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Abstract 

This paper introduces a Genetic Programming approach to creating patterns of movements for 
legs of walking robots. It uses a physics-based simulation system to evaluate the fitness of 
movement patterns, which are emerging from the interpretation of the individuals of the 
population. Different methods are shown that increase the speed of the evolution by several 
orders of magnitude. 

1 INTRODUCTION 

The evolution of robot control programs has been the topic of recent publications (1, 2, 3, 4, 5, 
6, 7, 8) and especially the field of walking robots becomes more and more important. Gait 
patterns of stick insects have been analyzed to gain more detailed information on natural gait 
coordination Algorithms (9). Many researchers have often been inspired by biology to build 
legged robots. An overview can be found in (10). Nevertheless, the above-mentioned 
approaches deal with a special instance of an autonomous robot (or walking agent), on which 
the architecture of the developed control system heavily depends. 
 
This paper follows a more general approach by abstracting from real robots and their often 
brittle and time consuming hardware. Instead, a simulated model of arbitrary robot 
morphologies is used which takes the kinematics of the robot ---given by their geometric and 
drive specific constraints--- and environmental influence into account. Simulating walking 
robots allows more flexible architectures and rapid prototyping, which is, compared to 
experiments with real hardware, less expensive. The evolution of virtual agents in a simulated 
environment has been successfully demonstrated by Sims and Komosinski (11, 12, 13).  
 



    

 

 
Fig. 1 Left: 3 DOF robot leg, consisting of simple geometric objects. Right: 18 DOF 

walking robot, whose legs are ‘fuzzy’ copies of the shown leg. Details see text. 
 
This approach does not imply that the evolved controllers depend on specific information on 
the robot morphology such as certain lengths or distances. On the contrary, it was one of the 
main goals of this work to make the evolution of robot controllers as independent as possible 
from morphology specific information. So morphology-related information, although 
available, will not be used. If a robot controller uses information of the cinematic model to 
solve its control task ---e.g. to compute an inverse transformation in order to calculate the 
joint angles of a robot arm consisting of rotational joints from a given position of the TCP 
(tool center point) in world coordinates--- the correctness of the calculation depends on 
unchanged parameters of the hardware, either real or simulated. If, for example, a joint looses 
the ability to reach certain positions, the outcome of the inverse transformation, which 
depends on the correct working joint, is useless. Additionally, the algorithm for the inverse 
transformation is correct only for a single robot. A machine-learning algorithm should be able 
to cope with changing circumstances and recover the former quality. 
 
A first step toward control of movements of a legged robot is to move the single joints 
according to a desired trajectory. This trajectory depends on the desired behavior (e.g. swing 
or stance phase of the leg) and requires very well coordinated synchronous movements of all 
joints involved. The movements of joints are caused by actuators that, basically, apply a force 
to one or more connected rigid bodies. Thus, describing a movement of a leg of a robot 
requires to give the time dependent values of the acting forces for each involved joint during 
the motion. The next sections shall now explain the experimental setup and results from the 
evolution of leg movements with Genetic Programming.  

2 THE PHYSICAL SIMULATION SYSTEM 

In order to avoid time consuming experiments with real robots and in order to have the 
possibility of easy robot morphology configuration, a physical simulation system is used for 
all experiments. We used the freely available tool AERO1 as the physical simulation library 
with our own augmentation for 

                                                 
1 An introduction to AERO is available via http://www.informatik.uni-stuttgart.de/ipvr/bv/aero/aero.html, the 
original source code can be downloaded via http://www.ee.uwa.edu.au/~braunl/aero/ftp/. Please note that the 
original code was modified and expanded. 



  
Fig. 1 A single Instruction of the Genetic Programming System 

 
handling of populations, the evaluation of individuals, the variation and selection operators, 
and the formulation of fitness functions. 

2.1 Physics Based Simulation of Legged Robots 
The experiments employed regular robot morphologies. These are symmetric multi-legged 
robots with identical geometry for each leg. A six-legged robot and a detailed view of one of 
its legs are shown in fig. 1. To be a bit more realistic, our models consist of six variations of a 
leg mounted on a simple body, so that small differences in the robots morphology mirror the 
tolerances in the manufacturing process of real robots. The simulation system calculates all 
variables in the model using gravitation, inertia tensors, torques, accelerations, speed and 
cinematic constraints (links or joints) -including all motive forces generated by the actuators- 
to generate a set of differential equations describing the movement of all bodies which are 
numerically integrated and updated (14). 
 
Coordinating the movement results in the necessity to give a time series of motive forces for 
each joint of the leg, which sums up to 3 joints for a single leg and 18 joints for a six-legged 
walker. Most robot languages encapsulate the necessary motive forces and require only a 
nominal value for either angle or translation length. In the simulator used, however, it is 
necessary to give the exact amount, direction, time span, and working point of all motive 
forces. This has some consequences for the layout of the genetic programming system. 

3 THE GENETIC PROGRAMMING SYSTEM 

Controlling the movement of a robot leg requires a sequence of instructions for each joint of 
the leg. This sequence has to be coordinated in time to achieve the desired movement in 
sufficient quality. 

3.1 Representation 
An individual in the GP system can now be seen as a  sequence of instructions of variable 
length as shown in fig. (2). The order of the sequences in the individual is not important, 
because the instructions are sorted according to their starting time. The simulator includes the 
force of each instruction in the set of differential equations exactly at the time the force affects 
the particular joint. The individuals, consisting of many instructions, are varied with the 
following operators: 

3.1.1 Mutation 
• Micro-Mutation 

This operator varies the genome only in one single elementary instruction. It changes 
one of the four elements of an instruction randomly by adding a Gaussian distributed 



random variable with expected value x = 0.0 and a standard variance of  σ = 1.0. The 
operator ensures valid values. 

• Macro-Mutation 
This operator either deletes a single instruction randomly with a uniformly distributed 
probability for each instruction, or it inserts a totally random instruction. Each element 
of this new instruction is chosen from a uniform distribution out of the valid range of 
values. 

3.1.2 Crossover 
• Micro-Crossover 

Exactly one element of a single instruction is exchanged between two individuals. 
Which individuals and which parameters are modified is determined randomly with a 
uniform distributed probability for each individual/parameter. 

• Macro-Crossover 
Here, single instructions are exchanged. Which instruction is determined with a 
uniform distributed probability for each instruction. 

• Homologue-Crossover 
This operator exchanges instructions which move the same joint. The entire instruction 
is exchanged. The instructions are chosen randomly from all valid instructions with a 
uniform distribution. If no such pair exists, nothing happens. 

3.1.3 Fitness 
The quality of a movement can be measured as follows, 
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which equals a sum, due to the fact that the time increases with discrete steps in the numerical 
integration, 
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The fitness of an individual is the sum of squared differences to an a priori described ideal 
trajectory. In the following experiments, the TCP of the leg should move linearly from a 
starting point to a target point where it is supposed to stop. The faster and closer an individual 
follows the trajectory, the better is its fitness. The trajectory in our experiments is a linear 
connection of two points. The robot leg is supposed to accelerate, to move along the 
trajectory, and to decelerate until full stop at the target point. To ensure all phases of the 
movement, the model was simulated until tend = 3 s, long enough for a very slow moving leg 
to complete the movement. The main parameters of the GP run are shown in tab. 1. 
 

Table 1 Koza tableau with parameter settings for the GP system 
 

Parameters Values 
Objective Evolve movement of leg along a given 

trajectory 
Terminal Set Integer and real values 
Operator Set Instruction of type shown in fig. 2 
Selection Scheme Subset tournament, size = 4 
Population size 600 



Crossover probability 0.3 for each variant, adaptive in later 
experiments 

Mutation probability 0.45 for each variant, adaptive in later 
experiments 

Termination criterion Max. No. of tournaments 
Maximum length of programs Unlimited 
Initialisation method Random init 
 

 
Fig. 3 Left: Distance between ideal trajectory and TCP movement. Right: Premature 

termination of an evaluation due to exceeding the quality threshold. 

4 SPEEDING UP EVOLUTION 

Evaluating an individual in a physical simulation takes time. In order to speed up the 
evolution, parallel evaluation of a subset of the population was implemented. Therefore, the 
execution of the simulator evaluating the individual is spread over a set of 50 Sun Sparc Ultra 
workstations, so that every workstation processes one single individual. The fitness values are 
sent back to a central server, which queues the results in a variable length set. If the queue is 
full, participants of a tournament are selected from the queue. The offspring individuals are in 
turn evaluated in parallel. The size of the queue can then be used to configure the algorithm: if 
the queue is small, the resulting selection scheme is a combination of elitist and tournament 
selection. If the queue has the size of the population, a pure tournament selection is realized. 
Experiments showed that a queue size of 80% of the population leads to a good convergence 
speed. This parallelization reduces the time for an average run (typical parameters see tab. 1) 
by a factor of 10 to 15 depending on the actual workload of the cluster. It is remarkable that 
this parallel implementation is robust against possible loss of individuals (provided that the 
required queue size is less than the population size) and also works within heterogeneous 
computer networks: Faster computers return their results earlier, slower computers a little 
later. This has only the effect of increasing the diversity of the population due to delays in 
evaluations. 

4.1 Optimizing Convergence by Premature Termination 
The fitness of a movement depends on the correct coordination of joint torques. If in the 
beginning of a movement a single joint does not fit into the movement pattern of the leg, then 
the overall quality of the movement will be low, because even very good coordinated joint 
movements afterwards will not be able to correct the early error. It is therefore possible to 
decide in an early stage of the evaluation process whether to terminate the simulation of the 
individual due to the irrevocable error (see fig. 3).  This method leads to remarkable saving in 
simulation time and results in a speedup of the whole algorithm. See fig. 4 for a comparison. 
The method of premature termination requires checking the development of the movement 
from time to time. Continuously checking the quality of movements results in an average 
speedup of 250%. 



 

   
Fig. 4 Left: Experiment with quality control every 1/15 s. Right: Experiment with 

permanent quality control. 
 
It is remarkable that the evolution is faster at the beginning of the simulation because there are 
more individuals with a worse fitness whose evaluation is prematurely terminated. Towards 
the end of the run, when the population has a higher fitness on average, the evaluation of each 
individual is extended and requires more integration steps, possibly until the end of the 
evaluation time. As a result, the speed of the whole algorithm decreases during the run. 
Ongoing experiments investigate the effects of adapting the size of the ''fitness channel'', i.e. 
the maximum allowed deviation, during the evolution. With this method, the fraction of 
prematurely terminated individuals might be held at an almost constant level with the effect 
that the average time for evaluation may increase less fast, resulting in an additional increase 
of convergence speed. 

4.1 Using a B-Spline Representation 
The representation of the experiments shown has a major drawback: the GP system is forced 
to approximate a probably continuous curve of forces for each joint with discrete and variably 
long intervals of constant acting forces. The joints may have to accelerate, to move with 
constant speed, to decelerate, and to stop according to the desired movement of the whole leg. 
A new and straightforward way of representing continuous force curves with boundary 
conditions are B-Splines. Splines are piecewise polynomial functions defined by a set of 
discrete points (control points). There exist a variety of spline functions, but B-splines have 
some properties, which make them most suitable: 

• Locality 
B-spline functions are defined piecewise, and each piece only depends on a limited 
number of neighboring control points. A global spline function depends at all places 
on all the control values. A small change at one control point thus changes the function 
everywhere. 

• Smoothing 
B-splines do not interpolate their control points. Instead, the function is smoothed with 
respect to a linear interpolation of the control points, which gives these splines the 
benefit of increased continuity. 

Locality has influence on the effects of the genetic variation operators, e.g. a point mutation of 
a single control points does not change the spline everywhere.  The smooth shape of the curve 
has also positive effects on the integration of the differential equations, because sharp 
transitions cause a decreasing step size of the numerical integration, which in turn slows down 
the evaluation of an individual. The curves of forces for all three joints of a good individual 



are shown in fig..6 (left). The algorithm to create the splines is to create partial curves of cubic 
order. 

 
Fig. 6 Left: Force development for each joint.  Right: Convergence with new representa-

tion. The algorithm converges to a fitness equivalent of the algorith im fig. 4 but with 
only 10000 evaluations 

 
If the number of control points is small, then the partial curves are of order two ore one. Each 
point in the curves depends only on the two points bounding the current interval and their 
direct neighbors. Every joint has two default control points: t0 = 0 and tend = 0, to ensure a 
continuous starting and stopping of the respective movements. If four control points s0,…,s3 
are given, the uniform cubic B-spline function segment between s1 and s2, parameterized by 
t=0,…,1, is 
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with the following weight functions 
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The uniform cubic B-spline is now a simple sum of the appropriate of these functions times 
the value at the sample. Fig. 6 shows three B-splines, one for each joint, of the acting forces 
during the simulation. The splines are of different order, depending on the number of control 
points. The control points are now encoded in the structure of an individual. The number and 
values of the points (see fig.. 5) are variable and change during the evolutionary process, until 
the movements caused by the acting forces described by interpolated force curves based on 
these control points fit the desired trajectory in an optimal way.  The new representation does 
not change the behavior of the variation operators at all. Preliminary results of the 
convergence are shown in fig. 6. Why the convergence speed of the spline algorithm is again 
faster compared to experiments with the old representation needs further analysis and more 
experiments for statistically significant statements. 



5 DISCUSSION AND OUTLOOK 

This paper shows a new approach to the evolution of patterns of movement with Genetic 
Programming. It uses different representations and methods to improve the performance of the 
algorithm. Preliminary results show that B-spline representation and premature termination 
along with a robust parallel implementation cause a remarkable speed up of the algorithm. 
The results need to be further investigated; particularly the effect of self-adaptive control of 
quality criteria needs more experiments. 
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