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Abstract

We present a novel evolutionary approach to robotic control of a real
robot based on genetic programming (GP). Our approach uses genetic
programming techniques that manipulate machine code to evolve control
programs for robots. This variant of GP has several advantages over a
conventional GP system, such as higher speed, lower memory require-
ments and better real time properties. Previous attempts to apply GP in
robotics use simulations to evaluate control programs and have difficulties
with learning tasks involving a real robot. We present an on-line control
method that is evaluated in two different physical environments and ap-
plied to two tasks using the Khepera robot platform: obstacle avoidance
and object following. The results show fast learning and good generaliz-
ation.



1 Introduction

Autonomous robots or agents have a large potential for the future. There are
many situations where they could relieve humans from dangerous, difficult or
monotone tasks. We are convinced that many of these future agents will need
to show adaptive behavior in order to successfully master their tasks. The real
world is simply too complex and unpredictable to be managed without learning.
In nature we can see how higher animals with adaptive capabilities have been
very successful in almost all environments. The most flexible animal with the
highest capability of learning — man — has been almost too successful in its
attempt to affect and control its environment.

There are several problems that an autonomous robot has to cope with in a
real world situation:

1. Its model of the world is often inaccurate and out of date,
2. the sensors of the robot will be noisy and the actuators imprecise,
3. the environment is likely to be dynamic and constantly changing.

The process of designing an agent can be significantly simplified if the designer
does not have to explicitly add every detail of the environment, the robot or the
suitable behavior and, instead, can rely on the learning ability of the agent.

A variety of adaptive and learning control architectures have been proposed
over the years. Many of these approaches are built on reinforcement learning
techniques, see (Krose, 1995) and (Kaelbling, Littmann & Moore, 1996). Rein-
forcement learning is a term used in connection with agents learning behavior
through ”trial-and-error” interactions in their (dynamic) environment. In other
words, the agents have to search through their behavioral space in order to
find an appropriate behavior. Many different techniques exist to search a large
space like the behavioral space of an agent. Thus, the number of reinforcement
learning variants is manifold, given the enormous number of different search
techniques which could be used.

A large class of those techniques systematically use knowledge generated
within the system and supported by outside methods, e.g., statistics (for a
review, see Kaelbling et al., 1996) or PAC learning (Greiner & Isukapalli, 1996).

Algorithms inspired by natural processes, on the other hand, are applicable
as well. Many connectionist approaches have been proposed to achieve learning
for autonomous agents / robots. Millan in (Millan, 1996) has worked on a neural
network architecture for the acquisition of efficient navigation capabilities of a
robot in very short time.

Evolutionary algorithms provide an efficient framework for this kind of search
as well, since the fitness function used by these algorithms could be interpreted
as the reinforcement signal of reinforcement learning. Genetic algorithms and



genetic programming are hence potentially very useful in the area of reinforce-
ment learning. A considerable number of researchers have been examining this
potential over recent years.

Meeden (Meeden, 1996) uses a combination of connectionist and evolution-
ary approaches to develop a robot controller that is eventually able to build
up memory-dependent behavior, characteristic of planning systems. Floreano
and Mondada (Floreano, & Mondada, 1996) show how the development of an
internal neural topographic map allows a robot to choose an appropriate tra-
jectory, given a certain starting location and energy level. Neural Network
controllers have been evolved even earlier with genetic algorithms (Cliff, 1991,
Harvey, Husbands & Cliff, 1993; Floreano & Mondada, 1994) with considerable
success. Evolutionary algorithms for creating an artificial neural network which
controlled an autonomous land vehicle have been tested in applications such as
road following tasks (Baluja, 1996).

A more general class of models is known under the heading selectionist neural
networks. Selectionist approaches to neural networks have a decade old tradition
starting from the seminal work of Edelman on Newral Darwinism (Edelman,
1987).

Donnart and Meyer (Donnart & Meyer, 1996) consider the control and ad-
aptation of behavior in the context of classifier systems. Both reactive and
planning rules are implemented using what they call a motivationally autonom-
ous animat which behaves according to its state of perception of the environ-
ment. Colombetti, Dorigo and Borghi, (Colombetti, Dorigo & Borghi, 1996)
even propose ”Behavior Engineering” as a new technological area whose aim is
to provide methodologies and tools for developing autonomous robots.

An interesting variant of learning is the SAMUEL system (Grefenstette,
Ramsey & Schultz, 1990; Potter, De Jong & Grefenstette, 1995) which uses an
evolutionary system to evolve sequential decision rules for a simulated robot.

Each of these approaches is a reasonable starting point for developing learn-
ing techniques for real-time control of robots. However, we feel that there are
overwhelming advantages to having each controller represented as a computer
program in a symbolic programming language. Consequently, our research uses
Genetic Programming (GP) as the basis for an adaptive control method.

1.1 The Advantages of Genetic Programming

Genetic programming uses a genetic algorithm to evolve computer programs.
The complete controller of the robot is evolved as a computer program in a
general purpose programming language. GP has the following advantages as a
learning control algorithm:

e GP produces purely symbolic output (programs). This can be beneficial
if we want to analyze specific solutions — if we want to know what it has



learned and why the robot is behaving in a certain way. Understanding
the behavior of ANNs or classifier systems may be more difficult.

Using a general program as the data structure defining behavior is flex-
ible. Any behavior can be represented in a general purpose programming
language. If, for instance, special function primitives are desirable then
they can be directly added to the function set of the system. This can
also reduce the need for preprocessing of sensor data and postprocessing
of actuator commands.

In our case we use a special variant of GP which evolves binary machine
code and allows for very efficient implementation. This approach is up
to 2000 times faster than a LISP-based GP system and it has, in certain
instances, been shown to learn significantly faster than a neural network

(Nordin, 1994).

The GP variant we use is also very memory efficient. It uses only 32
KBytes (KB) for the kernel and another 50 KB to store the population.
The complete system can run on a micro-controller. In order to fully ex-
ploit their application areas autonomous adaptive robots must be able to
efficiently use computer resources. In the future, micro and nano techno-
logy robotics may increase the pressure towards efficient use of computer
resources. Furthermore, the memory consumption of our approach is con-
stant and does not need garbage collection. This makes it well suited to
real-time applications.

The objective of the robot’s learning task is defined in a single fitness
function making it straight forward to modify the objective. There is
no procedural or representational knowledge necessary to formulate the
fitness function.

Under the right circumstances a GP system shows excellent generalization
capabilities, (Nordin, 1994; Nordin & Banzhaf, 1995a; Nordin, Francone &
Banzhaf, 1996; Francone, Nordin & Banzhaf, 1996). Good generalization
will give the agent high probability of coping with a changing dynamic
environment.

The genetic programming technique usually gives little risk of over-learning,
i.e. over-specialization to a certain situation.

Genetic programming can be applied with a minimum of a priori know-

ledge.

Cliff et al. advocate ”that the primitives manipulated in the evolutionary
process should be at the lowest level possible” (Cliff, Harvey & Husbands,
1993). This will give minimal constraints for solutions and will reflect



as few of the designer’s prejudices as possible. A machine code GP sys-
tem manipulates the lowest level language possible in a computer and the
design issues of the language used for evolution are thus not affected by
robot researcher’s prejudices. Instead, the language is defined by the man-
ufacturer of the micro processor. It could be argued that this ”objective”
representation ensures that results obtained are less the product of the
system design and more the result of adaptive behavior.

1.2 GP in the Real World

Most previous experiments with GP and robot control have employed a sim-
ulated robot and environment. Judging from our own experience and from
the general opinion in the research field (Brooks, 1992) we strongly believe in
experiments with real robots for several reasons.

Simulations often display several weaknesses when compared to experiments
in the real world. The simulated world is often too ideal, resulting in the agent
learning to react to small details in the simulation that will not be reliably
detected in a real environment. For example, the agent might react to a specific
exact sensor value that occurs all the time in a simulation but occurs only
occasionally in the real world with real noisy sensors.

Problems of this kind are prevalent in most research using GP to evolve robot
control programs. As a result, the control algorithms evolved by GP are often
brittle. Reynolds acknowledges this issue in his discussion of control programs
for obstacle avoidance behavior evolved by GP:

However, those evolved control programs were found to be quite
“brittle”. They do not solve the general obstacle avoidance prob-
lem. They can only guide the vehicle through one specific obstacle
course. They will not even work in the same obstacle course if any
of the vehicle’s initial conditions (position or orientation) is slightly
perturbed. These brittle controllers are a bit like a “house of cards”
which stands as long as absolutely nothing changes (Reynolds, 1994).

Other experiments display a similar brittleness in behavior. One way to
improve the simulation and to evolve more robust controllers is to add noise
to the environment. This reduces the brittleness but does not eliminate it
(Reynolds, 1994). Further examples of GP and simulated control include (Koza,
1992; Atkin & Cohen, 1994; Fraser & Rush, 1994; Handley, 1994; Sims 1994;
Spencer, 1994; Teller, 1994).

More serious than the brittleness of controllers is the problems of moving
the experiments from a simulated robot to a real one. The normal way of
doing GP and control is to create a population of random programs. Each
program then controls the robot for a predefined number of time steps. The
robot is reset exactly to the same location before a program gets evaluated.



The individual program’s performance is judged according to a goodness cri-
terion. When all programs are evaluated the best performing are reproduced
into the next generation. Subsequently, the genetic operators crossover (re-
combination) and mutation are applied. These steps are repeated until a good
solution is found. Normally about 100 generations are needed for convergence
to a good solution. If we have a population size of 500 solution candidates
(programs) and each individual is evolved during 100 time steps then we need
100 x 500 x 100 = 5,000,000 time steps of evaluation before a good controller
is found. This is impractical for a real robot. The dynamic response from the
environment generally requires at least 300 ms for meaningful feed-back. This
means 1,500,000 seconds, or two weeks of evolution. The robot also needs to be
reset to its initial position before each program evaluation, in this case 50,000
times. A simulation could, on the other hand, be run much faster than real time
and resetting the position would not be a problem either.

In this paper we present the first on-line version of a GP control architecture
which allows us to efficiently use GP to control a real robot. The principle is
based on a probabilistic sampling of the environment where different individuals
are evaluated in different situations. Though this approach gives an unfair
judgment in individual situations, and selection will be based on a comparison
of seemingly incommensurable situations, the overall better performing program
individuals will survive in the long run.

Motivation Summary

In summary, our reasons for the experiments described in this paper were:

o We believe that adaptive and learning behavior is necessary for the suc-
cessful application of autonomous agents in real world situations.

e We are also convinced that experiments with real robots are needed in
order to evaluate different approaches to robot control.

e Genetic programming might have advantages for control in certain situ-
ations. Advantages could be speed, generalization, memory consumption,
analysis of solutions and flexible representation.

e No efficient implementation of GP with real robots exists up to date.

We have therefore suggested a method for on-line GP with a real robot and
also introduced the machine code manipulating GP technique in robot control.
Reading Guidance

The rest of this paper is structured as follows: We start by defining our methods
with a description of genetic programming (section 2.1) and an introduction to
the compiling genetic programming (section 2.1.1) approach. The on-line control



method is presented in section 2.2, while the platform for our experiment, the
Khepera robot, is presented in section 2.3. The objectives, the tasks of obstacle
avoidance and object following, are defined in section 2.4. The results of our
experiments are found in section 3. Finally we summarize our conclusions and
outline future work in section 4.

2 Methods

2.1 Genetic Programming

Genetic programming (Koza, 1992) uses an evolutionary technique to breed pro-
grams. First, a goal is defined by specifying a quality function. This so-called
fitness function could, for instance, be the error in a function regression’. The
population — a set of solution candidates — is initialized with random content,
i.e., with random programs. In each ”generation” the fittest individual pro-
grams are selected for reproduction. These relatively fit individuals produce
offspring through recombination, often called crossover, and through mutation.
Various methods exist for selection and reproduction. The idea is always that
better individuals and their offspring gradually replace the worse performing
individuals?.

The individual solution candidate can be represented as a tree which also
constitutes its genome. This tree can be seen as the parse tree of a program in a
programming language. Recombination is performed by two parents exchanging
subtrees, as shown in Figure 1.

A typical application of GP is symbolic regression. Symbolic regression is
the task of inducing a symbolic equation, function or program which fits given
numerical data. Genetic programming is ideal for symbolic regression and most
GP applications could be reformulated as variants of symbolic regression. A
GP system performing symbolic regression takes a number of numerical in-
put/output relations, called fitness cases, and produces a function or program
that is consistent with these fitness cases. Consider, for example, the following
fitness cases:

£(2) = 86
£(4) = 20
£(5) = 30
£(7) = 56

One of the infinite number of perfect solutions would be f(z) = 2% + z. The

1In this case the aim would be to minimize this error function.

2Genetic programming has some similarities with “beam search” (Lowerre & Reddy, 1980,
Rosenbloom, 1987), if the population is regarded as the memory buffer and the fitness as a
stochastically assigned priority.
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Figure 1: Hierarchical crossover in genetic programming: Sub-
trees are exchanged between parents.
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fitness function might be the sum of the differences between an individual’s
(function’s) actual output and the target output over all the fitness cases.

The function set or the function primitives could, in this case, be arithmetic
operators +, —, X, /, as shown in Figure 1. Terminals could be chosen to be the
input value x and constants.

The two most important decisions to be made before the training of a genetic
programming system can start are to choose a good fitness function and to
choose the right function and terminal set. The fitness function should allow
for a gradual improvement during evolution, since it should give meaningful
feedback to the GP induction system. The function set should contain primitives
relevant to the problem domain. Each function in the function set should also
be syntactically closed — it should be able to gracefully accept all possible inputs
in the problem domain.

2.1.1 Compiling Genetic Programming

The Evolutionary Algorithm we use in this paper is an advanced version of the
Compiling Genetic Programming system (CGPS) described in (Nordin, 1994).
The structures that undergo evolution are variable length strings of 32 bit in-
structions for a CPU of a standard computer with von Neumann architecture.
This architecture is also known as a register machine architecture. A register



machine performs operations on a small set of registers. The 32 bits in the in-
struction represent simple arithmetic or logic operations such as ”a = b+ ¢” or
“¢ = b&h”. The genetic operators are able to manipulate binary code directly.
The actual format is the machine code format of a SUN-4 (Sparc, 1991).

Most other genetic programming approaches use a technique where a problem—
specific language is executed by an interpreter. The individuals in the popu-
lation are decoded at run time by a virtual machine. The data structures in
those programs often have the form of a tree. This solution gives high flexibility
and the ability to customize the language depending on the constraints of the
problem at hand.

The disadvantage of this paradigm is that interpreting the program involves
alarge overhead. There is also a need to define more complicated genetic operat-
ors than with CGPS, which further decreases speed of the evolutionary process.
Often the complete system and the genetic operators themselves are written
in an interpreted language like LISP (Koza, 1992). This reduces performance
in most hardware environments. Recently some systems have been presented
written in compiler languages like C or C++, parsing structures equivalent to
the programs used in a LISP implementation (Keith & Martin, 1993). This
gives increased performance while it preserves the ability to be flexible with
the representation and selection of a problem specific functions in the programs
(function set). Most of these systems still interpret the programs in the pop-
ulation and that involves considerable overheads both in execution time and
memory consumption.

We have implemented the idea of using the lowest level binary machine code
as the ”programs” in the population. Every individual is a piece of machine
code that is called and manipulated by the genetic operators. There is no
intermediate language or interpreting part of the program. This approach has
enhanced performance by up to 2000 times compared to a conventional system
using an interpreted language (Nordin & Banzhaf, 1995b). We call our approach
“compiling” as the system generates binary code from the training set and there
are no interpreting steps. The idea is to use the real machine instead of a
virtual machine and it can be expected that the loss in flexibility will be well
compensated for by increased efficiency.

Data and programs reside in the same memory in a computer with von Neu-
mann architecture. Both, data and programs, are represented internally by fixed
length numbers. These number will be interpreted either as data or as program
depending on the state of the processor (see Figure 2). Each instruction defines
an operation between the processors internal registers or between memory and
internal registers. The idea behind compiling genetic programming is to treat
the lowest level binary code just as an array of numbers when genetic operators
are applied.
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2.1.2 The structure of a machine code function callable as a C-
function

The individuals in the population consist of machine code sequences resembling
standard C-functions. The two most significant differences between a usual
GP system and CGPS are that CGPS has a linear genome and that the cros-
sover/mutation operators work on linear structures. These differences are forced
by the use of machine code.

Figure 3 illustrates the structure of a GP individual in CGPS. There are
four major parts:

1. The Header deals with the administration, needed when entering a func-
tion called by a C (main) routine. This normally means manipulation
of the stack, for instance getting the arguments for the function from
the stack. There could also be some processing to ensure consistency
of processor registers. This part is often constant and can be added at
the beginning of the initialization of the machine code individual in the
population. Mutation and crossover operators must be prevented from
changing this part of the code during evolution.

2. The Footer is similar to the header but operates in opposite order and
“cleans up” after the function call. The footer must also be protected
from change through genetic operators. The return instruction forces the
system to leave the function and to return program control to the call-
ing procedure. If variable length programs are desired, then the return
operator could be allowed to move within a range defining minimum and
maximum program size.

3. The function body consists of the actual program that evaluates the func-
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tion.

4. A buffer is reserved at the end of each individual to allow for length vari-
ations of the program.

<— Header = Body < Footer» <—Buffer —

Figure 3: Structure of a program individual. It consists of 4
parts: Header, body, footer and buffer.
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2.1.3 The genetic operators
The evolutionary algorithm has the following three operators:

o Selection: CGPS uses tournament selection described in section 2.2.1 be-
low.

e The mutation operator changes the content of an instruction by varying
constants or register references. It randomly changes one bit of the in-
struction provided certain criteria are fulfilled. If hitting the operation
code (op-code) mutation ensures that the the resulting instruction is a
member of the set of approved instructions. This avoids jumps, illegal
instructions, bus errors or loops etc. Furthermore it also assures some
arithmetic consistency, when, for instance, division by zero is prevented.

e The crossover operator works on variable length individuals. Crossover
is only allowed between instructions, i.e. at 32-bit intervals in the binary
string. The genome is snipped between 32-bit machine instructions and
only blocks of code are exchanged that are separated at instruction bound-
aries. So crossover looks more like Genetic Algorithm crossover than it
does resemble GP subtree crossover (Nordin, Francone & Banzhaf, 1996).
Figure 4 illustrates the crossover method of CGPS (Nordin & Banzhaf,
1995b).

All operators ensure syntactic closure during evolution, i.e. they do not cause
the computer to exit execution.

It is interesting to note that the DN A genome in nature has a linear structure
as well. It is a double helix of four different organic molecules resembling a string
of letters in a four letter alphabet. The linear sequence is made up of larger
units called genes. Each gene codes for a specific protein or function. A gene
could thus be seen as a segment of the genome which can be interpreted — and
has a meaning — in itself. In our case there are lines of code each representing an

11
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Figure 4: Crossover of a machine code program with a linear
genome. Crossover takes place between instructions
symbolized by circles.

instruction or command. Such a command is syntactically closed in the sense
that it is possible to execute it independently of the others. This, therefore,
has some similarity to a gene in nature — it consists of a syntactically closed
independent structure which has a defined starting and ending point. It is
in both cases treated as a structure separate from the whole genome structure.
The method of applying crossover only between instructions/genes and mutation
only within instructions/genes can also be used with computer languages other
than machine code, see for instance (Nordin & Banzhaf, 1996a).

2.1.4 An Example Program

As we have seen above, a CGPS program is no more than a sequence of 32
bit binary machine instructions in memory. For example, an evolved CGPS
program might be three 32 bit machine instructions. When executed, those
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three instruction will cause the CPU to perform three simple operations on the
CPU’s hardware registers:

register2 = registerl + register2 (1)
register3 = registerl * 128 (2)

register3 = register2 Div register3 (3)

In the remainder of this section, we will follow the CGPS program individual
using the above three instructions (1) - (3) through a single fitness evaluation.

Let’s say that we have three independent variables with values of, respect-
ively, 3, 2650, and 10 for the single fitness case. Let’s also assume that we have
chosen register 3 as the single output register. Our three instruction CGPS
program would be evaluated for fitness in the following steps:

1. The hardware registers would be initialized with the values of the inde-
pendent variables.

2. Each of the three instructions (1) - (3) would be executed in order.

3. The value of register 3 would then be used as the output of the system for
the purpose of fitness evaluation.

Here is how the values of the hardware registers would change during the above
fitness evaluation.

|| Register 1 | Register 2 | Register 3 | Description of Step ||

3 2650 10 Initialize Registers With
Independent Variables
3 2653 10 Execute Instruction (1)
3 2653 384 Execute Instruction (2)
3 2653 6 Execute Instruction (3)

Table 1: Execution of program (1) —(3) under specific start-
ing conditions for evaluation purposes.

So the output of the above program for the fitness case of 3, 2650, 10 is 6 -
that is, the value in the register that was chosen as the output register, Register
3. This output can now be compared to a target output and its fitness can be
computed.

2.1.5 Summary

It should be clear by now that there is no specific data structure in CGPS
such as trees or S-expressions that are evolved and which are then compiled or
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interpreted into machine instructions. The only representation we use for the
programs is the array of machine code instructions itself.

Of the many advantages of CGPS, we feel that the principal advantage
is speed. Executing machine code directly is much faster than interpreting
languages or dynamically creating programs. In fact, CGPS can perform about
240,000 fitness evaluations per second on a single processor SUN workstation.

The kernel of CGPS requires only 32 KBytes. Its small system size is partly
due to the fact that knowledge of the language used is supplied by the CPU
designer in hardware — there is no need to define the language and its inter-
pretation. Another reason for the compactness is that the system manipulates
the individual as a linear array of integers which is much more efficient than
the more complex symbolic tree structures used in other GP system. The final
reason for low memory consumption is the large amount of work done by CPU
manufacturers to ensure that their machine instruction codes are compact and
efficient.

The properties of CGPS make it ideally suited for real-time control in low-
end processor architectures such as one-chip embedded control. Furthermore,
functions of great complexity can be evolved with just simple arithmetic or logic
operations in a register machine (Nordin & Banzhaf, 1995b).

2.2 The On-line GP approach

Our method for using GP with a real-time application is based on a probabilistic
sampling of the environment. Different solution candidates (programs) are eval-
uated in different situations. This is unfair because a good individual dealing
with a hard situation can be rejected in favor of a bad individual dealing with a
very easy situation. Qur experience is, however, that a good overall individual
tends to survive and reproduce in the long term. The somewhat paradoxical
fact is that sparse training data sets or probabilistic sampling in evolutionary
algorithms often both increase speed toward the goal and keep the diversity
high enough to escape local optima during search.

The remarkable claim that evolutionary algorithms might do better with
noisy fitness functions is effectively illustrated in (Fitzpatrick, Grefenstette &
van Gucht, 1984). A genetic algorithm is used there to match two digital pictures
each consisting of 10,000 pixels. A trade-off exists here between the number of
pixels to be compared in one matching operation (one would prefer less in order
to gain speed) and the noise which is inevitably induced by selecting a subset
of the images for the matching operation (one would prefer more pixels in order
to keep the match accurate). The most efficient sample size, i.e. number of
pixels in the fitness evaluation turned out to be 10 (out of 10,000) pixels. In
other words, the fastest run to reach a good solution only looked at 1/1000 of
the available data in each individual evaluation.

Our own experiments with GP also point to the fact that very sparse data
sets are useful for learning in evolutionary algorithms (Banzhaf, Francone &

14



Nordin, 1996; Francone, Nordin & Banzhaf, 1996).

2.2.1 The evolutionary system

The population of programs is initialized with random content at the beginning
of training. Tournament selection is used to determine who will survive and have
offspring. We use a steady-state GP population (Syswerda, 1991; Reynolds,
1994) rather than discrete generations. Figure 5 gives a schematic view of
the control architecture and the GP-system. Input to the GP system are sensor
values communicated from the robot, output of the GP system are motor values
controlling its behavior.

GP-system

Genetic
Operators

(crossover/mutation)

Population

50 individuals

Figure 5: Schematic view of the control system. Input to the GP
system are sensor values communicated from the robot,
output of the GP system are motor values controlling
its behavior.

The GP execution cycle is:
1. Select four members from the population at random.
2. For each member of the tournament in succession do:

Read from input and provide the data to the individual program.
Execute the individual and store the results.
Send output to the system being controlled.

Sleep for some time (here: 400ms) in order to await the results of the
action.

(e) Read from input again and compute fitness, see Section 2.4.

15



3. Replace the two worst performing individuals with copies of the two best
ones.

4. Do mutation and crossover on the offspring (copies).
5. Goto step 1.

Each individual is thus tested against a different real-time situation lead-
ing to a unique fitness case. This results in “unfair” comparison where indi-
viduals have to navigate in situations with very different possible outcomes.
However, our experiments show that over time averaging tendencies of this
learning method will even out the random effects of probabilistic sampling and
a set of good solutions will survive.

2.3 The Khepera Robot

Our experiments were performed with a standard autonomous miniature robot,
the Swiss mobile robot platform Khepera (Mondada, Franzi & Ienne, 1993). It
is equipped with eight infrared proximity sensors (Figure 6). The mobile robot
has a circular shape, a diameter of 6 cm and a height of 5 cm. It possesses
two motors and an on-board power supply. The motors can be independently
controlled by a PID controller. The eight infrared sensors are distributed around
the robot in a circular pattern (Figure 7). They emit infrared light, receive the
reflections and in this way they are able to measure distances in a short range
of 2-5 cm. The robot is also equipped with a Motorola 68331 micro-controller
which can be connected to a workstation via serial cable.

It is possible to control the robot in two ways. The controlling algorithm
could be run on the workstation with data and commands communicated through
a serial cable. Alternatively, the controlling algorithm could be down-loaded to
the robot which then runs the complete system in a stand-alone fashion. We
use both versions of the system.

The micro-controller has 256 KB of RAM and a ROM containing a small
operating system. The operating system has simple multi-tasking capabilities
and manages the serial communication with the host computer.

2.4 Objectives

Our two sample tasks for illustration of the control approach are obstacle avoid-
ance and object following. In both of our tasks the goal of the learning robot
is to find a control function (program) which reacts to the sensor data and pro-
duces a vector of two motor speeds. The only change in the architecture between
the two tasks is the fitness function. With obstacle avoidance the fitness func-
tion gives the agent maximal “pleasure” by staying away from obstacles. In the
object following task the best fitness is achieved when the agent is at a specified
distance from an object.
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Figure 6: The Khepera Robot.

2.4.1 Training Environment

We wanted to make sure that our results and the evolved controllers were not
brittle. This had previously been a problem with robot control simulation and
genetic programming, as mentioned in the introduction. We therefore used two
different environments in each experiment. The robot was alternatively trained
in one environment and then placed in the other environment to study if it had
been able to generalize. The design of the environment was deliberately done
so that the two environments expressed different properties regarding friction
against floor and walls, reflection of objects, size and shape. The second envir-
onment was in addition equipped with movable walls to increase the number of
possible variations.

Figure 8 shows the first environment and its complex features. Its dimensions
are about 70 cm x 90 cm. It has an irregular boarder with different angles and
four dead-ends in each corner that were supposed to deceive the robot during
navigation. In the larger open area in the middle loose objects can be placed.
The friction between wheels and surface is considerably lower than in the second
environment, enabling the robot to slip with its wheels during a collision with
an obstacle. There is an increase in friction with the walls, making it hard for
the circular robot to turn while in contact with a wall.

The second environment is larger, about 100 cm x 100 ¢cm, and is shown in
Figure 9. It has a higher friction between surface and wheels but a lower friction
between walls and the circular robot. The walls of this environment are highly
reflective to the infrared light emitted by the sensors and they are movable to
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Back

Figure 7: Position of the 8 infrared Siemens SFH 980 proximity
Sensors o, ..., s7 on the Khepera robot.

allow for different paths and configurations.

2.4.2 Obstacle Avoidance

The goal of the controlling CGPS system in the first experiment is to evolve
obstacle avoiding behavior in a reactive context. The system operates in real-
time and tries to learn obstacle avoiding behavior using real noisy sensor data
from the 8 proximity sensors. See (Braitenberg, 1984; Reynolds, 1988; Mataric,
1993; Zapata, Lepinay, Novales & Deplanques, 1993) for a discussion of this
problem domain.

In the obstacle avoiding application we search for an appropriate control
function that takes the sensor values as input and returns a vector of two motor
speeds:

f(s0, 81, 82, 83, S, S5, 86, $7) = {m1, ma} (3)
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Figure 8: The first environment (training).

In our experiments, the evolved programs are true functions because no
side-effects like storage in variables are allowed. It might be possible to evolve
programs that can store information in memory for later use, but for the sake of
simplicity we have chosen to limit the experiments to side-effect-free programs
here. A program that could use memory will potentially be much more powerful.
It could use memory to build a world model and to adapt faster to changing
environments. This approach will be the subject of further studies in the future.

The controlling CGPS uses a small population size, typically less than 50
individuals. The individuals use eight values from the sensors as input and
produce two output values which are transmitted to the robot as motor speeds.
Each individual program controls the robot independently of the others.

Fitness calculation

The fitness in the obstacle avoiding task has a pain and a pleasure part. The
negative contribution to fitness, called pain, is simply the sum of all proximity
sensor values. The closer the robot’s sensors are to an object, the more it will
experience pain. In order to keep the robot from standing still or rotating, there
is a positive contribution to fitness called pleasure. The robot receives pleasure
from going straight and fast.

Let s; be the values of the proximity sensors ranging from 0 — 1023 where a
higher value means closer to an object. Let m; and my be effector values, namely
the left and right motor speeds resulting from an execution of an individual.
The values of m; and my are in the range between 0 — 15. Fitness can then be

19



Figure 9: The second environment (testing).

expressed more formally as:

7
fitness = a(my + ma— | mg —my |) — 6251 4)

=0

Thus, motor speed values minus the absolute value of their difference and sensor
values enter the fitness function. The weights @ = 16,5 = 1 have been used in
these experiments.

2.4.3 Object Tracking

In this second experiment the robot’s task is to follow moving objects without
colliding with them. This more complex task includes a component of obstacle
avoidance when the robot comes too close to an object. The task does not
contain any reward for moving so the robot moves only if the object is moving
and stops when near enough to the object. The training of this behavior was
performed in the same two environments as the obstacle avoidance task but now
including moving objects. The objects were moved by hand once the robot had
come far enough in its learning process to be able to detect an object and to
approach it.

Fitness calculation

Calculating fitness for the object tracking task is based solely on the four sensors
facing forward. In order to define the desired behavior we need to give a function
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which attracts the robot to objects far away but repels the robot if it is too close.
The fitness function should thus have an U-shape where the lowest pain is at a
predefined distance from an object. The fitness function we used for this task
is:

fitness = (s1 + sa + s3 + s4 — 1000)2 (5)

The value of 1000 represents the ideal distance from an object. When the sum
of the front facing sensors is 1000 then the agent perceives its “ideal feeling”
and the fitness is zero.

3 Results

3.1 Obstacle Avoidance

The robot shows exploratory behavior from the first moment. This i1s a result
of the diversity in behavior residing in the first generation of programs which
has been generated randomly. Naturally, the behavior is erratic at the outset
of a run.

During the first minutes, the robot keeps colliding with different objects, but
as time goes on the collisions become less and less frequent. The first intelligent
behavior usually emerging is some kind of backing up after a collision. Then
the robot gradually learns to steer away in an increasingly more sophisticated
manner.

On average the robot learns in 90% of the experiments to reduce collisions
to less than 2 collisions per minute. The reason for the collisions not always
dropping to zero is that the infrared sensors are not very well doing when en-
countering sharp edges or corners.

The learning time is about one hour. It takes 40-60 minutes, or 200-300
generation equivalents, to evolve a good obstacle avoiding behavior. This time
compares very well to other evolutionary approaches on the same platform.
The evolution of obstacle avoiding behavior using a genetic algorithm to train
a neural network is reported to take 100 times as long (Floreano & Mondada,
1994). These two experiments might not be directly comparable but one has
at least an indication of the strength of the combination between probabilistic
sampling and a machine code manipulating GP system in robotic control.

Figure 10 shows how the number of collisions per minute diminishes as the
robot learns and the population becomes dominated by good control strategies.

The moving robot gives the impression of performing a very complex be-
havior. Its behavior resembles a bug or an ant exploring its environment with
irregular small moves around the objects. Data such as Figure 15 (discussed
in section 3.5) also suggest that the evolved behavior is complex. Though it is
hard to classify the different kinds of behavior the robot demonstrates during
evolution we found a few distinguishable classes:
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Figure 10: The number of collisions per minute in a typical train-
ing run with the environment of Figure8.

. The initial wall-bumping behavior. This is the childhood of the robot
where it must make mistakes in order to learn for the rest of its life. It
tries several impossible strategies such as trying to force itself through the
walls.

. The backing—up behavior. This is the first effective technique that allows
the robot to avoid obstacles. However, this technique has several draw-
backs. It risks placing the robot in the same situation if it moves forward
again.

. The reflection behavior. Here the robot gradually turns away from an
obstacle as it approaches it. It looks as if the robot bounces like a ball at
something invisible, close to the obstacle. This behavior gives a minimal
speed change in the robot’s path.

. The sniffing behavior. The robot stops immediately as it just senses an
object. It then starts to sniff around by very small movements as if it was
determining which way will be the most favorable to go.

All these behaviors can be distinguished but they also appear mixed and as part
of very complex movements.

The task of obstacle avoidance could at first glance be regarded as a simple
task to learn. After all, it is relatively easy to write programs by hand that
solve the problem efficiently. One should, however, keep in mind that the GP
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system learns the task with no a priori knowledge. The major difficulty is to
sort out how to interpret its eight input sensors. The system must in a similar
way learn the dynamics of its actuators and the physical dynamics of its body
and environment.

3.2 Object Tracking

The behavior of the robot is now profoundly different due only to a slight change
in the fitness function. Surprisingly, it learns obstacle avoidance faster than the
obstacle avoiding system. The reason is presumably that the pleasure part of the
fitness function is missing. There is no reward for going straight and fast in this
case, which might simplify the learning task, because there are no conflicting
signals in difficult situations.

The object following behavior is learned in about 30 minutes. The robot
appears to “sniff” around an object as soon as it finds one. It moves slightly
in all directions to try to find the optimal distance to the object. Noise from
the sensors and from stochastic sampling result in constant small movements.
When an object is moved the robot acts as if it were connected to the object
with an elastic spring. It follows the object with a certain delay and when the
object stops it oscillates slightly around the ideal distance. A similar behavior
is achieved when the object is pushed against the robot - it backs off as if there
were a spring connected to the object.

It is interesting to note how differently the robot behaves by only changing
a few terms in its fitness function and how the robot adapts to its rewards
relatively quickly without almost any procedural knowledge. The robot just
has a “blind” feed-back from its fitness function, a ”reinforcement signal” telling
it if something is good or bad, not what and why.

3.3 Robustness

Given the brittleness of other GP control experiments we found it important
to evaluate each training run in an unseen environment. No degradation in
behavior is visible, when the robot is lifted from the training environment and
placed in the testing environment. In a similar way the robot showed the same
performance if it was lifted and placed in a different starting point in the envir-
onment.

3.4 A Sample Evolved Program

As seen earlier in Section 2.1.1, each node in the genome represents an operation
between a small set of registers. The structure of a node corresponds to a
machine code instruction in the processor and is stored in such a way that it
can be executed directly. Below we see how a program individual for our robot
control task may look if printed as a ’C’ program for better readability. Each
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individual is composed of simple instructions (program lines) between input and
output parameters and temporary variables. The actual robot control function
takes eight values as input (the sensors sg — s7) and produces two values as
output (the motor speeds my, ma), see also Figure 7 for a location of the sensors.

The program below is a program actually evolved by the system where a —
e are registers for temporary storage of input values and motorl, motor2 are
registers for the resulting speed values that will be sent to the motors. The
operators in the program below are the arithmetic operators plus “<<”, “>>"

which denote arithmetic shift operations, and ”&” and “|” which are logical
“and” and “or”3. Table 2 gives a summary of the parameters used in the
experiments.
a=s3 + 4;
d=s2 >> s1;
b=s1 - d;
d=s2 + 2;
c=d >> 1;
b=d - d;
a=c - 3;
c=s84 << a;
d=a * 4;
a=a ~ 5;
e=d + s4;
c=b & c;
d=d + d;
c=d | 8;
d=d * 10;
b=e >> 6;
d=b & 0;
e=c >> b;
motor2=a | e;
c=d | 7;

motorl=c * 9;
c=e & e;

3.5 Visualizations of results for obstacle avoidance

In order to illustrate the control strategies of the different evolved programs and
to analyze how the robot achieves obstacle avoidance we have used a graphic
technique to plot the relationship between sensor input and motor output. The

3The code has been edited for clarity. Sensor and motor values are in reality stored in the
same register used during calculation. Register ”a”
starts and registers ”b” contains the value of s; . Correspondingly the motor speed values
sent to the motors are what is left in register "a” and "b” at the end of evaluation.

contains the value of sg when evaluation
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Objective : Obstacle avoidance and object following

Terminal set : Integers in the range 0-8191

Function set : ADD, SUB, MUL, SHL, SHR, XOR,
OR, AND

Fitness : Pleasure subtracted from pain value

Maximum population size : 50

Crossover Prob : 90%

Mutation Prob : 5%

Selection : Tournament Selection

Termination criteria : None

Maximum number of instructions: | 256

Table 2: Summary of parameters used in the experiments.
Note that each instruction corresponds to 4 nodes
in a tree-based GP system.

control function takes eight values as input (the sensors) and produces two
values as output (the motor speeds). The control function is therefore too
high dimensional for a direct visualization in a diagram. Instead we simulate a
uniform stimulus on the left side and the right side of the robot, as shown in
Figure 11. The output of an individual program in the population is examined
then and the steering direction of the robot is plotted in terms of the difference
between left and right motor speeds.

A simple control strategy which would avoid obstacles to some extent would
be a plane sloping from the upper left corner of the diagram down to the lower
right corner, as in Figure 12. If the robot would be controlled by such an
algorithm it would steer more to the right the more the sensors on the left
side are stimulated. Many plots from actually evolved control programs show
similarities to this plane, e.g. Figure 13 and Figure 14. The diagrams are
more complex but the slope from upper left to lower right is evident. A good
control strategy should, however, accomplish more than simply steering away.
It should for instance have the ability to back away from obstacles and perform
even more complex maneuvers. In many cases we do not have an explanation
for the complex look of these diagrams. We do not know whether they are the
product of mere chance or whether the complex features help the individual in
the competition to control the robot.

Below we see the individual control program which generated Figure 15 when
examined systematically, i.e. when presented with all combinations of evenly
distributed left and right side stimuli.

a=s3 + 4;
d=s2 >> s1;
b=s1 - d;
d=s2 + 2;
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Figure 11: Method for visualizations of results. Input on both
halves of the sensors is equally strong. These values
are plotted on the X— and Y — axis of Figuresl2 to
15

c=d >> 1;
b=d - d;
a=c - 3;
c=s4 << a;
d=a * 4;
a=a "~ 5;
e=d + s4;
c=b & c;
d=d + d;
c=d | 8;
d=d * 10;
b=e >> 6;
d=b & 0;
e=c >> b;
motor2=a | e;
c=d | 7;

motorl=c * 9;
c=e & e;

This complex control strategy does not use all of the sensor values, for in-
stance sg is missing. The sensors from the back of the robot are not used either
in this example. This could be the result of too little exposure to backing into
obstacles during training. It is typical for solutions of genetic programming® to
be parsimonious in its output and only use the concepts which it ”thinks” are

4 After neutral code has been removed.
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Figure 12: An example of a simple controlling function which
would display simple obstacle avoiding behavior.

really needed to achieve the defined goal. Most evolved programs are about the
size of the program above, 10-20 instructions equaling 40-80 bytes of memory.

3.6 GP on board of the Khepera in autonomous mode

There is no consensus what an autonomous robot really is. Some would argue
that autonomy is a property of the controlling algorithm while others would
argue that physical autonomy is needed. Since we share the latter opinion, we
have ported a special version of the system to the micro-controller on board of
the Khepera.

It is possible to download this system via the serial cable to the robot.
With the batteries switched on, the robot can then be disconnected from the
workstation and can run completely autonomous. The Motorola 68331 micro-
controller then runs the full GP system.

As mentioned earlier, this micro controller has 256 KB of RAM memory.
The kernel of the GP system occupies 32 KB and each individual requires 1
KB in this setup. The complete system with 50 individual then occupies 82 KB
which is well within the limits of the on-board system.

The results with the autonomous system are almost identical to those with
the system connected to the workstation. The only small difference is that the
cable no longer disturbs the system. When the cable was connected to the robot,
it sometimes physically restricted the robot’s movements. The cable sometimes
got in the way of the sensors and caused a “tail chasing” behavior. The problems
with the cable are an example of the many small disturbances which are almost
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Figure 13: Example of controlling function with similarities with
the plane in Figure 12.

impossible to simulate but must be experienced with a real robot.

The batteries are the main limitations of the autonomous system. They can
power the miniature robot and the system for about 40-60 minutes which is
close to the minimum time required for training. The learning GP system in
itself is identical to the system on the workstation with identical cycle time and
performance.

The micro-controller version demonstrates that the compactness of the com-
piling GP system enables relatively powerful solutions in weak architectures
such as those used in embedded control.

4 Conclusions and Future Work

The combination of probabilistic sampling with a GP technique has two im-
portant advantages. It enables the efficient use of a GP technique on-line and
at the same time accelerates the learning.

The system works well when implemented on a real robot receiving noisy
input with real-time constraints. The evolved algorithm shows robust perform-
ance even if the robot is lifted and placed in a significantly different environment
or if objects are moved around.

We believe that the robust behavior of the robot partly could be attributed
to the built-in generalization capabilities of the genetic programming system
(Nordin & Banzhaf, 1995a). Partly it could be attributed to the probabilistic
sampling: No individual can simply memorize a path to move on because it does
not know how and in what situation the next action will have to be evaluated.
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Figure 14: Example of controlling function.

Evolutionary search methods have been proven to do well and robustly in
multi-modal and difficult search domains. This could be one reason for the
robust performance in the complex search domain of symbolic control programs.
The concept of keeping a population of solution candidates with a varying fitness
could help to avoid local minima in search. Simpler approaches, for instance a
hill climbing method, might get caught easier in a local minimum which would
prevent good final results.

We have also cross-compiled the GP-system and run it in the same set-up
on the micro-controller on-board the robot. This demonstrates the applicability
of Compiling Genetic Programming to control tasks on low-end architectures.
The technique could potentially be applied to many one-chip control applica-
tions in, for instance, consumer electronics etc. Thanks to the use of machine
language the system does not have to incorporate the knowledge of the language
in software — it is provided in hardware.

The fixed machine language of the system could be said to be an advantage
because it omits most of the designer’s prejudices of why an application should
work. On the other hand it could be argued that the machine language ap-
proach is less flexible then other GP approaches because the language is fixed?®.
However, GP systems have been shown not to bite the bait we give it in the
form of complex specialized and predefined functions. Instead, the system of-
ten chooses to evolve its own approximations with lower level primitives (Koza,
1992; Nordin & Banzhaf, 1996b).

An important extension to the system would be to eliminate the 400 ms

5Even though it is possible to extend CGPS with any function or procedure as part of the
function set
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Figure 15: Sample behavior of an evolved control program.

reaction delay time, during which the system is waiting for the result of its
action. The need to wait for the response of the environment is the major
drawback of our system. If we would like to learn a more complex task we
would most probably have to raise the population size and wait much longer
for convergence of the algorithm. The speed of the algorithm is defined by the
response needed from the environment and one would have to wait longer for
convergence almost regardless of machine resources.

This problem could be addressed by allowing the system to memorize previ-
ous stimulus-response pairs and by enabling it to self-inspect memory later on
in order to learn directly from past experiences without a need to wait for res-
ults of its actions. Early results show that this history based method can speed
up the GP algorithm by a factor of at least 1000. The learning of obstacle
avoiding behavior is accelerated by a factor of 40 enabling learning within a few
minutes (Nordin & Banzhaf, 1995¢). The difference comes about by the fixed
requirement of waiting for feedback from the environment.

We are also investigating a different approach for more complex problems.
A useful strategy to create robust behavior is to divide complex actions into
action primitives which only perform specialized tasks like avoiding obstacles
or moving ahead, and then combine them again for the creation of higher levels
of competence (Brooks, 1992). In our approach the GP system first learns the
sub-tasks and then evolves a higher—level action selection strategy for deciding
which of the evolved lower—level algorithms should be in control. The lower
level sub-tasks are:

e Obstacle avoidance.
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o Wall following.

e Homing behavior. Find a dark “nest” (visible in the lower right in Figure

9).

e Traveling open spaces. The agent learns to efficiently travel an open space
without obstacles.

Preliminary results show that the robot is indeed able to evolve both the control
algorithms for the different lower-level task and the strategy for the selection of
tasks (Banzhaf, Nordin & Olmer, 1996; Olmer, Nordin & Banzhaf, 1996). This
could potentially be a feasible approach when a very complex behavior needs to
be adaptive.
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