Events per Generation.)
In the last line the Destructive Crossover did not fall but stabilized at around 70%.

EDI enabled Parssimony No. Runs Population Percent

Yes 0 10 300 each 100%
Yes 1 10 300 each 100%
No 0 10 300 each 100%
No 1 10 300 each 0%

predicted global protection effect of IEUs on destructive crossover appears validated.

In these examples we continue measurements after the best individual is found. Note,
however, that thereis no way for the system to “know” that this has happened. The system
dynamics are the same as if the system gets stuck in alocal optimafor a shorter or longer
period. The dynamics of rapid intron growth is typical for a system were fitnessis hard to
improve. The same phenomenon can be observed when the system istemporarily stuck at
alocal optima

To test the persistence of this phenomenon, we performed the following forty runs for
up to 1500 generationswith themiddlerange of EDIV initialization, seetable6.2. Inthirty
out of the forty runs described in Table 6.2, Destructive Crossover eventually fell to less
than 10% of the total Crossover Events. In those runs that we have examined, thefall in
Destructive Crossover was always accompanied by a comparable increase in the Average
IEU valuefor the population.

The ten runsin which Destructive Crossover never fell, were runsin which there were
no EDIs and there was a parsimony factor. See Table 6.2. These runs are the exceptions
that prove the rule. In these runs, the parsimony measure forces the number of 1Is to

almost zero early intraining. There were, of course, no EDIsin theseruns. Asaresult, the
entire population hasalow |EU va ue throughout the run. Destructive Crossover, therefore,
remains very high.

On the other hand, when EDI s are enabled, Destructive Crossover does fall below 10%
in every run — even where there is a parsimony penaty. In these runs, Ils never grow
rapidly —instead the EDIV sundergo therapid growth latein training. Thus, thetota Intron
Equivalent Units(l1s plusEDIVs) undergo rapid growthlatein training in theseruns. Inso
doing, they apparently inhibit Destructive Crossover in the same way that I1s do when there
is no parsimony factor, see Table 6.2. In short, whenever IEUs grew rapidly, Destructive
Crossover fell at the same time. Whenever IEUs did not grow rapidly, Destructive Cros-
sover did not fall.

Table 6.2 suggests that the correlation between rapid IEU growth and an equally rapid
declinein destructive crossover is1.0. Thisfact confirms our prediction about the effect of
IEUs on global protection against crossover.

6.5.2 Structural Protection Against Crossover

We argued above that IEUs, which include both I1s and EDIs, have the theoretical ability
to protect blocks of code from the destructive effects of crossover. We predict that the
evolutionary algorithm may use this capability to protect blocks of code that bear the
highest likelihood of producing fitter offspring. In Altenberg’sterminology we predict that
IEUs may increase survivability of blocks of code with high constructional fitness and,
therefore, increase the evolvability of the population as awhole, [Altenberg 1994].

6.5.2.1 Constructional Fitness and Protection Against Crossover

Assumethat the codeblock, A - B, isWorking Code and hasarel atively high constructional
fitness. Assume aso that the code block K - A is aso Working Code but has arelatively
low constructional fitness. Consider the following two individual swith the following |EU
configurations: m = n and k > j:

Parentl : K — EIU(n) — A— EIU(j) — B; (6.12)
Parent2: K — EIU(m) — A — EIU(k) — B. (6.13)

The offspring of Parent 1 are more likely to survive than the offspring of Parent 2 because
they are more likely to contain the more fit block, A - B. Thus, we would expect the A - B
code block from Parent 1 to multiply through the population more rapidly than the A - B
code block from Parent 2.

Atfirst blush, thiswouldimply that the Average |EU per individual inapopul ationshould
decrease as training continues. After al, the A - B code block from thefirst configuration
will takeitslow EIU value with it when it replicates unbroken. However, thereis another
factor at work.

Consider two similar individualsbut withm > n and j = k:

Parentl : K — EIU(n)— A— FEIU(j)— B (6.14)
Parent2: K — EIU(m) — A — EIU(k) — B. (6.15)

In this configuration, Parent 2's offspring are more likely to survive because the highly fit
block, A - Bislesslikely to be disrupted by crossover. Asm increases, so does the amount
of protection accorded to the A - B block. This factor would tend to increase the IEU in
low fitness blocks of code as training continues.

Two countervailing factorsshould, therefore, be at work in setting the Average |IEU Value
for a population during the early, constructional phases of training—pressure to decrease
the IEU valuesin blocks with high constructional fitness and pressure to increase the IEU
values in blocks with low constructiona fitness. However, the lowest possible value of j
and k is1. On the other hand, thereisno upper limit to the value of m or n. Accordingly,
selection pressure should work by providing pressure to increase the values of m and n.

We do not, however, expect the balance of these two factors to result in an exponential
increase in overall 1EU vaues during the early and constructiona phase of training [Al-
tenberg 1994]. Thereisyet athird factor at work. While the exponential incresse strategy
workswell for highly fit individuals at the end of training (Figure 6.6), it would be coun-
terproductive when constructive crossover istill likely early in training. Consider Figures
6.5 and 6.6. The result of rapidly increasing IEU values is a dramatic increase in neutral
crossover. In the early stages of training, individualsthat have such high IEU values that
they are protected globally from crossover will not survive long. Their contemporaries,
who gtill allow for constructive crossover, will eventually surpass their performance.

One other factor must be considered. There is one significant difference in theway Ils
and EDIs function. Where parsimony does not altogether suppress the emergence of Ils,
IlIs are capable of chaining EDIs together. However, EDIs are not capable of chaining
together other EDIs. We expect, therefore, to find differencesin the behavior of EDIs and
I1s depending on the parsimony factor. It is aso possible that we will find EDIs and 1ls
working together in chains, instead of entirely supplanting each other.

Thus, we expect that the amount of IEU in apopulationwill be aresult of the balance of
the above three factors plus the ability of 11sto string together EDIs. This theory suggests
that, on balance, the evolutionary algorithm should select for the presence of I1sand IEUs
during the constructional phase of training, but not exponentially. A finding that the the
evolutionary algorithm was not selecting for or against the amount of 1EU in the popula
tion or that it was selecting against the presence of IEU would be inconsistent with our
hypothesis

6.5.2.2 Testing Intron Equivalent Unit Contribution To Constructional Fitness
Although the global protection effect, discussed above, is dramatic, it realy only signals
that the training is decisively over. Spotting the effect is rather easy aslong as thereis a

way to measure Intron Equivalent Units. Measuring the structural effect of IIsand EDIsis
considerably more difficult than measuring the global effect. Unlikethe global protection
effect, we would not expect the structural protection effect to cause easily measurable
exponentia increases in EDIV's or the number of I1s. We were, nevertheless, able to devise
two testsfor our hypothesis.

Test 1. Measuring Selection for 1EU Values.

We discarded the absolutelevel of IEUs per individual in the popul ation as a good measure
of whether or not the evolutionary algorithmisor is not selecting for the presence of IEUs
because of the "hitchhiking" phenomenon. Researchers have pointed out that one way
useless code replicates throughout the population is by hitchhiking with adjacent blocks
of highly fit code [Tackett 1994]. Our findings are not in any way inconsistent with this
observation. But the hitchhiking phenomenon implies that Average IEU per individua
would be a poor way to measure whether the evolutionary algorithm is selecting for the
presence of IEUs. Because the average amount of Working Code changes substantially as
training progresses, wewould expect the amount of hitchhiking |[EUsin the popul ationalso
to fluctuate. Thus, the hitchhiking phenomenon precludes Average |EU per individua asa
good measure of whether the evolutionary algorithmis selecting for or against the presence
of IEUs.

Instead, we chose Average |EUs per Node in the population as our measure. In other
words, we look at the average of the sum of the Ils and the EDIVs per Node. This
measure eliminates the possibility that we are really measuring changesin |EUs caused by
hitchhiking instead of measuring whether or not the evolutionary algorithmis selecting for
or against the presence of IEUs. Here are the predictions we make regarding this measure:
o If our hypothesisis false and hitchhiking is the only source for IEU growth, then IEU
per Node should remain more or |ess constant or fluctuate randomly until the late stages of
training.

o If our hypothesisis correct, on the other hand, IEU per node should increase during early
training, but not exponentially.

We calcul ated Average |EU per Node over 80 runswith and without parsimony and with
and without EDIs. Wethen plotted that figure, long with Average Best Individual Fitness,
by generation. The results are reported bel ow.

The tests using no EDIs and a parsimony measure were not helpful in evaluating our
hypothesis one way or the other. There were no EDIs to measure and the parsimony
mesasure suppressed the growth of 11s. Since these are the only two components of IEUS,
we regard any result from these runs as unhelpful either way.

The other three tests were considerably more helpful. Figures 6.7, 6.8, and 6.9 show the
results of these three tests over 60 runs with 180,000 individualsin their populations.

The results with all three parameter sets are consistent with our hypothesis. Figures
6.7 and 6.8 illustratethis with the greatest clarity. Average IEU per Node increases during
training until the Average Best Individual Fitness over the 10 runs stops improving. At

=
B

000 7
a0 4
800 -
700 4
600 - s
500 - '
400 -

wd T /
200 + "

100 -

=
=

\\

Intran Equivalent Units (IEU) per Node

=
m

=
.

Fitness
ra

Awerage Best Individual Fitness (ten runs)

=
w

Intron Equivalent Units
(IEV)

=
r

=

=
=

— W0 m M e ® M o= 00 M ol W o= oW
— = DO G A AT T T G G D 8 @ M e Do

Generation

Figure6.7
IEU per Node and Best Individual Fitness By Generation Averaged over Ten Runs with No EDI and
No Parsimony

Table 6.3
EDI parameters

EDI enabled? Parsimony NoRuns Population

Yes 0 10 3000
Yes 1 10 3000
No 0 10 3000

that point IEU per Node drops. After that IEU per Node again rises. A climb in IEU per
Node until Best Individual Fitness stops improving is consistent with our prediction that
the evolutionary algorithm will select for the existence of 1EUs during the constructional
phase of training.

Figure6.9, which presentstheresultswith EDIs enabled and no parsimony measure, also
shows a clear pattern. The figureis built from data over 40 runs. The datain figure 6.9 is
scaled or normalized. The normalization point is the generation where the best individual
was found.

In summary, theresults of Test 1 suggest that 11sand EDIs are not merely passive units
during training. If they were, we would not expect to find evidence that the evolutionary
algorithm was actively selecting for their presence. We conclude, therefore, that Test 1 is
consistent with our hypothesis and inconsistent with the notion that I1s and EDIs are only
to be regarded as useless code.

Test 2. Measuring Interactions between I1sand EDIs.
Our hypothesisalso predictsthat EDIsand I1s may interact with each other—either replacing
each other or working together or both. If EDIsand lIsare merely useless code, I1s should

1000 . 100

N\

a0
Awerage Intron Equivalent Unit ((EU) per Node

800

70
600 60

', 50

400 - a0

- Awerage BestIndividual Fithess (ten runs)
- J 30

- 20

10

Fitness
Intron Equivalent Units
(IEV)

200

- N ™ T o & =~ @

101
111
121
131
141
151

Generation

Figure6.8
IEU per Node and Best Individual Fitness By Generation Averaged over Ten Runswith EDI Enabled
and Parsimony = 1

Table6.4
Effect of adding EDIs on the Percentage of the Average Absolute Size of Individualsthat is Composed of Ils. For
runsthat found a perfect individual.

EDIsEnabled? Parsimony ImplicitIntrons Sample Size (No. of Individuals)

No 0 53% 9,000
Yes 0 45% 9,000
No 1 25% 21,000
Yes 1 19% 18,000

come and go of their own accord unaffected by the presence or lack EDIsin the population.
We tested for such interactions in two ways. First, we measured the percentage of
average Absolute Size of the population that was comprised of Implicit Introns. This test
was performed on the same runs used in Test 1. The test was performed with and without
EDIs enabled. We then measured the effect of adding EDIs on the percentage of 113, Table
6.4 contains the results®.
In runsthat found a perfect individual, the addition of EDIs reduced the percentage of
IIsin the population at the time a perfect individua was found to a significant degree.
When the same figures for all forty runs was examined, the same pattern was found, the
percentage of Ilsin the population drops when EDIs are added. However, thedrop in al
runswas less than half the drop for the runsthat found a perfect individual. This suggests
that the runs that did best (that is, runs that found a perfect individual), were the runsin

3 Because we do not include EDIs in the measure of Absolute Size, the addition of the EDIs cannot effect this
measurement except indirectly, by effecting the number of Ils.

4 Because the point where arun finds the best individual appeared to be important in our prior reported results,
we measured the change in percentage at the point in each run where best individual fitness stopped improving.

Scaled Ay. IEU Per Node. EDI Enabled. No Parsimony

250

240 e
230 fv-—a-f“""
& 220 e
Sz a——
E. ?gg MWM Best Individual Found
—_—

w180
170
160
150

0 10 20 30 40 50 60 70 80 40 100
Scaled Generation. Gen. 100 = Best Individual Found
Figure6.9
IEU per Node and Best Individual Fitness By Generation Averaged over Ten Runswith EDI Enabled
and No Parsimony. Scaled and Normalized Around Generation of Best Individual.

which EDIs replaced lIsto the greatest extent.

However thisdataisviewed, it supportsthe notion that, to some extent, EDIsreplace s
when EDIs are added to the popul ation and may do so more in runsthat successfully find a
perfect individual. Thisis consistent with our hypothesis and inconsistent with the notion
that llsand EDIs are merely "useless' code.

The second method we used to test for interactions was as follows. We looked for
evidence that 11s and EDIs work together. One such interaction is very suggestive. Refer
back to Figure 6.6. With no parsimony measureinthisrun, llsand EIVs apparently change
their valuesinlockstep. When one changes, so doestheother. When we added a parsimony
factor, the result was very different. Figure 6.10 details that run using the same random
seed.

Note that before the discovery of a perfect individual, the EDIV and the 1l values
in Figure 6.10 move in lockstep. What is important here is that, despite the parsimony
pressure, 1ls persisted in the population in a proportion more typica of a run without a
parsimony factor. As soon as the best individua is found, the number of Ils drops to,
effectively, zero — much moretypical of our parsimony runs.

Weinterpret Figures 6.6 and 6.10 as evidence that the presence of EDIs can improve the
survival value of Il1suntil a perfect individual isfound. After a perfect individual isfound,
I1slosethat selection advantage and revert to their normal pattern in runs using parsimony.
We speculate that this effect of adding EDIsis based on the ability of 11sto string together
long chains of EDIs and thereby rapidly increase or decrease the amount of protection
accorded to various blocks of code. EDIs, by themselves do not have this ability.

Inany event, were EDIsand |1smerely blocks of usel ess code, we would not expect such

o
=

=
o

Perfect Individual Found Explicithy Defined Intron Yalue (EDM)
! (divided by 100 for scale)

Abzolute Size \

wWow o
& m o

- =
=

Intron Equivalent Units/Nodes
o o, = @]

4 Implicit Intron Slze

O W D WO W o W o W e W o Ww o WD W oo W o W
- - @ M m m W ¥ MW WD Wk DD o®om O o

Generation

Figure 6.10
Explicitly Defined Intron Value and Implicit Intron Size for Typical Run With EDI Enabled and
Parsimony = 1.

an interaction between them. This evidence, also, is consistent with our hypothesis.

Oneintriguing possibility raised by Figure6.10isthat theaveragell valuesinapopul ation
may be avery practical way to improve training, at least where a parsimony factor is used.
There are two possihilities.

First, we ran these same tests with a much higher parsimony measure—parsimony factor
equa to 5. In those runs, the Ils were suppressed altogether and did not demonstrate
the pattern in Figure 6.10. Fitness and generalization were both worse when the higher
parsimony factor was used. It may be that the pattern in Figure 6.10 means that the
parsimony factor is"just right.” Looking for this patternin preliminary runsmay be agood
way to set the parsimony factor.

Second, if the pattern in Figure 6.10 persists for other types of problems—that is, if I
size generically fluctuates until the best individual is found and then fallsto close to zero,
this measure may be away to determine when to stop training. Having a measure of when
the population can do no better would be an invaluable tool in GP training. We regard this
as an important area for further research.

Conclusion Regarding The Structural Role of IEUs
Both of thetestswe devised tend to reject the hypothesisthat, in the early stages of training,
Ilsand EDIs are only useless code that happens to be adjacent to highly fit blocks of code.
Rather, the results suggest that 11sand EDIs can play an important role in finding the most
highly fit individual .

Proving that EDIs and Ils are not useless do not, by itself, prove our position that the
role played by l1sand EDIsisto protect code blocks with high constructional fitness from

Table 6.5
Average Fitness of Best Individual, All Runs (smaller is better)

EDI Enabled Parsimony EDI Range AverageFitness

Yes 1 Medium 108
Yes 0 Narrow 122
No 1 N/A 156
Yes 1 Narrow 186
Yes 0 Wide 196
No 0 N/A 280
Yes 1 Wide 290
Yes 0 Medium 354
Table 6.6

Average Generalization of Best Individual, All Runs (smaller is better)
EDI Enabled Parsimony EDI Range Average Generalization

Yes 0 Narrow 413
Yes 1 Medium 473
Yes 0 Wide 537
No 1 N/A 542
Yes 1 Narrow 632
Yes 1 Wide 815
No 0 N/A 860
Yes 0 Medium 1176

the destructive effects of crossover. It is merely consistent with such arole. Some of the
evidence ishighly suggestive of such arole and the theoretical reasoning that they can play
such astructural roleis strong. However, weregard thisas an arearipefor further research.

6.5.3 Effect of EDIson Fitness, Generalization and CPU Time

The addition of EDIs profoundly affect every measure of performance. In summary, the
best performances in the various categories in rank order are set forth in Tables 6.5, 6.6,
and 6.7: Table 6.5 showsthe average fithess for 10 runs each of different combinations of
parsimony, EDI, and initializations. The best result were achieved with EDIs, parsimony
pressure and a medium sized initializations range of EDIVs, see table 6.1 for EDIV init
values.

Table 6.6 illustrates the performance of the best individuals on unseen data. Each
average isover 10 runs and shows best performance for a system with EDIs.

The last table shows the CPU time needed to reach a perfect individual. Unlike lls,
EDIs does not affect the fitness cal culation and the system can therefore search faster. The
average CPU timeislowest when EDIs are enabled.

By any measure, EDIs proved capable of improving the performance of the algorithm.
EDIs were enabled for the best two categories for each measure of performance.

However, runs with EDIs seem quite sensitive to the range with which the EDIs were
initialized. One example illustrates possible pitfalls of training with EDIs and directions

Table 6.7
Average Timein Seconds To Find Perfect Individual .

EDI Enabled Parsimony EDI Range AverageCPU Time

Yes 1 Wide 31
Yes 1 Narrow 56
No 1 N/A 56
Yes 1 Medium 59
Yes 0 Medium 98
Yes 0 Wide 116
No 0 N/A 164
Yes 0 Narrow 179

for further research. By far the best average CPU timeto find a perfect individua was with
parsimony equa to 1 and the "Wide" initialization range for EDIs. Yet the average fitness
in that same category was toward the bottom of thelist. The reason isthat only four of the
ten runs in this category found a perfect individual. Those four runs, however, found the
perfect individualsvery quickly.

The reason for this apparent discrepancy may be that protection against destructive
crossover is atwo edged sword. While the wide range of EDIs helped these runs to find
a perfect individual very quickly, it may also have helped the remaining 6 runs find local
minima quickly—and get stuck there. A littleless protection against crossover (the narrow
and medium ranges for the same parameters) resulted in slower CPU performance but 60%
of the runs found perfect individuals.

6.6 Future Work

Wewouldliketo extend our current resultsto amore canonical GP system with hierarchical
crossover and tree representation [Koza 1992]. That would also shed light on any potential
differencesin behavior during evolutioninduced by representation and crossover operators.
We have so far done afew initial experiments with a canonical GP system doing symbolic
regression. The results indicate a distribution of destructive crossover similar to that in
the system used in this paper. Figure 6.11 shows the distribution of crossover effect of
S-expression based GP system doing symbolic regression over 60 generations. Figure 6.11
suggests that our results may apply to a wider domain of systems, see also [Rosca 1995].
In that regard, we plan to perform intron size measurements in a tree based GP system.

In addition, we believe that further investigation into the structura effects of IEUS is
warranted, as well as investigationsinto continuously defined intron properties, see section
6.3.4. We would also like to study how exons and introns are distributed in the genome
during evolution.

Finally, webelievethat EDIsmust betested on real world problemswith moreintractable
solution spaces.

Effects of Crossover during Evolution

"Crossover Effect " ——

Number of Crossover Events

6
M'I"

||'

IN

—__—,,.'——‘_

60

40
-100 or less

0
20 Generations

10
Fitness Change after Crossover (%50

Figure6.11
Crossover Effects In S-Expression Style GP

Acknowledgments

We would like to thank Walter Tackett for the use of his Genetic Programming system,
from the GP-archive. This research has been supported by the Ministry for Wissenschaft
und Forschung (MWF) of Nordrhein-Westfalen, under grant 1-A-4-6037.1 .

Biblography

Altenberg, L. (1994) The Evolution of Evolvability in Genetic Programming. In Advancesin Genetic
Programming, K. Kinnear, Jr. (ed.), Cambridge, MA: MIT Press. pp47-74.

Angeline PJ. (1994) Genetic Programming and Emergent Intelligence In Advancesin Genetic Pro-
gramming, K. Kinnear, Jr. (ed.), Cambridge, MA: MIT Press.

Forrest, S. and M. Mitchell (1992) Relative building block fitness and the building block hypothesis
In Foundations of Genetic Algorithms 2, D. Whitley (ed.). San Mateo, CA: Morgan Kaufmann
Publishersinc., pp 109-126.

Holland, J. (1975) Adaption in Natural and Artificial Systems, Ann Arbor, MI: The University of
Michigan Press.

Koza, J. (1992) Genetic Programming, Cambridge, MA: MIT Press.

Levenick, J.R. (1991), Inserting Introns Improves Genetic Algorithm Success Rate: Taking a Cue
From Biology. In Proceedingsof the Fourth International Conferenceon Genetic Algorithms,Belew,

R.K. and Booker, L.B., editors, Morgan Kauffman. San Mateo, California, pp. 123-7.

Nordin J.P.(1994) A Compiling Genetic Programming System that Directly ManipulatestheMachine-
Code. In Advancesin Genetic Programming, K. Kinnear, Jr. (ed.), Cambridge, MA: MIT Press.

Nordin J.P, Banzhaf W. (1995a) Complexity Compression and Evolution. In proceedings of Sxth
International Conferenceof Genetic Algortihms, Morgan Kaufmann PublishersInc.

Nordin J.P, Banzhaf W. (1995b) Evolving Turing Complete Programs for a Register Machine with
Self-Modifying Code. In proceedings of Sixth International Conference of Genetic Algortihms,
Morgan Kaufmann PublishersInc.

Rosca J.P. (1995) Entropy-Driven Adaptive Representation. In Proceedings of the Workshop on
Genetic Programming: From Theory to Real-World Applications Technical Report 95.2 June 1995
University of Rochester, USA

The SPARC Architecture Manual,(1991), SPARC International Inc., Menlo Prak, California.

Tackett, W.A. (1995). Greedy Recombination and Genetic Search on the Space of Computer Pro-
grams. In Foundationsof Genetic Algorithms|11, Whitley, D. and Vose, M. Eds.. Morgan Kaufmann,
San Mateo, California

Watson J.D, Hopkins N.H, Raoberts J.W, Wiener A.M, (1987) Molecular Biology of the Gene, Menlo
Park, CA: The Benjamin/Cummings Publishing Company, Inc.

