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ABSTRACT
This paper introduces an active learning method for symbolic re-
gression using StackGP. The approach begins with a small number
of data points for StackGP to model. To improve the model the
system incrementally adds the data point characterized by maxi-
mizing prediction uncertainty as measured by the model ensemble.
Symbolic regression is re-run with the larger data set. This cycle
continues until the system satisfies a termination criterion. The
Feynman AI benchmark set of equations is used to examine the
ability of the method to find appropriate models using as few data
points as possible. The approach successfully rediscovered 72 of
the 100 Feynman equations without the use of domain expertise or
data translation.
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• Computing methodologies→ Representation of mathemat-
ical functions; Supervised learning by regression; Genetic
programming; Active learning settings.
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1 INTRODUCTION
Active learning [1] is a machine learning strategy where an algo-
rithm self-selects additional training data to maximally inform its
learning process. Active learning has been applied to genetic pro-
gramming classification tasks where data are only labelled when
the developing models encounter data that can’t be classified [3].
This was found to reduce the total effort needed to label training
data, since only a subset had to be labelled before finding accurate
models. Active learning has also been applied to genetic program-
ming where training sets are large by selecting sub-samples of
the training data to be used. Active learning for sub-sampling was
found to decrease training times to find quality binary classification
models by an order of magnitude [2].

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3528941

The goal of StackGP with active learning is to create a general
purpose GP system that requires no domain expertise, uses as few
data points as possible, and guides data collection to be maximally
informative. Beyond data collection for model training, the devel-
oped models could be used to design experiments to further explore
the system of study. As well, the models could be used to accelerate
the development process by recommending target conditions for
the system of study.

2 METHODS
Our active learning strategy is an iterative process that trains mod-
els on data, selects an ensemble of good models, then uses the
ensemble to find a new point of maximum uncertainty to add to
the training data . The algorithm is summarized in Algorithm 1 and
each part is described in detail in the subsection following.

StackGP is the stack based genetic programming system used
to evolve models during the model development step of the active
learning strategy [4]. We implemented StackGP within Mathemat-
ica for this work. The parameters used are shown in Table 1.

2.1 Active Learning
The goal of active learning is to strategically select new data points
that are most informative to current models. One way to identify
informative points is to find disagreement among current models.
The uncertainty metric Δ we apply to quantify disagreement is
defined as the standard deviation of the ensemble divided by the 70
percent trimmed mean of the absolute value of ensemble responses.

Δ =
Std ( EnsembleResponses )

TrimmedMean(Abs(( EnsembleResponses, 0.3))
The trimmed mean is used to ignore potentially asymptotic be-

havior that could occur in a few of the models. Below is the step-
by-step explanation of how this active learning approach works.

2.1.1 Initialization. To start, 3 random data points from the region
defined in the benchmark set [7, 8] are generated. Another 100 data
points are generated as test points and are used purely for tracking
the progress of model development. They are not used to inform
model development.

An initial set of models are trained on these 3 data points. Evo-
lution is allowed to run for up to 2 minutes running independently
on 4 cores. Each run has a population size of 300 models initialized
randomly at the outset, such that the starting population consists
of random models with an operator stack of 10 operators or less.
An operator is any of the math operators allowed to be used dur-
ing evolution plus the pop operator. The math operators used are:
+,−, ∗, /, 𝐸𝑥𝑝, 𝑆𝑞𝑟𝑡, 𝐼𝑛𝑣𝑒𝑟𝑠𝑒, 𝑆𝑞𝑢𝑎𝑟𝑒𝑑, 𝑆𝑖𝑛,𝐶𝑜𝑠,𝑇𝑎𝑛,𝐴𝑟𝑐𝑆𝑖𝑛, 𝐴𝑟𝑐𝐶𝑜𝑠 ,
𝐴𝑟𝑐𝑇𝑎𝑛,𝑇𝑎𝑛𝐻 and 𝐿𝑛.
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Algorithm 1 Active Learning Process
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎 ← 3𝑆𝑡𝑎𝑟𝑡𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡𝑠 ⊲ Generate initial random training data
𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝑅𝑎𝑛𝑑𝑜𝑚𝑀𝑜𝑑𝑒𝑙𝑠 ⊲ Generate initial random models
𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝐸𝑣𝑜𝑙𝑣𝑒 (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎,𝑀𝑜𝑑𝑒𝑙𝑠) ⊲ Train models on starting data
while 𝐵𝑒𝑠𝑡𝑀𝑜𝑑𝑒𝑙𝐸𝑟𝑟𝑜𝑟 ≠ 0 do ⊲ While perfect model not found

𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒 ← 𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒𝑆𝑒𝑙𝑒𝑐𝑡 (𝑀𝑜𝑑𝑒𝑙𝑠). ⊲ Select ensemble of models
𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 ← 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒) ⊲ Find point that maximizes uncertainty
if 𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 ⊂ 𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝑃𝑜𝑖𝑛𝑡𝑠 then ⊲ If point already selected

𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡 ← 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒𝑈𝑛𝑐𝑒𝑟𝑡𝑎𝑖𝑛𝑡𝑦 (𝑆𝑢𝑏𝑆𝑝𝑎𝑐𝑒 (𝐸𝑛𝑠𝑒𝑚𝑏𝑙𝑒)) ⊲ Search a subspace
end if
𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎 ← 𝐴𝑝𝑝𝑒𝑛𝑑 (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎, 𝑁𝑒𝑤𝑃𝑜𝑖𝑛𝑡) ⊲ Add new point to training data
𝑀𝑜𝑑𝑒𝑙𝑠 ← 𝐸𝑣𝑜𝑙𝑣𝑒 (𝑇𝑟𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎,𝑀𝑜𝑑𝑒𝑙𝑠) ⊲ Evolve new models with new data using best models to seed evolution

end while

2.1.2 Evolution Epochs. The evolution process relies on a multi-
objective fitness function that utilizes Pareto optimality of correla-
tion and complexity. The Pareto front represents the models with
the best trade-off between correlation and complexity.

The models are evolved using crossover and mutation. Crossover
employs a two point crossover operator modified for the stack data
structure. Mutation allows for 6 different types of mutation oper-
ators with uniform probability: mutating variables or constants,
mutating math operators, pushing new variables and operators to
the top of the stacks, trimming off the bottom of the stack, push-
ing new variables and constants to the bottom of the stacks, and
inserting new operators at a random position in the stack.

2.1.3 Ensemble Generation and Data Selection. Once the models
are developed, an ensemble is generated using the data balancing
ensemble approach described in [5]. Early in the active learning
process ensembles will be smaller since the number of data clusters
is limited by the number of data points. As the number of data
points increases, the limit on the number of clusters increases. The
maximum number of clusters is capped at 10 to ensure ensembles do
not grow beyond 10models. This helps prevent ensemble evaluation
from becoming too computationally costly. In the event that all
data points are similar and only a single cluster forms, the Pareto
front of the models is chosen as the ensemble rather than a single
model.

Using the selected ensemble, Mathematica’s NMaximize1 [6]
function is employed to find the data point that maximizes the
uncertainty metric defined in section 3.1, within the bounds of each
variable as described in the Feynman Symbolic Regression Database
[7]. It is possible that a local maximum is found rather than a global
maximum. This is acceptable since such a point still has a relatively
high uncertainty. The parameters found to maximize uncertainty
are then used to collect the true model response. This data is then
added to the training set and will be used in the next run of model
evolution.

It is possible a point that already exists in the training set is
selected as the new point. Rather than duplicating a point, however,

1Mathematica’s NMaximize function was used with default settings which allows
Mathematica to choose a maximization method from the following options: Nelder
Mead, Differential Evolution, Simulated Annealing, and Random Search.

Table 1: StackGP & Active learning Parameter Settings

Parameter Setting

Mutation Rate 79
Crossover Rate 11
Spawn Rate 10
Elitism Rate 10
Crossover Method 2 Pt.
Tournament Size 5
Population Size 300
Selection Rate 20
Selection Method Pareto Tournaments
Fitness Measures Correlation vs. Simplicity

a new point is selected by maximizing the uncertainty of the en-
semble in a random region of the original search space. This helps
ensure that new information is being added in each iteration.

Once the new training point has been added to the training set,
another evolutionary epoch begins. The new evolutionary epoch
is seeded with 20% of models nearest to the Pareto front of the
previous epoch. This ensures that good models are not lost between
evolutionary epochs. It does, however, introduce the risk that these
more developed models will dominate less developed (or random)
models at the beginning of the new epoch and thus biases evolution.
We limit this risk by choosing small tournament sizes, although it
could be further limited in the future using other methods such as
age layering.

The learning process is repeated until a perfect model is found
or a maximum number of iterations has completed.

3 RESULTS
37 of the 100 equations we were able to solve with just the initial
random 3 data points. The minimum number of points needed by
AIFeynman was 10, so StackGP outperformed AIFeynman on all of
these problems. It also indicates that these problems are trivially
solvable and active learning is not necessary. Of the remaining
problems, 16 were solved using fewer data points than what was
reported by AIFeynman. For these problems, it seems that the active
learning approach had a positive effect on search success. One of
the equations needed the same number of points as AIFeynman. 18
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Table 2: StackGP with Active Learning Performance Sum-
mary

Performance Total Equations

Trivial (Only 3 Points Needed) 37
Outperformed AIFeynman 16
Underperformed AIFeynman 18
Matched AIFeynman 1
Failed to Solve 28

of the problems required more data points than was reported by
AIFeynman. The 28 remaining problems were not solved within
100 iterations of active learning and so it is not possible to compare
the effect that active learning had on the success of those searches.
The results are summarized in Table 2.

According to Udrescu and Tegmark, Eureqa is the best available
commercial symbolic regression software [8]. Eureqa was found
to solve 71 of the 100 Feynman equations using 300 data points
and 2 hours of compute time for each equation. StackGP with
active learning was able to find 72 of the 100 Feynman equations
demonstrating a similar performance as Eureqa, although not all
the same equations were solved.

The performance on each individual equation is reported in [4].
The formulae for each equation number alongside the variable
ranges and sample data can be found in the Feynman Symbolic
Regression Database [7] where they are ordered in the same way.
In the following we discuss a few examples.

Equation number 22 is an example of a problem that needed just
3 points to be found:

𝜏 = 𝑟𝐹 sin(𝜃 ) (Eq 22)

Looking at the equation we can see that it is relatively simple and
would require only 3 operators (sin, *, *) and 3 variables (r, f, 𝜃 ). It is
likely easy to find, both due to its simplicity and since the terms are
combined as products, which makes each variable’s contribution to
the response data easily distinguishable and similar in magnitude.

Equation number 3 is an example of an equation where the
active learning approach with StackGP outperformed AIFeynman,
needing just 42.5 points on average compared to the 1000 points
needed by AIFeynman:

𝑓 =
𝑒
− 1

2

(
𝜃−𝜃1
𝜎

)
2√︁

(2𝜋)𝜎
(Eq 3)

It bears mentioning that this equation was unsolvable by Eureqa.
Equation number 5 is an example of an equation that was un-

solvable by StackGP with active learning and by Eureqa:

𝐹 =
𝐺𝑚1𝑚2

(𝑥2 − 𝑥1) 2 + (𝑦2 − 𝑦1) 2 + (𝑧2 − 𝑧1) 2
(Eq 5)

It required 1 million data points to be solved by AIFeynman. This
equation is rather complicated since it has 9 variables and the
contributions of each variable to the response are vastly different
depending on where they are in the equation.

4 ABLATION STUDY
An ablation study was completed to determine if the performance
of StackGP using active learning can be attributed to the active
learning strategy or the stack based genetic programming system.
The ablation study compared the active learning approach against a
modified approach where new data points were randomly selected
rather than selected according to the active learning strategy. A
sample of equations from the set were chosen to examine a variety
of equation forms. Specifically, equations 1, 2, and 3 were chosen
to highlight how very similar but slightly modified equations can
differ in how successful this active learning approach is.

For comparison purposes, equation 1, 2, and 3 are shown below.
A variable is added between each equation, making equation 2
slightly more complex than equation 1, and equation 3 slightly
more complex than equation 2:

𝑓 =
𝑒−

𝜃2
2√︁
(2𝜋)

(Eq 1)

𝑓 =
𝑒
− 1

2

(
𝜃
𝜎

)2
√
2𝜋𝜎

(Eq 2)

𝑓 =
𝑒
− 1

2

(
𝜃−𝜃1
𝜎

)
2√︁

(2𝜋)𝜎
(Eq 3)

The expected behaviour would be for the equations to be more
difficult to find as the complexity increases. When using random
point selection, this behaviour is observed, but when using active
learning, equation 2 seems to be more difficult to find than equation
3. It is unexpected that active learning works as well as it does on
equation 3, when it performs worse than random point selection
on equation 2, despite equation 2 being similar yet simpler than
equation 3. It is also unclear what would make equation 2 more
difficult for active learning than random point selection, so further
analysis is planned for the future.

Equation 24 is another example of an equation that active learn-
ing performed well on and excelled over random point selection:

𝐸 =
1
4
𝑚𝑥2

(
𝜔2 + 𝜔12

)
(Eq 24)

Equation 14 and Equation 47 both showed worse performance
using active learning over random search:

𝑈 = 𝐺𝑚1𝑚2

(
1
𝑟2
− 1
𝑟1

)
(Eq 14)

𝜅 =
𝑘𝑣

𝐴(𝛾 − 1) (Eq 47)

It is possible that the active learning point selection is misled by
these equations to select points that are not maximally informative
or points that are very similar to points previously selected.

Table 3 summarizes the results of the ablation study on a selected
number of equations from the AIFeynman benchmark set.
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Table 3: Average number of points needed in Active Learning
(AL) vs. Random Point Selection (Random). Number of trials.

EQ# AL Random Trials

1 3 3 100
2 43 28.5 100
3 42.5 >202 100
4 25 26 100
10 4 5 100
11 3 3 100
12 3 3 100
14 19.5 14 100
15 3 3 100
16 3 3 100
23 4 4 100
24 28.5 49.5 100
32 10.5 11 100
47 28.5 17.5 40
60 8 7.5 100
61 30 30.5 40

5 DISCUSSION
Although the active learning approach did not outperform AIFeyn-
man on all equations tested, it does show promise in that it has a
similar success rate to Eureqa and uses no domain expertise, unlike
AIFeynman. The active learning approach represents a self-guided
experimentation process where the machine learning algorithm can
direct an experimentation and design process so that researchers
can spend less time planning their next experiments. Even more
importantly, with active learning, it is less likely that an exhaustive
set of experiments needs to be completed to fully understand a
system of study.

It was observed in the ablation study that some types of problems
are better suited for this method of active learning while other types
of problems are more difficult than random point selection. For
those problems that are more difficult it is possible that the active
learning point selection was misled to choose points that are not
actually maximally informative. An attempt to avoid this problem
was made but was not sufficient to ensure similar points are not
repeatedly selected. Further work will explore an approach where
new points have to be aminimumdistance away from points already
in the data set to ensure that similar points are not gathered at every
selection event. Alternatively, a hybrid random and informed point
selection could be utilized.

A second possibility is that the issue lies with the uncertainty
metric used. The uncertainty metric used is a relativemeasure since
it is scaled by the magnitude of the ensemble response. This seemed
like a good approach since the magnitude of uncertainty would
likely increase as the magnitude of the response increases, but that
may not always be the case. If it is not the case, point selection could
become biased towards regions where the uncertainty metric is
magnified by the smaller ensemble response. This could potentially
be fixed by changing the uncertainty metric to not be relative to
the magnitude of the ensemble response.

Further research to explore howwell various uncertainty metrics
affect the success of this active learning approach on various prob-
lem types will be useful. As well, it could be beneficial to explore
and classify the types of problems that tend to be difficult or easy
for active learning.

From observation it seems that of all the equations in the Feyn-
man data set, the ones that tend to pose difficulty for this active
learning approach tend to have complex denominators. This could
support the concern that the relative uncertainty metric is being
misled for some problem types. Alternatively, it could highlight a
weakness with current symbolic regression implementations since
Eureqa struggled with many of those problems as well. It is pos-
sible that when variables exist in the denominators of problems,
that it becomes more difficult for symbolic regression to determine
the true contribution of those variables. To determine if this is a
larger scale weakness with symbolic regression it could be useful to
compare several additional symbolic regression implementations
on those difficult problems.

Future research is planned to explore the applications of other
active learning techniques, both model and data driven, to genetic
programming with the goal of determining which methods are
most successful for different types of problems. This information
can form the basis for an active learning toolkit that can be used
by researchers in various fields to accelerate their data collection
process.
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