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Abstract

One of the most general forms of representing and specifying beha-
vior is by using a computer language. We have evaluated the use of the
evolutionary technique of Genetic Programming (GP) to directly control
a miniature robot. The goal of the GP-system was to evolve real-time
obstacle avoiding behavior from sensorial. The evolved programs are used
in a sense-think-act context. We employed a novel technique to enable
real time learning with a real robot using genetic programming. To our
knowledge, this is the first use of GP with a real robot. The method uses a
probabilistic sampling of the environment where each individual is tested
on a new real-time fitness case in a tournament selection procedure. The
robots behavior is evolved without any knowledge of the task except for
the feed-back from a fitness function. The fitness has a pain and a pleas-
ure part. The negative part of fitness, the pain, is simply the sum of the
proximity sensor values. In order to keep the robot from standing still or
gyrating, it has a pleasure component to its fitness. It gets pleasure from
going straight and fast. The evolved algorithm shows robust performance
even if the robot is lifted and placed in a completely different environment
or if obstacles are moved around.



1 Introduction

We have evaluated the use of Genetic Programming to control a miniature ro-
bot. To use a genetic process as the architecture for mental activities could,
at first, be considered awkward. As far as we know today, genetic information
processing is not directly involved in information processing in brains, though
the idea of genetics as a model of mental processes is not new. William James,
the father of American psychology, argued just 15 years after Darwin published
The origin of Species, in 1874, that mental processes could operate in a Dar-
winian manner (William James 1890). He suggested that ideas ”compete” with
one another in the brain leaving only the best or fittest. Just as Darwinian
evolution shaped a better brain in a couple of million years, a similar Darwinian
process operating within the brain might shape intelligent solutions to prob-
lems on the time scale of thought and action. This allows ”our thoughts to die
instead of ourselves”. More recently, selectionist approaches to learning have
been studied in detail by Gerald Edelman and his collaborators (see Edelman
1987) and references therein).

The use of an evolutionary method to evolve controller architectures has been
reported previously in a number of variants. Robotic controllers have, for in-
stance, been evolved using dynamic recurrent neural nets ( Cliff 1991 ), (Harvey,
Husbands &CIiff (1993).

Genetic programming uses an evolutionary algorithm to evolve computer
programs. Several experiments have also been performed were a controller
program has been evolved directly through genetic programming (Koza 1992),
(Reynolds 1994), (Handley 1994).

Previous experiments, however, with genetic programming and robotic control
have been performed with a simulated robot and a simulated environment. In
such a set-up, the environment and the robot can be easily reset to an initial
state in order to ensure that each individual in the population is judged starting
from the same state. Apart from being practically infeasible for a real robot,
this method could result in over-specialization and failure to evolve a behavior
that can generalize to unseen environments and tasks. To overcome this last
problem noise is sometimes artificially added to the simulated environment.

In our experiments we use a real robot trained in real-time with actual sensors.
In such an environment, the system has to evolve robust controllers because
noise is present everywhere and the number of real-life training situations is
infinite. In addition, it is highly impractical to reset the robot to a predefined
state before evaluating a fitness case. Consequently, we had to devise a new
method which ensures learning of behavior while the environment is probabil-
istically sampled with new real-time fitness cases for each individual evaluation.



2 Genetic Programming

Evolutionary Algorithms mimic aspects of natural evolution, to optimize a solu-
tion towards a defined goal. Darwin’s principle of natural selection and survival
of the fittest is thought to be responsible for the evolution of all life forms on
earth. This principle has been employed successfully on computers over the
past 30 years. Different research subfields have emerged such as ;, Evolution
Strategies (Schwefel 1995), Genetic Algorithms (Holland 1975) and Evolution-
ary Programming (Fogel, Owens & Walsh 1966) indicating that they all mimic
various aspects of natural evolution. In recent years, these methods have been
applied successfully to a spectrum of real-world and academic problem domains,
including robot control as mentioned above.

A comparatively young and growing research topic in this field is Genetic Pro-
gramming (GP). Genetic Programming uses the mechanisms behind natural
selection for evolution of computer programs. Instead of a human programmer
programming the computer, the computer can self-modify, through genetic op-
erators, a population of programs in order to finally generate a program that
solves the defined problem. This technique, like other adaptive techniques, has
applications in problem domains where theories are incomplete and insufficient
for the human programmer or when there isn’t enough time or resources avail-
able to allow for human programming.

Methods for GP were suggested as far back as in the 1950s (Friedberg 1958).
For various reasons these experiments never were a complete success even if par-
tial results were achieved (Cramer 1985). A breakthrough came when J. Koza
formulated his approach based on program individuals as tree structures repres-
ented by LISP S-expressions (Koza 1992). His hierarchical subtree exchanging
genetic crossover operator guaranteed syntactic closure during evolution. Koza
has been instrumental in developing GP and was the first to demonstrate the
feasibility of the technique with dozens of applications.

In this motion, genetic programming evolves programs stored as trees in
a population by exchanging subtrees during crossover. Selection is performed
according to a fitness function. Figure 1 illustrates the crossover method used
with genetic programming.

In this paper, however, we use a variant of GP which stores the individuals
of the population as binary machine code in memory. The gives a speed-up of
several orders of magnitudes. The method is also memory efficient using only
32KB for the GP kernel. The individuals can be stored in an economic way
and memory consumption is stable during evolution with no need for garbage
collection etc. All these properties make the system ideally suited for real-time
control in low-end processor architectures such as one-chip embedded control.

The system uses a linear representation of the program. The crossover op-
erators exchanges blocks of code that are cut out at instruction boundaries. A
mutation operator changes the inside of an instruction by mutating constants
and register references. Both operators ensure syntactic closure during evolu-
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Figure 1: hierarchical crossover in Genetic programming

tion.Figure 2 illustrates the crossover method used in our experiments.
Each node represents an operation between a small set of registers. The
structure of the node corresponds to a machine code instruction in the processor

and is stored in such a way that they can be executed directly. Below we see
how such a program individual may look if printed as a ’C’ program.

a=s3 + 4;
d=s2 >> s1;
b=s1 - d;
d=s2 + 2;
c=d >> 1;
b=d - d;
a=c - 3;
c=84 << a;
d=a * 4;
a=a ~ 5;
e=d + s4;
c=b & c;
d=d + d;
c=d | 8;
d=d * 10;
b=e >> 6;
d=b & 0;
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Figure 2: Linear genome and crossover used in this paper.

e=c >> b;
motor2=a | e;
c=d | 7;
motorl=c * 9;
c=e & e;

Each individual is composed of simple instructions (program lines) between
variables and input and output parameters. See section 5 for further details of
the evolutionary algorithm, its execution cycle and the implementation.

3 The Khepera Robot

Our experiments were performed with a standard autonomous miniature robot,
the Swiss mobile robot platform Khepera (Mondada, Franzi & Ienne 1993). Tt
is equipped with eight infrared proximity sensors. The mobile robot has a cir-
cular shape, a diameter of 6 cm and a height of 5 cm. It possesses two motors



and on-board power supply. The motors can be independently controlled by
a PID controller. The eight infrared sensors are distributed around the robot
in a circular pattern. They emit infrared light, receive the reflected light and
measure distances in a short range: 2-5 cm. The robot is also equipped with a
Motorola 68331 micro-controller which can be connected to a SUN workstation
via serial cable.
It is possible to control the robot in two ways. The controlling algorithm could
be run on the workstation, with data and commands communicated through
the serial line. Alternatively, the controlling algorithm is cross-compiled on the
workstation and down-loaded to the robot which then runs the complete sys-
tem in a stand-alone fashion. At present, we have two version of the system.
In one the controlling GP-system is run on the workstation, and in the other
the system is downloaded and run autonomously on the micro-controller of the
robot.
The micro-controller has 256 KB of RAM and a large ROM containing a small
operating system. The operating system has simple multi-tasking capabilities
and manages the communication with the host computer.

The robot has several extension ports where peripherals such as grippers and
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TV cameras might be attached.



Figure 4: The Khepera Robot

4 Objectives

The goal of the controlling GP system is to evolve obstacle avoiding behavior in
a sense-think-act context. The system operates real-time and aims at obstacle
avoiding behavior from real noisy sensorial data. The sensorial data come from
eight proximity sensors. See (Reynolds 1988), (Mataric 1993), (Zapata et. al.
1993), (Braitenburg 1984) for a discussion of this problem domain.

Symbolic regression is the procedure of inducing a symbolic equation fitting
numerical data. Genetic programming is ideal for symbolic regression and most
GP applications could be reformulated as a variant of symbolic regression. In
this obstacle avoiding application we would like to approximate a function that
takes the sensor values as input vector and returns a vector of two motor speeds:

f(sla52153a34;55;56a57a88):{ml)mQ} (1)

The evolved programs are true functions in our experiments because no
side-effects are allowed. It would be possible to evolve programs that can store
information in memory for later use, but we have chosen to limit the experiment
to side effect free programs.

The controlling algorithm has a small population size, typically less than 50
individuals. The individuals use six values from the sensors as input and produce
two output values which are transmitted to the robot as motor speeds. Each



individual program does this manipulation independent of the others and thus
stands for an individual behavior of the robot if invoked to control the motors.
The resulting variety of behaviors does not have to be generated artificially,
e.g. for explorative behavior, it is always there, since a population of those
individuals is processed by the GP system.

4.1 Training Environment

The robot was trained in two different environments. The first environment
was a simple rectangular box. The dimensions of the box were 30 cm x 40
cm. The surface transmitted high friction to the wheels of the robot. This
caused problems in the initial stages of training. Before the robot learned a
good strategy it kept banging into the walls trying to ”go through the walls”.
The high friction with the surface consequently stressed the motors.

We also designed a second, more complex environment. This larger environment
is about 70 cm x 90 cm. It has an irregular boarder with different angles
and four deceptive dead-ends in each corner. In the larger open area in the
middle, loose obstacles can be placed. The friction between wheels and surface
is considerably lower, enabling the robot to slip with its wheels during a collision
with an obstacle. There is an increase in friction with the walls making it hard
for the circular robot to turn while in contact with a wall.

Figure 5: The Training Environment



5 The Evolutionary Algorithm

The population of programs are initialized with random content at the begin-
ning of training. A simple tournament is used for the competitive selection of
individuals allowed to have offspring. Figure 6 gives a schematic view of the
control architecture and the GP-system.

GP-system

Genetic
Operators

(crossover/mutation)

Population

50 individuals

Figure 6: Schematic View of the Control System.

The GP-system with its steady state tournament selection algorithm (Reyn-
olds 1994), (Syswerda 1991) has the following execution cycle:

1. Select k members for tournament.

2. For all members in tournament do:
(a) Read out proximity sensors and feed the values to one individual in

the tournament.

(b) Execute the individual and store the resulting robot motor speeds.
(¢) Send motor speeds to the robot.
(d)
(

e) Read the proximity sensors again and compute fitness, see below.

Sleep for 400ms to await the results of the action.

3. Perform tournament selection.
4. Do mutation and crossover.

5. Goto step 1.



Each individual is thus tried against a different real-time fitness case. This
could result in “unfair” comparison where individuals have to maneuver in situ-
ation with very different possible outcomes. However, our experiments show
that over time this probabilistic sampling will even out the random effects in
learning and a set of good solutions survive. The convergence time is the same
range or lowers as with other GP systems working with simulated environments.

5.1 Fitness calculation

The fitness has a pain and a pleasure part. The negative contribution to fitness,
called pain, is simply the sum of all proximity sensor values. The closer the
robot’s sensors are to an object, the more pain. In order to keep the robot
from standing still or gyrating, it has a positive contribution to fitness, called
pleasure, as well. It receives pleasure from going straight and fast. Both motor
speed values minus the absolute value of their difference is thus added to the
fitness.

Let s; be the values of the proximity sensors ranging from 0 — 1023 where a
higher value means closer to an object. Let m; and ms be the left and right
motor speeds resulting from an execution of an individual. The values of m;
and mg are in the range of zero to 15. The fitness value can then be expressed
more formally as:

fzzsi+|8—m1|—|—|8—m2|—|—|m1—m2| (2)

5.2 Implementation

The Evolutionary Algorithm we use in this paper is an advanced version of the
CGPS described in (Nordin 1994), composed of variable length strings of 32 bit
instructions for a register machine. The system has a linear genome. Each node
in the genome is an instruction for a register machine. The register machine
performs arithmetic operations on a small set of registers. Each instruction
might also include a small integer constant of maximal 13 bits. The 32 bits in
the instruction thus represents simple arithmetic operations such as "a=b+c”
or 7c¢=b*5”. The actual format of the 32 bits corresponds to the machine
code format of a SUN-4 (Sparc 1991), which enables the genetic operators to
manipulate binary code directly. For a more thorough description of the system
and its implementation, see (Nordin and Banzhaf 1995a).

The set-up is motivated by fast execution, low memory requirement and a
linear genome which makes reasoning about information content less complex.
This system is thus a presumption for micro-controller version.

The system is a machine code manipulating GP system that uses two-point
string crossover. A node is the atomic crossover unit in the GP structure. Cros-
sover can occur on either or both sides of a node but not within a node. Because
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Table :

Objective : Obstacle avoiding behavior in real-time

Terminal set : Integers in the range 0-8192

Function set : ADD, SUB, MUL, SHL, SHR, XOR,
OR, AND

Raw and standardized fitness : Pleasure subtracted from pain value
desired value

Wrapper : None

Parameters :

Maximum population size : 30

Crossover Prob : 90%

Mutation Prob : 5%

Selection : Tournament Selection

Termination criteria : None

Maximum number of generations: | None

Maximum number of nodes: 256 (1024)

Table 1: Summary of parameters used during training.

of our particular implementation of GP works with 32 bit machine code instruc-
tions , a node is a 32 bit instruction.

Mutation flips bits inside the 32-bit node. The mutation operator ensures that
only the instructions in the function set and the defined ranges of registers and
constants are the result of a mutation.

The function set used in these experiments are all low-level machine code in-
structions. There are the arithmetic operations ADD, SUB and MUL. The shift
operations SLL and SLR and finally the logic operations AND, OR and XOR.
All these instructions operate on 32-bit registers.

Table 1 gives a summary of the problem according to the conventions used in

(Koza 1992).

6 Results

Interestingly, the robot shows exploratory behavior from the first moment. This
is a result of the diversity in behavior residing in the first generation of programs
which has been generated randomly. Naturally, the behavior is erratic at the
outset of a run.

During the first minutes, the robot keeps colliding with different objects, but
as time goes on the collisions become more and more infrequent. The first in-
telligent behavior usually emerging is some kind of backing up after a collision.
Then the robot gradually learns to steer away in an increasingly more sophist-
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icated manner.

After about 20 minutes, the robot has learned to avoid obstacles in the rect-
angular environment almost completely. It has learned to associate the values
from the sensors with their respective location on the robot and to send correct
motor commands. In this way the robot is able, for instance, to back out of a
corner or turn away from an obstacle at its side. Tendencies toward adoption
of a special path in order to avoid as many obstacles as possible can also be
observed.

The robot’s performance is similar in the second, more complex environment.
The convergence time is slower. It takes about 40-60 minutes, or 200-300 gen-
eration equivalents, to evolve a good obstacle avoiding behavior. The reason for
the slower convergence time could be: less frequent collisions in the larger en-
vironment, the slippery surface, the high friction in collisions with walls and/or
the less regular and more complex environment.

Figure 7 show how the number of collisions per minute diminishes as the robot
learns and the population becomes dominated by good control strategies.

60 T T T T T
"..[Collisions" —

50 H 4

30 H 1

Number of Collisions

20 H 4
10 H 4

o . : rﬂ?ﬂmﬂwmﬂ

50 60

Minutes

Figure 7: The number of collisions per minute in a typical train-
ing run with the environment in Figure 5

The moving robot gives the impression of performing a very complex beha-
vior. Its behavior gives association to a bug or an ant exploring an environment
with irregular small moves around the objects. Data such as Figure § also
suggest that the evolved behavior is complex. It is therefore hard to classify
the different kinds of behavior the robot demonstrates during evolution but we
found a few distinguishable classes:

1. The initial wall-bumping behavior. This is the childhood of the robot
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were it must make mistakes in order to learn for the rest of its life. It
tries several impossible strategies such as trying to force it self through
the walls

2. The backing—up behavior. This is the first effective technique that allows
the robot to avoid obstacles. However, this technique has several draw-
backs. It will risk to place the robot in the same situation if it moves
forward again.

3. The reflection behavior. Here the robot gradually turns away from an
obstacle as it approaches it. It looks as if the robot bounces like a ball at
something invisible close to the obstacle. This behavior gives a minimum
speed change in the robot’s path.

4. The sniffing behavior. The robot stops immediately as it just senses an ob-
ject. It then starts to sniff around by very small movements to determine
which way will be the most favorable to go.

All these behaviors can be distinguished but the also appear mixed and as part
of very complex movements.

6.1 Visualizations of results

We have used different visualization techniques to plot the relationship between
sensor input and motor output, in order to illustrate the control strategies of
the different evolved programs. The actual control function takes eight values
as input (the sensors) and produces two values as output (the motor speeds) It
thus has a too high dimension for directly visualizing it in a diagram. Instead
we simulate a uniform stimulus on the left hand side and the right hand side of
the robot. The output of an individual program in the population is examined
and we plot the difference between left motor speed and right motor speed.
This difference could be interpreted has the direction to which the robot steers.
Figure 8 shows an actual example of a plot illustrating the difference in motor
speeds depending on stimulus of the sensors.

A simple control strategy that would avoid obstacles to some extent would be
a plane sloping from the upper left corner of the diagram down to the lower
right corner of the diagram, as in Figure 9. If the robot is controlled by this
algorithm it would steer more to the right the more the sensors on the left side
are stimulated. Many plots from actual evolved controlling programs show sim-
ilarities to this plane. For instance, the program behind Figure 10 and Figure
11. Here the diagram is more complex but the slope from upper left to lower
right is evident. A good control strategy should, however, accomplish more
than simply steering away. It should for instance have the ability to back away
from obstacles and perform more complex maneuvers. In many cases we do not
have an explanation for the complex look of these diagrams. We do not know
whether they are the product of mere chance or whether the complex features
help the individual in the competition to control the robot.

13
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Figure 8: Example the behavior of an evolved control program

Below we see the corresponding individual control program that generates
Figure 8 when examined systematically.

a=s3 + 4;
d=s2 >> s1;
b=s1 - d;
d=s2 + 2;
c=d >> 1;
b=d - d;
a=c - 3;
c=s84 << a;
d=a * 4;
a=a ~ 5;
e=d + s4;
c=b & c;
d=d + d;
c=d | 8;
d=d * 10;
b=e >> 6;
d=b & 0;
e=c >> b;
motor2=a | e;
c=d | 7;

motorl=c * 9;
c=e & e;

This control strategy does not use all of the sensor values, for instance sg

14



0.64*(y-x) ——

25

Sensors-Right

15
Sensors-Left

Figure 9: An exmaple of a simple controlling function that would
display a simple obstacle avoiding behavior

is missing. The sensors from the back of the robot are not used either in this
example. It is typical for solutions of genetic programming to be parsimonious
in its output and only use the concepts which really are needed to achieve the
defined goal.

The code above has been edited for clarity, sensor and motor speed values
are in reality stored in the same register used during calculation. Register ”a”
contains the value of sy when evaluation starts and registers ”b” contains the
value of s; . Correspondingly the motor speed values sent to the motors are
what is left in register ”a” and ”b” at the end of evaluation.

6.2 The autonomous system

It is not completely evident what an autonomous robot is. Some would argue
that the autonomy is a property of the controlling algorithm while others would
argue that physical autonomy is needed.

In order to try the fully autonomous paradigm, we have ported a special
version of the system to the micro-controller. It is possible to download this
system via the serial cable to the robot. With the accumulators switched on,
the robot can then be disconnected from the workstation and can run com-
pletely autonomously. The Motorola 68331 micro-controller then runs the full
GP system.

As mentioned earlier, this micro controller has 256 KB of RAM memory.
The kernel of the GP system occupies 32 KB and each individual 1KB, in this
setup. The complete system with 50 individual then occupies 82 KB which is
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the plane in Figure 9.

well within the limits of the on-board system.

This demonstrates that the compactness of the compiling GP system en-
ables relatively powerful solutions in weak architectures such as those used in
embedded control.

7 Conclusions and Future Work

We have demonstrated that a GP system can be used to control an existing ro-
bot in a real-time environment with noisy input. The evolved algorithm shows
robust performance even if the robot is lifted and placed in a completely differ-
ent environment or if obstacles are moved around. We believe that the robust
behavior of the robot partly could be attributed to the built in generalization
capabilities of a genetic programming system (Nordin and Banzhaf 1995b).
We have also cross-compiled the GP-system and run it in the same set-up on
the micro-controller on-board the robot. This demonstrates the applicability of
Genetic Programming to control tasks on low-end architectures. The technique
could potentially be applied to many one-chip control applications in, for in-
stance, consumer electronics devices etc.

A further extension to the system would be to eliminate the 400ms delay time
of sleeping, during which the system is waiting for the result of its action.
This could be achieved by allowing the system to memorize previous stimulus-
response pairs and by enabling it to self-inspect memory later on in order to
learn directly from past experiences without a need to wait for results of its
actions. We anticipate the former to speed up the algorithm by a factor of at
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Figure 11: Example of controlling function.

least 1000. The latter method would probably speed up the learning of behavior
by a comparably large factor.
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