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ABSTRACT 

This paper introduces a Genetic Programming (GP) approach to automatically evolve control 
programs for walking robots. In contrast to earlier work, in which the evolution of gait control 
programs depended on the direct measurement of the quality of movements of simulated ro-
bots, in this paper a new method is presented that circumvents time consuming evaluations of 
control programs through the probabilistic evolutionary process.   

1 INTRODUCTION 

Evolution of control programs for walking robots with GP (1,2) – as every evolutionary ex-
periment – requires the evaluation of individual solutions according to an explicitly defined 
fitness function. This in turn entails execution of the respective control program, observation 
of the generated movements of the robot for a certain period of time and calculation of the in-
dividuals’ fitness values. Experiments have shown that genetic programming is able to auto-
matically generate control programs that, when executed, make robots with arbitrary mor-
phologies move by using their limbs or equivalent body parts1 (3,4,5).  
 
A typical evolutionary experiment, however, with its hundreds of generations and tens of in-
dividuals, quickly results in a protracted matter. Simulation, which would alleviate the prob-
lems caused by the use of real robots, implies other unwanted hitches and is very time con-
suming, once reasonably complex robots are to be simulated (6,7). In this contribution we 
show, how to circumvent the huge processing load when simulating behavioral programs.  
 
The paper is organized as follows: the next section gives a short introduction to the use of sur-
rogate functions in Evolutionary Algorithms (EA), Section 3 explains the linear representation 
of control programs for walking robots and its consequences for a meta-model approach. Sec-
tion 4 introduces two different strategies for the use of meta-model assisted evolution, classi-
                                                 
1 The SIGEL simulation system for evolution of walking programs for arbitrary robot morphologies is an Open 
Source project and available via http://sourceforge.net/projects/sigel 
 



fication and estimation. Section 5 shows results of experiments using the proposed strategy 
with two different robots, comparing the computational effort with reference experiments. 
Section 6 shows an example of a successful experiment using the estimation strategy.  

2 SURROGATE FUNCTIONS 

Reducing the number of evaluations during the evolutionary process without loss of quality at 
the same time is the goal of the method presented here. There already are a number of ap-
proaches to reduce the need for evaluations within the field of EC: if a fitness function is de-
fined mathematically, an approximation may be computed by interpolation between sampling 
points (e.g. in (8,9)). In more complex cases, the fitness of an individual can be inherited from 
its ancestors (10). Within GP, there are approaches trying to reduce the number of evaluations 
by means of information theory and statistics (12). A comprehensive overview over the appli-
cation of surrogate functions is presented e.g. in (11).  The method proposed here follows a 
different approach: 
 
Within a GP framework, tournament selection simply compares two (or more) individuals on 
the basis of their fitness values (e.g., in the case of walking robots used here, the walking 
speed). In order to decide which individuals represent superior walking programs, fitness val-
ues have to be determined before a decision can be made. In terms of Evolutionary Computa-
tion (EC), the decision is based on phenotypic information. In our approach, this evaluation of 
individuals, the primary factor for the overall runtime of the algorithm, is replaced by a deci-
sion, which is based only on the structure of the tournament’s individuals, in EC terms called 
genotypic information. Once a decision is made, inferior individuals are replaced by the out-
come of recombined and mutated individuals with superior quality. Thus, the classification of 
comparisons taking place during tournament selection acts as a surrogate function or a meta-
model of the fitness function. 
 
Earlier experiments have shown that a GP system is able to predict the outcome of a compari-
son of two individuals within a tournament, solely based on knowledge extracted from previ-
ously collected training data resulting in a 40% reduction of evaluations on average (13). GP 
was used in two forms here: (i) evolution to automatically produce better and better gait con-
trol programs, and (ii) evolution to generate better and better classifiers to discriminate be-
tween better and worse individuals of the first GP system in order to avoid their evaluation. 
Gait control programs were represented as a vector of integer values parameterizing an inverse 
kinematics, whereas evolved classifiers are linear lists of assembler-like instructions.  
 
In this paper, the double use of GP remains the same, but the structure of individuals is more 
complex due to the fact that now linear GP is used to represent gait control programs, too.   

3 META-MODEL STRATEGIES 

The linear representation of computer programs within GP resembles assembler- or machine 
code programs. An example of a linear program is shown in Fig. 1. Each program of a GP 

population is a sequence of instructions. The following basic instructions are elements of the 
function set: ADD, SUB, MUL, DIV and MOD for arithmetic operations, COPY and LOAD  



 
 

Figure 1: Part of a linear GP-individual used in the SIGEL system. 
 

for register manipulation, CMP, JMP, DELAY and NOP for execution control, and the 
SENSE and MOVE command as instructions that are directly connected to the robot.  
Execution of such linear codes causes the connected robot to move its joints according to the 
parameters of the MOVE statement. Feedback on the actual position and orientation of joints 
is gained with the SENSE command. In earlier experiments (13), a control program p is en-
coded as a vector of real values { }nixi ,,1, K∈ , 
 

{ }nxxp ,,1 K=  , n=16,                                                      (1) 
 

parameterizing the inverse kinematic transformation that computes the trajectories of the foot 
points of each leg of the robot. Different parameters generate different trajectories, producing 
varying gait patterns, which are in turn subject of the selection and variation processes of the 
evolutionary algorithm. In the experiments described in this paper, a GP program p is encoded 
as a vector of real values { }nixi ,,1, K∈ , 
 

{ } [ ],32,,2,,,1 ⋅⋅∈= Knxxp n KK                                            (2) 
 
if p is allowed to have at least one instruction and at most K instructions2. Switching from a 
low dimensional encoding of gait patterns to a linear representation thus has a large impact on 
the dimensionality of the search space (e.g. from a 16-dimensional, as in (13), to a 6000-
dimensional search space, if K=1000). Any machine learning technique trying to predict the 
outcome of a comparison which is otherwise based on real fitness values and accomplished 
just by the operator “>” or “<” now has to search a high-dimensional search space in order to 
be able to compute the result of the comparison.  
 
Training is done by evaluating programs from time to time. The quality of the prediction can 
then be measured by the fraction of correctly classified comparisons ti based on the training 
set  T:  
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2 If a GP-program consists of K instructions with two parameters each, it can be represented as a vector in  (K⋅ 3)-
dimensional space. 



 

       

 

 
 

Figure 2: Left: Simple robot consisting of two bodies connected by a rotational joint. 
Right: Four-legged robot with 12 degrees of freedom (DOF). 

 
Table 1: The Koza-tableau of parameter settings for the evolution of control programs  

 
Parameter Value 

Fitness function f = | xend-xstart | / t [m/s] 
Crossover probability 0.67 
Mutation probability 0.05 
Reproduction probability 0.28 
Minimum program length (instructions) 10  
Maximum program length (instructions) 1024 
Population size 100 
Termination criterion Time (12h/24h) 
Simulation time 1 min. 

 
Another, yet more complex method of circumventing time consuming evaluations is to not 
only predict the outcome of a comparison of two individuals (requiring just a “feeling” for su-
periority), but to predict the exact fitness values of programs. In this case, the quality of the 
prediction can be described by the sum of squared differences of the predicted and the actual 
fitness value. In the following sections, successful experiments with both methods are pre-
sented. 

 4 CLASSIFICATION OF CONTROL PROGRAMS 

The proposed methods of either classification or fitness value prediction are applied to the 
evolution of control programs for two different types of robots (shown in Fig. 2). The results 
are compared with the average results of 10 reference experiments for both robots. The pa-
rameters of the reference experiment are shown in the Koza-Tableau in Tab. 1.  

 
The very simple robot (Fig. 2, left) reaches an average a speed of 0.2 m/s, the maximum speed 
is in average 0.44 m/s. Within the time limit of 12 hours, the evolution reaches about 65 gen-
erations, during which 6500 programs were evaluated. In Fig. 3, the average and maximum 
fitness are shown. In the reference experiments with the four-legged robot (Fig. 2, right), the 
robots reach an average fitness of 0.08 m/s. Maximum value is on  average  0.18 m/s.  Within  



 
 

Figure 3: Average and maximum fitness of 10 runs of the unmodified SIGEL system 
with the simple robot.  Parameters of the experiment are listed in Tab 1. 
 
 

 
 

Figure 4: Average and maximum fitness of 10 runs of the unmodified SIGEL system 
with the four-legged robot. 
 
24 hours, the evolution reaches approx. 130 generations. The development of the evolution is 
shown in Fig. 4. 
 
In order to speed up evolution, time consuming evaluations should be replaced by faster clas-
sifications as often as possible. Furthermore, the quality of the evolved programs must be at 
least at the same level. Therefore, in an additional evolutionary process, programs are evolved, 
which are able to discriminate between programs with higher and programs with lower fitness 
values (the speed of the simulated robot, according to the fitness function given in Tab. 1.) 
Again, linear GP is used, with an augmented instruction set, which allows the evolved pro-
grams to scan the two gait control programs that act as input vectors. Real  evaluations, taking  



 
Table 2: The Koza-tableau of parameter settings for the meta-evolution of classifiers  

 
Parameter Value 

Fitness function Eq. (4) 
Crossover probability 0.4 
Mutation probability 0.36 
Minimum program length (instructions) 0 
Maximum program length (instructions) 250 
Population size 8 
Selection scheme (µ,λ),µ=8,  λ=32 
Size of training set 50 cases 
Tolerance threshold 40% (adaptive) 

 

 
 

Figure 5: Average and maximum fitness of five runs with adaptive tolerance threshold.  
 
place whenever the quality of the evolved classifying program falls below a certain threshold, 
build the training set, so that the quality of the classifiers can be computed according to Eq. 
(4). A threshold value of e.g. 40% means that only classifiers with less than 40% misclassifi-
cation are used. Parameters of the meta-evolution of classifiers for both robots are listed in 
Tab. 2. Additionally, the tolerance threshold is adaptive, which means that the threshold de-
creases with time, creating a selective pressure during meta-evolution towards better and bet-
ter classifiers. 
 
Results of the experiment with the simple robot are shown in Fig. 5 and 6. The evolved pro-
grams in have an average fitness equal to the maximum fitness of the reference experiment. 
One reaches approx. 105 generations (compared to 65 in the reference experiment) with 12% 
less evaluations (5,800 compared to 6,600).  Due to a high threshold at the beginning, devel-
opment towards higher fitness values starts approx. at generation 30, when tolerance falls be-
low 30%. Fig. 6 shows the average number of classifications per generation of five runs with 
adaptive threshold. It is clearly visible that with decreasing threshold the number of classifica-
tions decreases, too.  In Fig. 7, the result of an evolutionary experiment with the four-legged 
robot and classification strategy is shown.  In the reference run, approx. 135  generations were  



 
 

Figure 6: Average number of classifications per generation. A lower tolerance threshold 
induces fewer classifications. Again, a transition around generation 30 is visible. 
 

 
 

Figure 7:  Average and maximum fitness of  five runs, compared with the average 
maximum fitness of the reference experiments.  Tolerance threshold is set to 25%. 
 
evolved within 24 hours, using approx. 13,500 evaluations, reaching an average maximum 
fitness of 0.18 m/s. Using meta-evolution, 180 generations were evolved, but only 6,000 
evaluations were used  (saving more than 50%). The average maximum fitness of both ex-
periments is nearly at the same level after 24 hours.   
 
Classification of comparisons during tournament selection thus yields results with at least the 
same quality as experiments without any augmentation. It is remarkable that, in spite of the 
high-dimensional search space, classification of gait control programs is possible and success-
fully applicable. The advantages of this method increase, if the run time difference between 
classification and evaluation becomes larger. 



5 FITNESS VALUE ESTIMATION 

Evolution of GP programs that are able to predict the fitness values of gait control programs 
(i.e. to estimate the speed of the robot controlled by the respective program) is done with the 
same parameters as the evolution of classifiers (see Tab. 1), with the exception of the thresh-
old value and the maximum program length. Threshold is set to a constant value of 0.05 here, 
which is the average fitness difference between gait control programs in the end of the refer-
ence experiment, whereas the fitness prediction programs are allowed to have 500 lines of 
code maximum. The average maximum fitness of four identical runs (0.2 m/s) is slightly bet-
ter than the result of the reference experiment in Fig. 4 (0.18 m/s), with approx. 8% less 
evaluations (12,000 instead of 13,000). Evolution with fitness value estimation reaches 350 
generations, whereas in the reference experiment only 130 generations were evolved.  
 
It is an astounding result that evolved programs have shown the ability to predict the fitness 
values of gait control programs with an accuracy that is high enough to boost the evolutionary 
process. 

6 CONCLUSION 

In this paper, a GP system used to evolve gait control programs for two simulated robots – a 
simple 1 DOF robot and a more complex 12 DOF four-legged robot – is augmented by a sec-
ond GP system, the latter evolving two different types of meta-models of the former system’s 
fitness function. The classification strategy was successfully applied to evolve programs that 
are able to discriminate better and worse gait control programs, which are the result of the first 
GP system. The second variant – fitness value prediction – showed comparable performance 
to reference experiments of the un-augmented GP system. If time consuming evaluations can 
be replaced by faster classifications or fitness value estimations, a significant speed-up of the 
evolutionary process can be achieved. 
 
The success of the proposed methods encourages the use of meta-model assisted evolution not 
only in genetic programming but also in other instances of evolutionary algorithms. 
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