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Abstract—Genetic programming-based symbolic regression is a
widely used machine learning technique, but its effectiveness can
be limited as the number of input features increases. In genetic
programming, two-stage feature selection has been extensively
applied to enhance performance when dealing with a large
number of input features. Existing two-stage feature selection
methods typically require reinitializing new GP trees based on
the selected features after feature selection, which disrupts the
building blocks accumulated during evolution. In this paper, we
propose a crossover operator that is aware of the selected features
to leverage the feature selection results, thereby bypassing the
need for reinitialization. This operator guides the crossover
process to prioritize selected features, gradually eliminating
unimportant features while preserving evolved building blocks.
Experimental results validate the proposed method across three
different feature-selection mechanisms on 98 datasets, demon-
strating its effectiveness and broad applicability across various
feature-selection strategies.

Index Terms—Symbolic Regression, Feature Selection, Genetic
Programming

I. INTRODUCTION

Symbolic regression is a widely used interpretable machine
learning technique [1]. The core idea behind symbolic re-
gression is to generate a mathematical expression, denoted as
f(X), that accurately maps the input data X to the target
output Y. Genetic programming (GP) has been extensively
used for symbolic regression [2], [3] as it is a gradient-free,
population-based optimization method capable of creating and
optimizing variable-length symbolic expressions, making it
naturally suited for this task.

GP possesses an inherent ability to perform feature selec-
tion. However, as the dimensionality of the dataset increases,
GP often faces challenges in maintaining effectiveness due to
the rapid growth of the search space. To mitigate this issue,
feature selection has been proposed as a strategy to reduce the
size of feature set, thereby improving both the efficiency and
effectiveness of GP [4].
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Fig. 1: A significant drop in performance in an existing two-
stage feature selection-based symbolic regression algorithm.

A commonly used approach for feature selection is a two-
stage framework [5], [6]. In the first stage, a standard GP is run
on all available features. The top-performing individuals are
then analyzed to assess feature usage, and feature importance
is computed using methods such as frequency analysis [4],
permutation importance [5], Shapley values [6], or Maximal
Information Coefficient (MIC) [7] values. In the second stage,
new GP trees are initialized using only the selected features,
and a subsequent GP run is performed to derive the final
symbolic expression.

A major limitation of this approach lies in the random
initialization of trees with the selected features at the beginning
of the second stage, which disrupts the effective building
blocks accumulated during the first stage. This disruption
can reduce effectiveness due to the loss of evolved building
blocks [8]. As shown in Fig. 1, this disruption significantly
hinders the evolutionary process. Ideally, it would be more
beneficial to retain and refine these building blocks after
feature selection rather than completely discarding them and
regenerating entirely new GP trees using the selected features.

To address this limitation, we propose a feature-informed
crossover (FIC) operator that eliminates the need for reini-
tialization. The key idea behind this operator is to prioritize
subtrees that contain features identified as important at the first
stage. Specifically, the operator replaces subtrees with fewer
selected features with those containing more selected features.
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This approach gradually eliminates irrelevant features while
focusing the search on the most important features without
requiring reinitialization. The main contributions of this paper
are summarized as follows:

« To improve effectiveness, we propose a feature-informed
crossover operator that encourages the use of selected
features without reinitializing the population after feature
selection.

o To ensure the crossover operator accounts for the impor-
tance of selected features, we propose a subtree impor-
tance measurement method, allowing the crossover oper-
ator to prioritize subtrees containing selected features.

o To examine the generality of the proposed crossover
operator, we evaluate its performance across three types
of two-stage feature selection mechanisms. The results
demonstrate its broad applicability.

The remainder of this paper is structured as follows: In
Section II, we review related work on feature selection mech-
anisms and crossover operators in GP. Section III introduces
the proposed importance measurement method and the feature-
informed crossover operator. Experimental settings are de-
scribed in Section IV, and experimental results are presented
in Section V. Finally, Section VI concludes the paper and
outlines future directions.

II. RELATED WORK

GP has an inherent capability to select features [9] and
has demonstrated superior feature selection performance to
traditional metrics like Information Gain [10]. Notably, GP can
serve as a feature construction technique that simultaneously
performs feature selection and feature construction, enhancing
the learning performance of classical machine learning algo-
rithms [11], [12]. However, when the search space becomes
large, this intrinsic mechanism may be insufficient, neces-
sitating additional strategies to effectively perform feature
selection.

A widely used approach is the two-stage feature selection
framework [5], [6]. In this framework, a GP algorithm is
first executed on the whole set of features. Then, feature
importance is calculated based on the top individuals to iden-
tify potentially relevant features. The importance mechanisms
include frequency analysis [4], permutation importance [5],
Shapley values [6], and Maximal Information Coefficient
(MIC) [7]. The importance values of all features used by the
top-performing individuals are aggregated, and the top-ranked
features are selected. In the second stage, a new population is
randomly initialized using only these selected features.

Feature selection in GP has been successfully applied across
various other domains, including classification [13] and hyper-
heuristic generation [8]. Similar to feature selection in sym-
bolic regression [5], features are replaced with a constant
to evaluate their removal impact, and only the top-ranked
features are retained for use in the second stage. However, the
issue of performance degradation due to random initialization
has been observed in the job shop scheduling domain. In
job shop scheduling, randomly initializing GP trees in the

second stage led to significantly worse performance [8]. To
address this, the authors proposed randomly initializing a
large number of individuals at the beginning of the second
stage and selecting individuals with behavior similar to the
best-performing individual from the first stage to continue in
the second stage. While this strategy alleviates the disruption
caused by random initialization and achieves better results,
it requires additional computational effort to determine the
behavior of individuals, which can be expensive.

Beyond applying feature selection during random initializa-
tion, feature selection can also be incorporated into mutation
operators. Specifically, when generating a random subtree to
replace the current tree, the features used to generate the
subtree can be selected based on a probability vector rather
than through random sampling. This strategy has been widely
applied in symbolic regression [14], classification [15], ensem-
ble learning [16], and workflow scheduling [17]. However,
a limitation of this approach is that mutation operators are
typically applied with a low probability, limiting the overall
influence of feature selection in this paradigm.

Context-aware crossover is a promising approach for de-
signing a crossover operator that leverages feature selection
results, where crossover points are intelligently chosen instead
of being selected randomly [18]. The selection point can be
determined based on enumeration search [18] or the correla-
tion between subtree semantics and individual semantics [19].
Despite advancements in context-aware Crossover operators,
there remains a lack of operators specifically designed to
integrate effectively with feature selection techniques. Devel-
oping such operators could help guide GP in evolving more
interpretable models and may reduce the cost of collecting
numerous features during the test phase, representing a key
area for research.

III. THE PROPOSED METHOD

In this section, we propose a novel crossover operator to be
embedded into a two-stage feature-selection-based symbolic
regression algorithm. First, the overall algorithm framework
is introduced. Next, in Section III-B, we describe the subtree
importance measurement method, which assigns weights to
each subtree based on the feature selection results. Finally, in
Section III-C, we present the feature-informed crossover (FIC)
operator, which leverages the feature selection results to guide
the evolutionary process.

A. Algorithm Framework

The proposed method is built upon a two-stage symbolic
regression framework. The first stage operates on the full set of
features, while the second stage focuses on a subset of selected
features, as illustrated in Fig. 2. The transition between stages
occurs at the midpoint of evolution without reinitializing the
population. The algorithm consists of the following steps:

o Population Initialization: A population of individuals
is randomly initialized to form the starting point of the
evolutionary process. For each individual, a single GP
tree is generated using the ramped half-and-half method.
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o Parent Selection: Lexicase selection [20] is employed
to identify promising individuals for reproduction. This
selection method evaluates individuals based on a se-
quence of test cases, each serving as a criterion. For each
criterion, individuals must meet or exceed a threshold
defined as miny, +¢, where ming, is the minimum loss
achieved by any individual in the population on that
criterion, and ¢ is the median absolute deviation.
Offspring Generation: Offspring are generated using
random crossover, feature-informed crossover, and ran-
dom mutation operators:

— Random Crossover (First Stage): A random sub-
tree from one parent individual is selected to replace
a subtree in a randomly chosen tree from the other
parent individual.

— Feature-Informed Crossover (FIC, Second Stage):
The feature-informed subtree crossover operator as-
signs higher probabilities to subtrees with greater uti-
lization of selected variables for selection as donors.
These donor subtrees replace randomly chosen sub-
trees in the other parent. This approach encourages
the use of selected features while gradually eliminat-
ing irrelevant features. Further details are provided
in Section III-C.

— Random Mutation (First Stage/Second Stage): A
subtree is randomly selected and replaced with a
newly generated subtree. In the first stage, the newly
generated subtree uses the full set of features. In the
second stage, the new subtrees are generated based
only on the selected features. Thus, in the second
stage, random subtree mutation also encourages the
use of selected features.

o Offspring Evaluation: During the evaluation stage, each

GP tree is executed on the training data. Linear scal-
ing [21] is applied to improve alignment between the GP
tree and the target. Specifically, for a GP tree ¢ with
output ¢(X), the final output is calculated as ®(X) =
Bd(X) 4+ «, where § is the scaling coefficient and « is
the intercept. The coefficient 5 is regularized using the
L2 norm, and an efficient leave-one-out cross-validation
procedure [22] is employed to determine the optimal
regularization coefficient. During evaluation, the outputs
are the efficient leave-one-out cross-validation predictions
9, which help mitigate overfitting. The fitness value is
computed using the mean squared error (MSE), defined
as LY (ui —§;)°, to identify the best-performing
individual. Additionally, for lexicase selection, the un-
aggregated loss values are retained.

Elitism: The best individual from the population is ex-
plicitly preserved and used to generate offspring for the
next generation. Additionally, the best individual is used
to make predictions at the end of the evolutionary process.
Feature Selection: At the end of the first stage, feature
selection is performed using a feature importance calcula-
tion method. These methods include frequency analysis,
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Fig. 2: Workflow of the two-stage feature selection process.
In this framework, population reinitialization is not required
at the beginning of the second stage.

permutation importance, or Shapley values, as detailed
in Section IV-A. The selected feature importance method
identifies the most significant features based on the top-N
individuals in the population. Feature importance values
are aggregated from these individuals. Given k original
features, the top round(log(k)) features are selected for
use in the second stage, which has been empirically
shown to perform well in existing research [23].

The process of population initialization, parent selection, off-
spring generation, offspring evaluation, and elitism is repeated
iteratively until a predefined number of iterations is reached.

B. Subtree Importance Measurement

Based on the selected features, we calculate the importance
of each subtree. This importance guides the crossover operator
to gradually eliminate subtrees with irrelevant features by re-
placing them with subtrees containing selected features during
the crossover process. As shown in Fig. 3, the importance
of each subtree i within an individual & is based on its
composition of terminals. The weight wy, of subtree 1) is
formally defined as Eq. (1):

J— ww

’ww = o 5 (1)
w

where o,, represents the total number of terminal nodes in
subtree ¢, and w,, is the total weight assigned to nodes
within . A node j contributes a weight of 1 if it is a
selected terminal from the terminal set V' or a constant, and
0 otherwise. This normalization by o, ensures that larger
subtrees do not inherently have greater importance due to their
size. The pseudocode for the measurement process is provided
in Algorithm 1 ' .

C. Feature Informed Crossover

Instead of reinitializing the entire population, the proposed
method leverages the crossover and mutation operators to
gradually fill the population with GP trees using selected
features. This approach allows the evolutionary process to

'Source  Code: https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/
evolutionary_forest/component/crossover/marking_weights.py
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Algorithm 1 Subtree Importance Measurement

1: Input: Tree T, Feasible Variables V'

2: Output: Weights of Each Subtree W

3: Initialize W < ||

4: for each node n € T do

5: Determine the subtree 1) rooted at n
6: Initialize o, <+ 0 and w,, <+ 0

7: for each node m € 1 do

8: if m is a terminal node then

9: Ow — Oy +1
10: if m € V or m is a constant then
11: Wy — Wy +1
12: end if

13: end if

14: end for
15: Wy < T
16: Append wy, to W

17: end for

18: Return: W

Subtree Importance Subtree Importance
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Selected Features
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Fig. 3: Measuring subtree importance based on selected fea-
tures.
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Fig. 4: Feature-Informed Crossover. Assuming X; and X3 are
the selected features, while X5 is unselected and considered
an irrelevant feature.

continue after the feature selection stage without discarding
useful building blocks. With awareness of feature selection
results, the crossover is performed as follows:

Algorithm 2 Subtree Crossover with Importance-Aware Se-
lection

1: Input: Parent individuals ®;, ®5 with subtrees Vo, , Vs,
and weights wg, , We,
: Output: Offspring @/, D)
: pp, + NormalizeWeights(Vg,,we,) > Get probabilities
: pa, + NormalizeWeights(¥ s, , we, )
: Ya ~ Sampling(¢) € Wg,) with probabilities {py }pews,
> Sample donor subtree from @;
6: 1, ~ Uniform(y) € ¥y,) > Sample acceptor subtree
from @,
7. ®,, + Replace(Pa, 10y, — 1q)
g from P4
8: 94 ~ Sampling(y) € Vg,) with probabilities {py }yecv,,
> Sample donor subtree from P,
9: g ~ Uniform(¢ € ¥y, ) > Sample acceptor subtree
from @,
10: @} < Replace(P1, v, — ¥q)
q from Py
11: return (), ®,)

VAW

> Replace 1, in ®, with

> Replace 1, in ®; with

1) Probability Conversion: The weights of subtrees in
each individual ® are first converted into a probability
vector pg, which is then used to sample donor subtrees.
Since these weights fall within the range [0,1] but
do not necessarily sum to 1, normalization is required
to transform them into probabilities. Specifically, each
weight w,, is incremented by 1 to smooth the probability
distribution and ensure that even terminal nodes, which
might otherwise be inadvertently filtered out by feature
selection, retain a nonzero probability of selection. This
adjustment enhances the robustness of the search pro-
cess.

2) Selection of Subtrees: Subtrees are selected based on
their normalized probability:

o Donor: A subtree that utilizes more selected fea-
tures, 14, is sampled from parent ®; with a proba-
bility proportional to its normalized probability p.;.

o Acceptor: A randomly chosen subtree, v,, is se-
lected uniformly from the subtrees Wg, of parent
Ds.

3) Replacement: The selected acceptor subtree 1), in one
parent is replaced with the donor subtree vy from the
other parent. The crossover operation is illustrated in
Fig. 4, and the pseudocode is presented in Algorithm 2 2.

This mechanism ensures that the crossover process preferen-
tially propagates subtrees containing more important features
while discarding less significant subtrees composed of unim-
portant variables.

2Source  Code: https://github.com/hengzhe- zhang/EvolutionaryForest/blob/master/
evolutionary_forest/component/crossover/feature_informed_crossover.py
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IV. EXPERIMENTAL SETTINGS
A. Baseline Algorithms

The proposed crossover operator is general and can be
extended to any existing two-stage feature selection-based
symbolic regression framework. In this paper, we consider
three feature selection algorithms. These algorithms share the
same evolutionary process; the only difference lies in the
method used to calculate feature importance:

o Frequency-based Feature Selection: Feature importance
is determined based on the frequency of a feature appear-
ing in the top individuals. Features with higher frequency
are considered more important.

o Permutation-based Feature Selection [5]: Permutation
importance is evaluated by randomly shuffling the values
of one feature at a time while keeping all other features
unchanged, then measuring the impact on model perfor-
mance. The importance of each feature X; is calculated
as:

I(X7) = Edaa Rgriginal - Rgermuted(Xj) ’ 2

where Rsﬁgmal is the R? score of the GP model on the

original data, and Rgermmed( x,) is the R? score of the GP
model when X is permuted.

o Shapley-based Feature Selection [6]: This method em-
ploys Shapley values to assess feature importance. The
importance of a feature X is given by:

S|I(IN| = 18| = 1)!
SCN\{j} | 3)

(@(SU{j}) —@(9),

where N is the whole set of features, S is a subset of
features not including j, and ®(S) is the output of the
model for the subset S. The calculation of Shapley values
is computationally expensive, as it requires evaluating all
possible coalitions of features to determine their marginal
contributions to the prediction.

B. Parameter Settings

In this paper, common settings for GP are employed, as
detailed in Table I. For instance, a crossover rate of 0.9 is
used to encourage the exchange of building blocks, while
a mutation rate of 0.1 is applied to enable the discovery
of new blocks [14]. To prevent division by zero errors, the
analytical quotient [24] is utilized in place of the tradi-
tional division operator. The analytical quotient is defined as
AQ(a,b) = \/ﬁ We implement our standard GP algorithm
using the DEAP library [25], employing standard random
subtree crossover in the baseline methods.

C. Datasets

The experimental datasets are selected from the Penn Ma-
chine Learning Benchmark (PMLB) [26]. Due to computa-
tional constraints, only datasets with fewer than 2000 instances
are included. Based on this criterion, a total of 98 datasets are
used in this paper.

TABLE I: Parameter settings for GP.

Parameter Value
Population Size 100
Initial Tree Depth 0-6
Number of Generations 50 (First Stage)+50 (Second Stage)
Maximum Tree Depth 10
Crossover and Mutation Rates 0.9 and 0.1
Elitism (Number of Individuals) 1
+, -, ¥, AQ, Square,
Functions Log, Sqrt, Max, Min,

Sing, Cos,, Abs, Negative

D. Evaluation Protocol

For evaluation, all datasets are split into training and test
sets with a ratio of 80:20. All features are standardized before
training. The R? score is used as the evaluation metric, which

is defined as:
R2717 Z(yiy)Q
>y —9)?
where y represents the ground truth values, y represents the
predicted values, and ¥ is the mean of the ground truth values.
The R? score is derived from the mean squared error but
normalized by the variance of the target variable. R? provides
a scale-invariant measure, with an optimal value of 1, mak-
ing it particularly suitable for comparing performance across
datasets with different scales. To ensure stable experimental
results, all experiments are repeated 30 times using 30 different
random seeds. Specifically, these 30 runs consist of six groups
of five-fold cross-validation. The Wilcoxon signed-rank test
with a significance level of 0.05 is used to compare the
performance of different algorithms [27]. Additionally, the
Kruskal-Wallis test with Bonferroni correction is applied to
assess statistical differences between algorithms.

“4)

V. EXPERIMENTAL RESULTS
A. Comparison of Training R? Scores

A comparison of training R? scores with and without the
use of FIC (the proposed crossover operator) is presented
in Table II. The results demonstrate that the FIC operator
outperforms baseline algorithms in terms of training R2
scores. Specifically, by using permutation importance, the
FIC crossover operator significantly improves the training
R? scores on 73 datasets, and it performs no worse on any
dataset. This highlights the effectiveness of the FIC operator
compared to random initialization, as the crossover operator
preserves the building blocks of solutions. The effectiveness
of FIC compared to random initialization is also demonstrated
in Fig. 5 using four example datasets from PMLB, each
containing 25 features. As shown by the convergence curve
of training R? scores, reinitialization leads to a significant
drop at the midpoint of the evolutionary process. Although
feature selection ensures that the new population starts from
a higher baseline compared to initializing with the full set of
original features, the substantial drop in performance requires
several generations for the new population to recover after
reinitialization, which limits the benefits brought by feature
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TABLE II: Statistical comparison of training R? scores across different feature selection methods. The notation a(+)/b(~)/c(-
)” indicates the number of datasets where the row algorithm performed statistically significantly better (+), not significantly
different (~), or significantly worse (-) than the column algorithm.

Permutation Shapley+FIC

Shapley Frequency+FIC Frequency

Permutation+FIC  73(+)/25(~)/0(-) 0(+)/98(~)/0(-)
Permutation — O(+)27(~)IT1(-)
Shapley+FIC — —

Shapley — —
Frequency+FIC — —

70(+)/28(~)/0(-)
4(+)/94(~)/0(-) 0(+)/24(~)/74(-)
72(+)/26(~)/0(-) 0(+)/98(~)/0(-)

— 0(+)/28(~)/70(-)

O(+)98(~)/0()  TT(+N21(~)I0(-)
12(+)/86(~)/0(-)
T8(+)/20(~)/0(-)
3(+)/95(~)0(-)
75(+)/23(~)I0(-)

TABLE III: Statistical comparison of test R? scores using different feature selection methods.

Permutation Shapley+FIC

Shapley Frequency+FIC Frequency

Permutation+FIC  42(+)/56(~)/0(-)  O(+)/98(~)/0()  38(+)/60(~)0()  OIIB(~IOG)  43(+H)54(~)/1(-)
Permutation — O)ST(~ALE)  3NOS(~I0G)  OFISS(~A3() TEI91(~)0()
Shapley+FIC — — 394)/59(~)0G)  OHNI8(~O0()  4L#)ST(~)OC)
Shapley — — — 0(+)/58(~)/40(-) 3(+)/94(~)/1(-)
Frequency+FIC — — — — 41(+)/56(~)/1(-)
OpenML_582 OpenML_586 OpenML_598 ors OpenML 643 building blocks and continuing evolution outweighs the draw-
0.75 - e qs .
0 p 07 2 075 0 backs of complete reinitialization. Consequently, the proposed
S .50 S 0.50 o S 0.50 . . . .
oo @0 9 050 @ FIC achieves superior final generalization performance com-
“ 025 = 025 o €02 pared to the reinitialization method. Moreover, not completely
0 100 0 100 0 100 0 100 eliminating filtered-out features during random initialization
Generation Generation Generation Generation . . . . .
can be beneficial if the feature importance mechanism is
Permutation+FIC Permutation

Fig. 5: Evolutionary plots of training R? scores comparing
the FIC operator with random initialization when incorporating
Permutation Importance.

selection. The results using Shapley values and frequency-
based importance measures are provided in Section A of
the supplementary material 3, showing similar trends and
further demonstrating the effectiveness of the FIC operator
in improving GP compared to random reinitialization.

B. Comparison of Test R% Scores

A comparison of test R? scores is shown in Table IIL
Similar to the training performance, the test scores also signif-
icantly improved with the use of the proposed FIC operator.
Specifically, the FIC operator significantly improves the test
R? scores on 42 datasets when using permutation importance
to calculate importance scores. Likewise, the FIC operator
significantly improves the test R? scores on 39 datasets when
using Shapley importance to calculate importance scores.
Furthermore, the FIC operator significantly improves the test
R? scores on 41 datasets when using frequency importance
to calculate importance scores. These results indicate that the
FIC operator not only enhances training performance but also
improves generalization performance. The convergence curve
of test R? scores in Fig. 6 shows that random initialization
results in a significant drop in test performance. In contrast,
the proposed FIC operator avoids this issue and drives GP
toward better final models. While the FIC operator may not
completely eliminate irrelevant features, its ability in retaining

3Supplementary Material: https://github.com/hengzhe-zhang/

CEC-2025-Supplementary-Material

imperfect. Under the FIC paradigm, these filtered-out features
still have a chance to survive in the final model. Thus, even
if some useful features are filtered out due to poor feature
selection mechanisms, the FIC operator can still utilize them
during the evolutionary process.

Although the proposed method generally outperforms ex-
isting two-stage feature selection approaches across various
datasets, the significance test in Table IV indicates that it
does not significantly outperform standard GP. This can be
attributed to two main factors. First, the datasets used in this
evaluation have relatively low dimensionality, which aligns
with findings from existing GP feature selection studies. These
studies suggest that when the number of features is modest,
feature selection primarily enhances model interpretability
rather than performance [8]. Second, the two-stage approach
does not fully exploit the benefits of feature selection, and a
multi-stage feature selection strategy that adapts in real-time
could potentially yield better results. Nonetheless, as shown
in the next section, the proposed method effectively reduces
the number of features without sacrificing accuracy, making it
a favorable outcome.

C. Number of Used Features

Feature selection reduces the number of features used in
the final model [8]. Random initialization ensures a reduced
feature set since only the selected features are utilized. In
contrast, the FIC operator does not reinitialize the population,
potentially allowing some features to persist in the final
model. In this section, we compare the number of features
in the final models when applying the random initialization
strategy versus the FIC operator. When counting, all random
constants are treated as a single feature. Fig. 7 presents the
number of features in the final models. The results indicate no
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TABLE 1V: Statistical comparison of test R? scores using the Kruskal-Wallis test with Bonferroni correction for p-values.

Permutation  Shapley+FIC  Shapley  Frequency+FIC  Frequency  Standard GP
Permutation+FIC 0.0000 1.0000 0.0000 1.0000 0.0000 1.0000
Permutation - 0.0000 1.0000 0.0000 1.0000 0.0000
Shapley+FIC - - 0.0000 1.0000 0.0000 1.0000
Shapley - - - 0.0000 1.0000 0.0000
Frequency+FIC - - - - 0.0000 1.0000
Frequency - - - - - 0.0000
OpenML_582 OpenML_586 OpenML_598 OpenML_643 @
075 £ 538 - 138
2 O 0 07° 2 075 o g1 o 8 116
= = P . = [}
g 050 S 0.50 g S 0.50 L?: 384 389 383 381 381 385 i§400 122 1%5 °
2 e 2 050 N °s % o g g 165137 5 q7
sl : o hbadddT e
0.25 025 g = % i -%— -i- =
0 100 0 100 0 100 0 100 = O L@ L F O L@ LS S
Generation Generation Generation Generation '\\o"\ @0\ N S ep‘? é\o S @"%&S S L
g QQ} &"Z’Q N <« \;@\\Qz&\ <{Z§ o‘z’(\Q@ .@Qb
Permutation+FIC Permutation Qz'*& < & Q&O’ @
OpenML_582 OpenML_586 OpenML_598 OpenML_643 Flg 7: Distribution of the Flg 8: Distribution of training
0.75 0.75 0.75 .
2 2 2 075 s o number of features selected times across 98 datasets and
& 090 & 050 3 .50 & in the final model across 98 30 runs.
2 e x X 0.25
025 €025 = 025 « datasets and 30 runs.
0 100 0 100 0 100 0 100
Generation Generation Generation Generation
Shapley+FIC Shapley useful building blocks and repeatedly follows a pattern sim-
ilar to the initial generation, gradually evolving to a level
OpenML_582 OpenML_586 OpenML_598 openML_643  comparable to the proposed approach. Overall, these results
0 07° o 078 ® 075 0 7° confirm that the reinitialization process unnecessarily reduces
[s} o Q [s} . .
8 050 3 050 8 & 0% the number of features too drastically, leading to the loss
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Fig. 6: Evolutionary plots of test R? scores comparing the
use of the FIC operator with random initialization when in-
corporating Permutation Importance, Shapley Values, and
Frequency.

significant difference in the number of features between using
the crossover operator and reinitialization. This suggests that,
while the FIC operator may not theoretically eliminate all irrel-
evant features, it empirically demonstrates strong performance
in reducing irrelevant features and maintaining a compact
feature subset in the final model. Compared to standard
GP, the proposed algorithm significantly reduces the number
of features used. This indicates that the proposed method
effectively enhances interpretability without compromising the
final model’s effectiveness. Another potential benefit is that the
reduced number of features may lower the cost of collecting
and maintaining features for unseen data.

The trajectories of the number of features in the best indi-
viduals during the evolutionary process for both the proposed
method and the baseline reinitialization are shown in Fig. 9. As
observed in Fig. 9, the proposed method effectively preserves
useful building blocks. Consequently, although the number
of features decreases after feature selection, it remains at a
reasonable level. In contrast, the baseline algorithm discards
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Fig. 9: Distribution of the number of features used in the final
model across 98 datasets over 30 runs.

D. Comparison of Training Time

A comparison of training time is presented in Fig. 8. The
experimental results show that the proposed method does
not significantly increase training time compared to standard
GP. The most time-consuming method is the Shapley value
approach with the proposed crossover operator. The main
reason for this is that Shapley value computation is inherently
time-consuming, leading to an increase in training time. In
fact, the baseline method, random initialization with Shapley
value-based feature selection, also results in longer training
times, indicating that the increased computational cost is not
primarily caused by the proposed operator. Compared to using
the proposed operator with random initialization to leverage
feature selection results, the proposed method is slightly more
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time-consuming. This is mainly because random initialization
may start from simpler trees, which evaluate faster than the
proposed method, which inherits useful building blocks that
might be more complex. Overall, the conclusion is that the
proposed method does not significantly increase computational
cost on its own. However, to make the proposed method as
efficient as standard GP, developing an efficient yet reliable
feature selection method should be a key focus.

VI. CONCLUSIONS

In this paper, to address the limitations of existing two-
stage feature-selection-based GP for symbolic regression al-
gorithms, we propose a feature-informed crossover operator
that leverages feature selection information while preserving
building blocks. Specifically, the proposed crossover operator
encourages the use of subtrees with selected features to replace
randomly selected subtrees, thereby gradually eliminating ir-
relevant features during the evolution process. The experimen-
tal results demonstrate that the proposed method significantly
improves the two-stage feature selection process compared
to the random initialization approach, achieving both higher
training R? scores and test R? scores. Furthermore, as shown
by the results on the number of used features, the proposed
method achieves on-par performance in terms of the overall
distribution of the number of features utilized in the final
model. These results highlight the effectiveness of the feature-
informed crossover operator.

For future work, since the proposed operator maintains
building blocks after feature selection, it can be straightfor-
wardly extended to a multi-stage feature selection framework
without re-initialization. Specifically, features eliminated in
earlier stages could be reintroduced in later stages, while
initially retained features could be eliminated in subsequent
stages. This iterative approach may further enhance perfor-
mance.
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