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Abstract. We consider a simple stochastic unit realized 
by digital ANDs and ORs. The function of the unit is 
inspired by nerve cells found in brains of higher 
organisms. Information is carried by trains of pulses in 
time. Therefore, time is introduced into the model as an 
essential variable. Principles of stochastic computing 
are used to appropriately model weighted summation 
of inputs. The model unit allows to process analog 
information as is provided by observables of real 
environment. The statistical properties of the model 
are examined. The traditional saturation non-linearity 
of neurons emerges as a natural consequence of signal 
gating by "synapses". Different schemes of synaptic 
modification are indicated. 

1 Introduction 

The starting point of our considerations is the fact that 
nervous systems use frequency coding of signals which 
was discovered some 50 years ago (Adrian 1932; Stein 
1967; Eccles 1973; Bullock et al. 1977). The concept of 
frequency coding, however, is only applicable to 
nervous tissue "cum grano salis" since a great diversity 
of neurons exists generating a whole spectrum of signal 
codes. Neurophysiologists even claim (Bullock et al. 
1977) that each neuron has its own individuality 
setting it apart from all other neurons. 

Any code which uses the number of pulses in 
certain time intervals as information carrier is a "non- 
valued" computing system. In general, such systems 
possess much more fault tolerance than valued com- 
puting systems as e.g. a number system differentiating 
their values at different positions. 

Despite the fact that neurons and nets of neurons 
were modeled as all-or-none units over many decades 
(McCullock and Pitts 1943; Steinbuch 1960; Hopfield 
1982) they are not at all binary valued elements. But as 

computer scientists learned during the development of 
artificial information processing systems, a binary 
coding of information is very fault tolerant also. The 
true discovery of digital age, however, is not the 
binarity of computer's elements, but their non- 
linearity, Indeed, this was "invented" some millions of 
years ago by nature during the evolutionary process 
leading to neurons which are equipped with different 
non-linearities, the most important of which is called 
the saturation non-linearity. Since nervous systems 
have to process analog quantities (INPUT = analog 
observables measured by sensors, OUTPUT = analog 
actions executed by actors), it is not astonishing that an 
electro-chemical coding was developed during evo- 
lution which unites the advantages of binary and 
analog coding schemes. Pulses are a very secure form 
of signal transfer which is a far reaching benefit in 
systems with long signal ways such as nervous systems. 
Moreover, the huge amount of computation is to be 
executed in elements which are to a certain degree not 
reliable. 

FinaUy, one may hypothesize that a little ingredient 
of stochastics in nervous systems as it is provided by 
some noise from unreliable elements and the indeter- 
minism originating from probabilistic processing is by 
no means an evolutionary accident but a precise 
reflection of certain environmental conditions which 
otherwise would have been very difficult to catch. 

Here we want to present first results concerning the 
simulation of a neuron-like unit. It was modeled using 
logical gates which are nowadays available in large 
numbers on single VLSI chips. The unit is able to 
"integrate" the incoming signals, a function which is at 
least in part analogous to that of real neurons. The 
model is intended to proliferate an instrument for 
examination of questions related to the collective 
behavior of certain networks. 

We do not claim to have a realistic model of 
biological nerve cells but to use similar stochastic 
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computation methods as real neurons do (Von 
Neumann 1956; Ribeiro 1967; Peretto and Niez 1986; 
Gaines 1987). 

2 The Coding of Signals 

To motivate our proceeding below different arguments 
can be given: 

i) The Parallel Processing Argument 
In a system where information is carried by pulse 
sequences stochastically distributed over time parallel 
processing is possible. In fact, a continuous enhance- 
ment of accuracy is reached with every addition of 
computational elements. The more neurons code the 
same incoming signal and afterwards process it, the 
more exact the result of a computation will be. In the 
language of physicists the argument reads: One can 
substitute the time average (ofa single measurement or 
computation) by an ensemble average (of multiple 
measurements or computations), if the underlying 
process is ergodic. Let us suppose for the moment that 
the processes in nervous systems are sufficiently inde- 
pendent that the hypothesis of ergodicity is valid. If we 
turn the argument around: The same measurement 
accuracy will require a lower measurement duration if 
we use more elements. 

ii) The Energy Consumption Argument 
Bearing in mind the very efficiency of nature one is led 
to the assumption that an effective operation will mean 
for the neurons not to use the extremal states too often. 
Thus, a tendency to avoid the "0" and "1" states of 
firing at lowest and highest rates possible is claimed. It 
is further supposed that activities lie in general at the 
lower end of the scale. The reason is that every activity 
is costly in terms of energy and that, additionally, 
release of transmitter substance in synapses consumes 
ATP. This argument is valid for excitatory and in- 
hibitory synapses. 

iii) The Compatibility Argument 
Pulses are transmitted from sensory units to other 
processing units presumably working according to the 
same principles. To allow further processing of initially 
fuzzy input information without compatibility pro- 
blems all units should use nearly the same coding. 
Especially, layered structures would need the same 
analog-processing capabilities in deeper layers. 

It is fascinating to follow these arguments in 
constructing a technical system applying similar com- 
putational methods under different circumstances. In 
fact, we shall follow the above lines of thought. 

Therefore, let us introduce stochastic pulse trains 
which will code analog quantities s in probabilities that 
our neuron-like unit will fire or not fire in a certain time 
interval 72 

s~P(s): firing probability in T. 

The detailed dependence could be a linear, logistic or 
even a logarithmic function of signals s depending on 
circumstances. The only condition to be satisfied is 
that P(s) is an ever increasing function of s. 

The first place where such a coding may occur is the 
sensory input to a net of these neuron-like units. The 
detailed mechanism converting mechanical, optical or 
other stimuli into electro-chemical pulses will deter- 
mine the specific shape of P(s). "Hidden" units not 
receiving information from the outer world may be 
interpreted as sensory units for electro-chemical poten- 
tials such as those generated near the axon hilloc of an 
ordinary neuron. 

Every functional dependence will result in a differ- 
ent shape of the pulse partition over time. Considered 
over long enough times a sort of binomial distribution 
may be generated: 

B(k)= (Nk ) P(s)k(1-P(s)) N-k, (1) 

where time is quantized and B(k) represents the 
probability that in a sample of N elementary time steps 
k pulses are realized. The minimum number of pulses in 
T is 0 whereas the maximum number is given by the 
dead-time of the units and will be called N. Therefore, 
the real numbers se[0 ,1]  are mapped onto the 
numbers of pulses in time intervals T. Equivalently, the 
time intervals between pulses will have different distri- 
butions. If time is not quantized pulses are distributed 
according to a Poisson distribution. 

Four possible codes are reasonable: 
i) a pure frequency code 

ii) a stochastic frequency code 
iii) a pulse-distance code 
iv) a stochastic pulse-distance code. 
For  specific problems, all of these codes may have 

advantages, and it is a matter of intuition which one to 
choose. 

3 Application of Digital Technique 

We now want to make contact with digital technique. 
Today, this is a widespread and handy technology 
realized physically by different methods. We shall see 
an interesting relation between both of our subjects. 
The point is that we can use digital pulses as working 
material in artificial neuronal circuitry. 

First of all, however, we have to make the approx- 
imation that dispersion in our system is not present 
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Fig. l a  and b. Illustration of digital 
signals used. V could mean voltage 
differences as well as other kinds of 
physical quantities possibly used. 
a General pulses without dispersion. 
b The approximation used: z~ ~ z  0 ~ T 
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Fig.  2. a AND as coincidence 
measurement, b OR as unification of 
pulses on channels xl, x2 

(Fig. la). This is a remarkable difference to conven- 
tional computers which are statical machines 
suppressing all their dynamics by tact cycles. In 
contrast, here we have a truly dynamical concept of 
pulse processing. We use pulses with z l~Zo and 
consider fixed time intervals of length T, T>>zl, Zo 
(Fig. lb). 

Furthermore, digital technology makes available 
logic gates of different sorts. For  our purposes the 
AND and OR gates are adequate. If we use a stochastic 
coding, AND can be seen as the measurement of 
coincidence between signals and amounts to a multi- 
plication of analog quantities sl .s 2 corresponding to 
pulses x~, x 2, whereas OR means unification of signals 
or roughly addition Sl +s2 (see Fig. 2a, b). 

The principles of stochastic computation are well 
established so we only refer to the literature on the 
subject (Gaines 1969; Massen 1977). In contrast to the 
traditional approach to stochastic computing, our 
attention will not be directed towards an accurate 
realization of algebraic operations but towards usage 
of gates to realize primitive neuron-like functions. A 
proper arrangement of gates is shown for a specific 
example in Fig. 3. 

The circuit is designed so as to compute roughly 

5 
i n  s~ Z wi" sl (2) 

i = 1  

expressed in the corresponding analog quantities. 
It is now evident that stochastic events, i.e., pulses 

partitioned at random on channels xt . . .xs  are neces- 
sary to approximate the summation function of the 
OR gate. Thus, randomness is utilized and we do not 

• 

• 
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Fig. 3. Arrangement of digital gates that  operates in a nearly 
neuron-like fashion. Input channels are x l . . . x s ,  (synaptic) 
weights are W~... Ws. Output  is y 

struggle against noise. We suppose that a code like iv) 
given above will give the best result with respect to an 
approximation to the sum in s ~ 

On principal, channels x and W are symmetrical. 
W e  shall, however, agree upon the following dis- 
crimination: The W-channels transferring stochasti- 
cally distributed pulses represent analog quantities 
called synaptic weights w. These will have a dynamics 
obeying another time scale which is much slower than 
that of the signals s behind x-channels: zw >> %. Figure 4 
gives an illustration of the signal processing in a single 
unit. Without manipulating weights, a non-linearity in 
the input-output-function of the unit emerges (cf. 
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Fig. 4. Processing of pulses during a time interval T. Input 
channels x are gated by "synaptic" channels W. The result is 
shown on channel y 
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Fig. 6. Two ways of combining excitatory and inhibitory chan- 
nels of the system. (I) with a special gate G. (II) with a majority 
decision element M 
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Fig.  5. Input-output function of a single unit with fixed weights. 
Ordinate axis and abszissa are "firing" probabilities in input 
output channels respectively 

Fig. 5). Clearly, this is the saturation effect of the 
output  channel after summation due to its fixed dead- 
time ! 

Let us make some comments on stochastic weights 
w~: 

a) We have chosen a slower time scale for 
W-channels under the aspect of adapativity of the 
system. It is a well established fact that two different 
time scales in a dynamical system can cause adaptive 
properties. 

b) The weights w i act as gating probabilities for 
pulses xz and are therefore taken from wzeF,, 
wie[0,1  ]. The gating may be realized by frequency 
manipulation or by tuning of puls-broadness. Alto- 
gether, the result is a certain probability of gating the 
pulses on x-channels. 

c) The above view allows one important possi- 
bility: W~ could operate as a filter over time which 
allows passage of certain correlated pulse trains 
whereas it prevents others. One can think of circum- 
stances, when small weight probabilities let pass all the 
signals in a train, and on the other hand, when no 
signal can pass although weights are considerably 
high. This is a direct consequence of treating time as an 
essential variable in our model! In that respect, a 
description of neuronal net dynamics just using num- 
bers between - let's say - 0 and 1 is misleading. 

d) A special mode of operation is working close to 
an instability point. In that case a minimal change in 
the weight probabilities results in a radical change of 
the overall behavior of the unit. 

e) Comparing the proposed unit to real neurons 
we can relate the weights w to probabilities of releasing 
vesicles of certain neurotransmitters into the synaptic 
cleft. Control is executed by variation of the respiration 
time a synapse needs to be able to react again. 

Before coming to learning, i.e., the dynamics of the 
weights, we want to present a more realistic system 
having still more similarity to neurons. To this end we 
use inhibitory channels which are arranged just as the 
excitatory channels of Fig. 3. We combine inhibitory 
and excitatory channels and finally add some sponta- 
neous activity on both of these. The inhibitory sponta- 
neous activity will be called the thresholding. Sponta- 
neous activity is fed into the net without any gating or, 
in other words, with a fixed "1" as gating probability. 
Figure 6 shows two alternative ways of combination 
((I) and (II)). We end up with a very familiar I/0 
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relation known as the saturation non-linearity of a 
neuron (of. Fig. 7). 

Now we have realized some of the four loci which 
are found in neurons (Lewis 1983): 

I )  Synaptic loci: inputs from other neurons, sep- 
arated in inhibitory and excitatory ones. 

2) Pacemaker loci: spontaneous signal generation 
in the neuron itself. 

3) Local response loci: Signal integration inside 
the neuron. 

4)  Spike initiator loci: Transformation of analog 
signals into spike trains. 

In case (I) of Fig. 6 the first and second, in case (II) 
all loci are present. The saturation non-linearity of 
nerve cells is seen to arise quite naturally. It could be 
conjectured that a low level of activity in a network of 
units of this type will be favourable. If one wishes to 
include higher order correlations this may be realized 
just using AND gates with more than two input lines. 

157 

4 Statistical Behavior of the Unit 

We consider signals in the interval s e [ - 1 5 ,  + 15] 
using, for the sake of simplicity, the linear dependence 

p(s)=~, s + #. 

Two alternative ways of generating pulses from signals 
arise: 

( a )  direct generation 
( b )  Gaussian generation. 

Technically, the former consists of drawing a random 
number z e f0,1] at every elementary time step i. ~, 
i = 1 . . . . .  N,  z = T / N  and comparing p(s) with z. A pulse 
is then released every time when a number z smaller 
than p(s) was drawn. 

In contrast, the latter possibility amounts to summ- 
ing up random numbers zi over time (indexed now for 
different time steps i). A pulse is released only if 

zi" p(s) > 1. (3) 

Then, the whole process begins anew. 
We call this sort of pulse generation Gaussian, 

because a well known random number generator 
(generating white noise) implements just this method 
(Hemmerle 1967). Figure 8 shows three different sam- 
ples generated by either method. 

If one plots <A t> over p(s), a geometric distribution 
of pulse distances becomes visible. This is an interest- 
ing result which needs further explanation. 

In the following, we abbreviate the signal proba- 
bility by p and its complement by q =  1 - p .  In a 
random sample with the maximum of N possible 
elementary events the number of realized pulses will be 
distributed according to (1). As a consequence, the 
average number of pulses <k> will be 

<k> = N .  p (4) 

5 D I F F E R E N T  S I G N A L S  C O D E D  

Equal distribution Gaussian distr ibution 

signal= OJO signal= 0,20 signal= 030 signal= 0.10 signal= 0.20 signal= 030 

,11 ,, 
av(at)= 3o.m av(At)= ~70 av(At)= lo,s~ av(At)= me8 av(At)= '~.s5 av(At)= 733 

var(ht )= 725g vat(At)= m.55 vat(At)= Its3 var(At)= ~s var(At)= ~1 var(ht)= 3.01 

Fig. 8. Three different signals 
translated into pulse trains of 
1000 pulses. The relative 
distribution of pulse distances At 
is shown for both methods of 
pulse generation. Average and 
variance of distances is sketched 
also 
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Table L Comparison of the summation operation (O) of the unit (cf. Fig. 3) and an algebraic 

Io - E  summation (~) of the corresponding quantities. Shown is the deviation Dev = ~ for (s) 
= 0.001 and (w) = 0.5 + N(0, 0.05) 

Average Number of inputs N I 
ov. time 
steps 

5 10 20 50 100 200 5130 1000 

10 1 1 1 1 5.52 1 0.16 0.39 
50 1 1 1 1 1.17 0.25 0.01 0.07 

100 1 2 1 0.54 0.52 0.06 0.03 0.07 
500 1 0.4 I 0.09 0.35 0.04 0.12 0.12 

I000 0.43 0.2 0.12 0.04 0.11 0.07 0.14 0.2 

and the variance a reads 

(5) 
Both of these quantities are dependent on the size of 
the sample. On the other hand, the time between two 
pulses obeys a "negative" binomial distribution (Feller 
1976). This is the probabil i ty distribution for waiting 
times between the n-th and (n+ r)-th pulse which is 
sometimes also called Pascal distribution: 

f ( l ; r ' P ) : ( l r ) p ' ( - q ) ' : ( r + l - - 1 )  (6) 

times p. Since we are interested in the waiting times 
between a pulse and its subsequent one we have to set 
r = 1. The result is the geometric distribution 

(7) G(1) = p . q' . 

The average waiting time reads 

( l )  = qp(1 + 2q + 3q z + . . . )  = qp(1 - q ) -  ~ = 1_ _ 1 
P 

which is independent of N. Similarly, 

= el 

(8) 

(9) 

The geometrical distribution - which changes into the 
exponential distribution in the continuous time limit - 
is a consequence of the assumption that different 
random events on channels are statistically indepen- 
dent. As a result, the subsequent events do not in- 
fluence each other. 

Since sl n, w~ are probabilities, s ~ is also a proba-  
bility corresponding to the pulse partition on the 
output  channel y. Thus, 

NI  
in. wi < 1 s ~  or Z sl _ �9 

i = 1  

Under the simplified assumption of 

Si--'~(S)= ~ I E S  i and w i ~ ( w )  

saturation sets in when 

E s~.wi.~Z(s)" (w)=Sl(s)  (w)> 1. 
i 

For  ( w ) ~ 0 , 5  and signals ( s ) ~ 0 . 1  this leads to 
N I > 2 0 .  

Vice versa, for ( w ) ~ 0 . 5  and Nx=1000 only an 
average activity of ( s )  = 0.002 is needed to saturate the 
unit. Under  these circumstances the whole range of 
different behavioral patterns is accessible. T a b l e  1 
compares a real stimmation of signals and the oper- 
ation of the unit for different numbers of inputs. 

5 Learning 

An interesting aspect of the model can be seen by 
considering different schemes of learning. Here, we 
want to restrict ourselves to single neuron learning. In 
addition, we want to consider only non-Hebbian  
learning rules. The adaption of a neuron to its input 
data can be illustrated very clearly (Omohundro  1987): 
In the input space 

Z si" wl = O (10) 
i 

defines a hyperplane which can be shifted by changing 
w and the threshold O. I f  a signal lies inside the 
hyperplane, the neuron fires with the corresponding 
output  O. Otherwise it is silent (no spontaneous firing 
for the moment). Learning means displacement of the 
hyperplane towards the best sensibility region to fulfill 
a given task. 

The simplest learning process would be comparable 
to the process of growth: A synapse which is used often 
(on the average in time) becomes more "transparent" 



to signals. This is equivalent to the principle that stress 
leads to a gradual strengthening of the living tissue 
involved (Thomson 1917). Note that Hebb's learning 
rule (Hebb 1949) uses a more sophisticated version of 
growth: In addition to the incoming signal on a 
synapse, the overall activity of the postsynaptic cell is 
taken into account. 

The simple form of learning may be implemented 
using the following algorithm: The synapse i just 
adapts to the present signal s~(t) as 

w,tt) = a[7. w,(t- 1) + (1 - y ) '  s,(t)]. (11) 

is a saturation non-linearity, ~ may decrease slowly 
with time ~ = y(t). 

This process changes the probability of gates to let 
pass signals. Under these conditions, a synapse adapts 
slowly to the average signal strength. 

Very interesting effects, however, are possible by 
adjusting the on-off states of synaptic gates without 
changing the overall probability of the synapse to let 
pass pulses. Technically one can speak of a different 
partition of the on-area of a synapse in T. Figure 9a 
indicates the effect of partitioning the gating time in 
different ways. 

Promising are as well variable respiration times of 
synapses which could be used to gate specially corre- 
lated pulse trains (Hasenburg 1987). Let us define a 
dead-time d of a synapse in the following way: After a 
pulse has arrived at a synapse S at time to and has then 
passed the synaptic gate at t -- to + z~, the gate is closed 
during the dead-time d. I fa  pulse is arriving during that 
time t o + Z x < t ~ < t o + Z  ~+d, no postsynaptic pulse 
leaves the gate. The sensibility of the synapse, however, 
is not turned off. Thus any pulse arriving at S will have 
an effect on it. Namely, it resets the synapse and starts 
the respiration cycle again leading to a longer respi- 
ration time t2=ta+d. The situation is sketched in 
Fig. 9b. As a consequence, a pulse coming too early is 
not transferred to the postsynaptic unit and, additio- 
nally, it lengthens the closing time of the synaptic gate. 

Thus, a sharp transition of the effective synaptic 
weight defined as 

Wef f ~ Spost/Spr e 

may be expected when the presynaptic signal is 
changed slowly. The simulation is shown in Fig. 10 for 
four different values of the dead-time. 

A sort of habituation emerges if synpases tend to fix 
their dead-times such that effective weights near 1/2 
arise. Depending on input and network topology, this 
instability point may be reached in a slow process. 
Unfamiliar signals quickly change the effective weights 
and the network as a whole makes a transition into a 
totally new state. 
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Fig. 9. a Three different partitionings of the same weith, b Effect of 
dead-time d on pulses arriving at a synapse: during the time 
marked by dashed lines no pulse is gated. The dashed pulses only 
lengthen the dead-time 
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The abrupt transitions between the probabilities of 
signal passage and its stopping at the synapse can be 
washed out by the stochastic firing of presynaptic 
neuron-like units. In other words, we have identified 
another reason to use stochastic elements: The gener- 
ation of a gradient during learning processes can now 
be accomplished very natural! 

In a network of units there may be other sorts of 
learning closely related to the mutual interaction of 
units. Very small weights changes may drive the 
network into completely new states due to collective 
phenomena (Haken 1988). 

6 Summary 

In this contribution we presented an artificial unit with 
certain similarities to real neurons. Incoming signals 
were translated into pulse trains in time intervals T. 
The measurement process only manipulates the firing 
probability of the unit. Besides the usual delocalisation 
of information in neural networks through distributed 
computation, a delocalisation in time was therefore 
introduced. Similarity between signals was defined via 
averaging of pulse trains over n periods of T. Thus, the 
averages carried information, not single pulses. 

It turned out that a simple arrangement of logical 
gates was able to process information in computing 
roughly a weighted sum of the inputs. A natural 
consequence was the emergence of a saturation non- 
linearity which can be encountered also in natural 
systems. 

The weights, realized by stochastically acting gates 
were identified with synapses of neurons and it was 
pointed out that the filtering properties of these gates 
were responsible for the weighting of inputs. Different 
methods of weight manipulation were outlined. We 
argued that varying dead-times of gates could lead to a 
habituation learning which means for synaptic gates to 
work close to their instability point. 

In general, the filtering properties of the synaptic 
gates can be seen as attractor behavior. Another kind 
of attractors would appear, if networks from units of 
the kind described would be combined. Those at- 
tractors were comparable to fixed points of other 
neural net models related to content addressable 
memory or pattern recognition. Work is now under 
way to study these effects in more detail. 
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