
Chapter 8
Sharpness-Aware Minimization
in Genetic Programming

Illya Bakurov, Nathan Haut, and Wolfgang Banzhaf

Abstract Sharpness-Aware Minimization (SAM) was recently introduced as a reg-
ularization procedure for training deep neural networks. It simultaneouslyminimizes
thefitness (or loss) function andfitness sharpness. The latter serves as ameasure of the
nonlinear behavior of a solution guiding toward solutions that lie in neighborhoods
with uniformly similar loss values across all fitness cases. In this contribution we
adapt SAM for tree Genetic Programming (TGP) by exploring the semantic neigh-
borhoods of solutions using two simple approaches. By perturbing input and output of
program trees, sharpness can be estimated and used as a second optimization criterion
during the evolution. To better understand the impact of this variant of SAM on TGP,
we collect numerous indicators of the evolutionary process, including generalization
ability, complexity, diversity, and a recently proposed genotype-phenotype mapping
to study the amount of redundancy in trees. The experimental results demonstrate
that using any of the two proposed SAM adaptations in TGP allows (i) a signifi-
cant reduction of tree sizes in the population and (ii) a decrease in redundancy of
the trees. When assessed on real-world benchmarks, the generalization ability of
solutions does not deteriorate.

8.1 Introduction

The automatic discovery of mathematical expressions to describe phenomena cap-
tured in data is an extremely valuable tool for accelerating scientific discovery since
the mathematical expressions can be used to make predictions about the systems that
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generated the data and the expressions can be directly studied to extract new insights
into the system. There are many approaches for finding equations that fit data: lin-
ear regression, polynomial regression, SINDy [7], neural-symbolic regression [6],
symbolic regression [19], etc. Genetic programming (GP) is a popular method for
finding equations that fit data since it allows great flexibility for the discovery of
nonlinear behaviors in data while also being effective in small data scenarios, unlike
deep learning (DL) approaches which generally require large training datasets. This
ability of GP to be effective in small data scenarios is likely related to an evolutionary
algorithm’s bias for simple solutions, as simple solutions are less likely to overfit [5].
Even so, in small data scenarios, the models are naturally underconstrained in the
interstitial spaces between the training data points, which means that surprising and
unexpected behavior can occur when interpolating. Ideally, we would want the mod-
els to be at least stable (smooth) when interpolating, otherwise the generalization
ability of a model can be severely reduced.

Some GP methods have been proposed to help stabilize model predictions to
improve the robustness against overfitting in small data scenarios, such as order of
nonlinearity [38], model curvature [35], random sampling technique (RST) [13],
RelaxGP [8], and overfit repulsors [36]. Order of nonlinearity and model curvature
are approaches that attempt to consider model properties to predict overfitting [35,
38]. Random sampling attempts to reduce the risk of overfitting by ensuring that no
model sees the whole dataset in a single generation [13]. RelaxGPminimizes the risk
of overfitting by assigning no additional fitness for getting closer than some threshold
to the response data [8]. The use of overfit repulsors stores known overfit models and
promotes the evolution of individuals that are different in semantic space [36].

Here we propose to use model properties to predict and discourage overfitting
while using synthetic data to catch models that are unstable in the interstitial spaces
around the known training data. This approach is inspired by the Sharpness-Aware
Minimization (SAM) technique recently developed in DL for neural networks [10]
and also applied in a different way in [40] for feature construction. In [10], the
authors demonstrate that SAMcan promote generalization in neural networks. This is
achieved by searching for neural networkmodel parameters that lie in neighborhoods
of low sharpness.

We introduce two new methods for selecting against sharpness in genetic pro-
gramming: input-based SAM (SAM-In) and output-based SAM (SAM-Out). In this
work, we aim to:

• Adapt sharpness-aware minimization from a deep learning regularization method
to be compatible with genetic programming in an efficient way;

• Reduce the risk of overfitting in GP by rewarding the smoothness of models rather
than just the accuracy;

• Improve the stability of models by penalizing models that vary significantly in
their response surfaces in neighborhoods in the fitness landscape.
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8.2 Related Work

8.2.1 Sharpness-Aware Minimization in Deep Learning

DL models commonly used in computer vision are often comprised of hundreds of
megabytes and millions of parameters, whereas large language models are made of
billions of parameters and their size is measured in gigabytes. Training such complex
systems is a big challenge for deep learning, but the high demand for computational
resources and data availability are not the only constraints. DL models are partic-
ularly prone to memorizing the training data rather than generalizing the learned
patterns to unseen data (i.e., overfitting). Several techniques are commonly used to
mitigate overfitting in DL and foster convergence: penalizing loss/fitness functions
for disproportional high weights (such as L1 and L2 penalties), setting the weights
connecting randomly selected neurons in some layer(s) to zero during a given train-
ing iteration, usage of varied data augmentation techniques to expose models to more
variation, normalization of data batches that pass through the network, etc. Some DL
researchers focus their attention on how a variety of neural architecture choices (such
as depth, width, network architecture, optimizer selection, connectivity patterns, and
batch size) affect the geometry of fitness landscapes and relate this to network gener-
alization. For instance, Li et al. concluded [21] that landscape geometry significantly
affects the generalization ability of a system and that larger network depth, batch size,
and usage of sequential connections without shortcut connections produce sharper
fitness landscapes and, consequently, negatively impact the generalization ability of
networks.

Motivated by the connection between the fitness landscape and generalization,
P. Foret et al. proposed a novel procedure that improves model generalization by
simultaneously minimizing the loss value and sharpness of the loss landscape by
promoting parameters that lie in neighborhoods having uniformly low loss value [10].
Specifically, the authors add a regularization term to the loss function that is ameasure
of how training loss can be increased by moving weights W to a nearby parameter
valueW + ε, where ε represents the perturbation. The authors demonstrate that SAM
improves model generalization ability across a range of widely studied computer
vision tasks and provides robustness to label noise on par with that provided by SOTA
procedures that specifically target learning with noisy labels. This procedure was
called Sharpness-Aware Minimization (SAM) and constitutes the main inspiration
for the approach proposed in this manuscript.

8.2.2 Semantic Awareness in Genetic Programming

Traditional crossover and mutation operators used in GP rely on structural (i.e.,
genotypic) transformations of parent individuals, without knowledge of their effects
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on the offspring’s behavior. But amere replacement of one node can lead to arbitrarily
large changes in the behavior of a program (e.g., replacing—with ∗ in x1 + x2 − x3).

Since 2012 GP researchers have incorporated semantic awareness into GP.1

Moraglio et al. [24] proposed geometric semantic operators (GSOs) that allow to
transform genotypes of parents in such a way that the effect on the semantics of the
offspring is known, unlike what happens with standard GP operators [18]. A remark-
able characteristic of GSOs is that the error surface on the training data for any
supervised machine learning problem is unimodal and therefore easy to search. This
holds independently of the size and complexity of the dataset [34]. GSOs allowedGP
to achieve better accuracy in numerous real-world applications, evenwhen compared
with other ML approaches [2, 20, 37].

Vanneschi et al. [37] demonstrated that using a sigmoid-bounding function in
geometric semantic mutation (GSM) helps to stabilize the learning process and
increase the generalization ability of solutions. In this sense, the semantics of the
offspring resulting from a GSM will surround the semantics of the parent within a
user-controlled range [−ms, ms], which can be interpreted as a step in any direction
of the semantic space in a box of sidems. Recently, Bakurov et al. [3] proposed a nor-
malization procedure for GSM that reduces the size of the programs and overcomes
some saturation issues associated with the sigmoid function adopted in [37], which
resulted in more accurate and simple solutions. This is the GSM variant used in our
study. Gonçalves et al. introduced the concept of the semantic neighborhood—the set
of neighbors reachable from a given solution when a GSM is applied to it—and pro-
posed a stopping criteria based on neighborhood properties [12]. Competitive gen-
eralization was achieved within significantly fewer generations, and consequently
in smaller solutions. This suggests that information collected from the semantic
neighborhood can bring notable value for the evolutionary process.

8.2.3 Noisy Data and Fitness Functions

Acommon problem inmachine learning is overfitting, where theMLmethod focuses
too much on chasing perfect accuracy and the model only learns to memorize the
training data but fails to identify generalizable patterns. One method to avoid over-
fitting is to utilize a noisy fitness function, which is a fitness function that has noise
introduced so that it is not exact and thus prevents the machine learning algorithm
from chasing a stationary zero error solution in the search space. In evolutionary com-
putation it has been shown that noisy fitness evaluations can be beneficial in rugged
landscapes by allowing the search to more easily escape local optima and navigate
toward a global optimum [31]. Also, evolutionary computation methods have been

1 The term semanticsdefines the vector of output values of a candidate solution (program), calculated
on the training observations [24]. Following this notion, a candidate solution in GP is a point in a
multidimensional semantic space, where the dimensionality is equal to the number of observations
in the training set.
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found to be robust in “uncertain environments” where noise is naturally present in
the environment [16, 29]. While somewhat different from a noisy fitness function
where noise is intentionally injected into the fitness function, it demonstrates that
noise is not necessarily a problem for evolutionary computation and may sometimes
even be a benefit.

In GP, a similar approach has been to find a “good-enough” fit such that the error is
within some threshold rather than trying to find a perfect fit with zero error. One such
approach is RelaxGP [8], where the authors change the fitness to instead consider
an upper and lower bound for each response value rather than trying to perfectly fit
each response value. In GP, random sampling has also been shown to have similar
benefits to noisy fitness evaluations since it improves the generalization of model
and discourages memorization of the whole training set [13, 26].

8.2.4 SAM in GP

Very recently, sharpness was also incorporated in GP [40] within the scope of feature
construction. In that work, sharpness was measured by introducing Gaussian noise
to each node at all layers of the feature trees. The sharpness of an individual was then
determined using the difference in loss after the noise was introduced. The results
demonstrate that sharpness can indeed be used to reduce the size of GP trees and
mitigate their tendency to overfit. However, one potential drawback of this approach
is that it is computationally expensive since it computes sharpness using noise at
each layer of the trees.

8.3 The Proposed Approach

Here we evaluate two approaches for estimating the sharpness of a given tree in GP.
Because of the fundamental difference between artificial neural networks (ANN)
and TGP, a direct transfer of SAM from the former to the latter is impracticable.
Typically, ANNs have a predefined (fixed) architecture (e.g., number of layers and
nodes per layer) and the search for an optimal solution consists of finding an optimal
set of weights (a collection of real values) that minimizes the loss; therefore, for
ANNs, the loss landscape is continuous.

Although there exist some successful attempts to include learnable weights in
TGP [27, 28, 32], TGP typically is comprised of discrete structures (program ele-
ments), commonly divided into two groups: (i) terminals, which represent the input
features of the problem and numeric constant values, and (ii) functions, which repre-
sent the operations to be performed on terminals. The search for an optimal solution
is thus conducted in a discrete space made up of combinations of these tree data
structures, that can grow or shrink dynamically in size. Given these differences, we
use two approaches to adapt SAM for TGP. The first acts on the input of a tree by
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Fig. 8.1 A sharp and a smooth model are compared along with the values that were returned by
the SAM-IN metric, showing that the sharper model is clearly identified by the metric

randomly perturbing both constants and input features of the model; in other words,
it adds noise to a tree’s terminal nodes. The second approach consists of randomly
perturbing the output of a tree. The subsections below explain each approach in more
detail.

The goal of these methods is to identify and penalize those models of the popula-
tion that exhibit strongly nonlinear behavior in the fitness landscape (sharpness). An
example of the behavioral difference between twomodels is shown in Fig. 8.1, where
we depict two models with similar accuracy on the training data. However, one is
not stable in some regions of the fitness landscape, while the other is very smooth
and stable. Training points are shown as red dots on the model response surfaces
and sharpness, calculated by our metric, is listed for each model in the labels above
the plots. The values show that the sharpness metric would be able to identify this
unstable model and remove it from a population. Unknowingly selecting and using
a sharper model would be detrimental since it has very unstable behavior in certain
regions of input space.

8.3.1 SAM on Input (SAM-IN)

Our first approach, called SAM-IN, quantifies the sensitivity of each tree in the
populationwith respect to randomperturbations in the terminals, both in variables and
constants. This sensitivity is calculated by measuring the absolute fitness differential
after applying randomnoise ofmagnitude ε to a subset of input training data instances
n and all of the model constants. The noise introduced to the variables is a function
of the standard deviation of the data in that variable. Then, the trees are executed a
second time in order to obtain the fitness on the perturbed training cases. This quantity
is then used as a second selection criterion during an evolutionary run. Selection is
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performed by using randomized double tournament selection, where the order of
objectives is randomized for every selection. We expect that high sensitivity toward
input noise indicates that a given tree is likely overfit and thus should have a lower
selection preferencewhen compared to a treewith a smaller sensitivity.Algorithm8.1
is an implementation of SAM-IN.Mathematically, the SAM-INmetric is represented
by Eq. (8.1), where n is the number of perturbations (in this work we just use just
one perturbation), x is the input data, y is the response data, ε is the noise introduced
to the input data, F is the model, F̃ is the model with perturbed constants, and Corr
is a function for computing Pearson’s correlation coefficient depicted in Eq. (8.2). In
Eq. (8.2), y is the target response, ŷ is the model response, and N is the number of
data points.

Sin =
∑n

i=1 |Corr(F(x), y)2 − Corr(F̃i (x + εi ), y)2|
n

(8.1)

Corr(ŷ, y) =
∑N

i=1(yi − ȳ)(ŷi − ¯̂y)
√∑N

i=1(yi − ȳ)2 × ∑N
i=1(ŷi − ¯̂y)2

(8.2)

Algorithm 8.1 SAM on Input Revision in progress
Require: perturbations number n > 0, perturbation magnitude ε > 0, training dataset D
1: −→σ ← Compute the standard deviation of each feature in X
2: for each generation in the evolutionary run do
3: Xs ← Select a random sample of size n from X
4: Xs+ε ← Make a copy of Xs
5: for i = 1 to Length(Xs+ε) do
6: εi ← generate a random value in

[−ε−→σ , ε−→σ ]

7: Xs+ε[i] = Xs+ε[i] + εi
8: end for
9: for each tree t in the population do
10: tε ← make a copy of t
11: for each constant c in tε do
12: εc ← generate a random value in [−ε, ε]
13: c = c + εc
14: end for
15: f t ← compute the fitness of t on Xs
16: f t+ε ← compute the fitness of tε on Xs+ε

17: StSAM−I N ← compute sharpness of t as | ft − ft+ε|
18: end for
19: end for

Unlike the original SAM in DL, or the SAM variant introduced in [40], SAM-
IN introduces noise in the terminals rather than all of the connections (red arrows
in Fig. 8.2). This is computationally less expensive than the SAM-GP introduced
in [40] and better reflects the idea behind generalization ability: the ability to provide
accurate and stable predictions for new, previously unseen data, drawn from the same
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Fig. 8.2 An example of a GP tree. The red arrows indicate the location of injected noise

distribution as the one used for training. The small noise will propagate through all
layers of a tree and helps to measure the potential for accurate and stable predictions.

8.3.2 SAM on Output (SAM-OUT)

Our second approach, called SAM-OUT, builds upon the mechanics of the GSM
operator and the notion of semantic neighborhood introduced by [11] and described
in Sect. 8.2.2. Given a reference individual (tree), it generates n semantic neighbors
using GSM with ms = ε, where n and ε are hyper-parameters of SAM-OUT. The
fitness of each semantic neighbor is calculated and the sharpness of the reference
individual is estimated as the variance in the semantic neighborhood. A large vari-
ance/instability in the semantic neighborhood indicates that a given reference indi-
vidual is likely to overfit and, thus, should have a lower selection preference when
compared to a treewith a smaller variance.Algorithm8.2 contains an implementation
of SAM-OUT. We use the normalized-GSM as proposed in [3] given its notable sta-
bility and simplicity. Mathematically, SAM-OUT is represented in Eq. (8.3), where
x represents input data, y the response data, ε is the noise introduced to the model
output, F is the model, and Corr is a function for computing Pearson’s correlation
coefficient shown in Eq. (8.2).
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Sout =
∑n

i=1 |Corr(F(x), y)2 − Corr(F(x) + εi , y)2|
n

(8.3)

Note that we do not need to construct and execute a random tree to sample from
the semantic neighborhood of a reference individual, as the semantic neighbors are
only used for sharpness assessment. Because semantic neighbors will not be used
anywhere else in the process, SAM-OUT (unlike SAM-IN) can fully operate in
semantic space, which renders it significantly more efficient. Thus one can generate
a semantic neighbor by summing the semantics of the reference individual with a
randomly generated vector of values centered at zero and bounded in [−ε, ε]. It
is important to note that there is no need for additional execution of the reference
individual to extract its semantics, as it is already done when performing fitness
evaluation.

Algorithm 8.2 SAM on Output
Require: perturbations number n > 0, perturbation magnitude ε > 0, training dataset X
1: for each generation in the evolutionary run do
2: for each tree t in the population do
3: ŷt ← Compute the output of the tree t on X
4: σŷt ← Compute the standard deviation of ŷt

5:
−→
f tn ← empty vector for storing fitness of n semantic neighbors of t

6: for each perturbation i in n do
7: ŷit+ε ← Make a copy of ŷt
8: for j = 1 to Length(̂yit+ε ) do
9: εt( j,i) ← generate a random vector in

[−εσŷt , εσŷt

]

10: ŷit+ε [ j] = ŷit+ε [ j] + εt( j,i)
11: end for
12:

−→
f tn [i] ← compute the fitness of the i th semantic neighbor ŷit+ε

13: end for
14: end for
15: StSAM−OUT ← compute sharpness of t as σ 2(

−→
f tn )

16: end for

A subtlety arises when using R2 as fitness function as opposed to RMSE fit-
ness. In this case SAM-OUT is not functionally identical to introducing noise to the
target vector, as would occur when using noisy fitness functions. This is shown in
Table8.1 where the same error with RMSE is observed when adding the noisy vector,
ε, to the predicted target, ŷ, as when subtracting ε from the target y. This is, however,
not the case when employing R2 as fitness function, which means that adding noise
to the output is different here from adding noise to the target.
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Table 8.1 Comparison of SAM-OUT versus Noisy target for RMSE and R2. y represents the
target variable, ŷ represents the model predicted target, and ε represents a normally distributed
noisy vector. ε was randomly initialized and then used in the same state for each evaluation in the
table

Noise location RMSE value R2 value

y + ε 2.931 0.431

y − ε 2.831 0.294

ŷ + ε 2.831 0.817

No noise 1.957 0.847

Table 8.2 Details about the four real-world datasets used

Dataset #Instances #Features

Boston [14] 506 13

Heating [33] 768 8

Diabetes [9] 442 10

Concrete [39] 1005 8

8.4 Experimental Settings

We assess our method on data from four real-world regression problems and four
popular synthetic functions. The real-world problems are described in Table8.2.
As for the latter, given a synthetic function f (X), we randomly sample 100 data
points in a 2-dimensional grid (x), under uniform distribution, where each dimension
corresponds to an input feature (x1 and x2). The third dimension corresponds to the
target of the prediction y and is obtained as f (x) = y. The synthetic problems are
described in Table8.3. In each run, we use different train-test partitions of the data.
For real-world problems, we randomly sample 70% observations for training, while
the remaining 30% are held out for testing. For synthetically generated problems,
we use 50% for training and 50% for testing.

Table8.4 lists the hyper-parameters (HPs) used in this study, along with cross-
validation settings. The HPs were selected following common practices found across
the literature to avoid a computationally demanding tuning phase. R2 was used as
fitness function [15, 17, 22] as it was found to converge faster, generalize better, even
when only a few data points are available. Programs allowing invalid operations (like
dividing by 0 or taking a square of a negative value) were automatically assigned
a low fitness value. Although operator protection ensures a valid numerical output
for any input, it can also produce unexpectedly high/low (i.e., sharp) predictions as
shown in [17]. This would inevitably bias our sharpness-aware approach to avoid
programs containing such operators. Thus, to compare sharpness-aware minimiza-
tion and standard GP on a fair basis, none of the operators is protected in this study.
Two rounds of tournament selection are used to select individuals, with sizes 6 and
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Table 8.3 Details about the four synthetic datasets used. In our experiments, D = 2

Name Function xi ∈
Levy f (x) = sin2(πw1) + ∑D−1

i=1 (wi −
1)2

(
1 + 10 sin2(πwi + 1)

) +
(wd − 1)2(1 + sin2(2πwd )),
wi = 1 + xi−1

4

[−10, 10]

Ackley f (x) =
−a exp

(

−b
√

1
D

∑D
i=1 x

2
i

)

−exp
(

1
D

∑D
i=1 cos(c xi )

)
+ a

+ exp(1), a = 20, b = 0.2, c = 2π

[−32.768, 32.768]

Rastrigin f (x) = 10D +∑D
i=1

(
x2i − 10cos(2pixi )

) [−5.12, 5.12]

Rosenbrock f (x) = ∑D−1
i=1 (100(xi+1 −

x2i )
2 + (xi − 1)2)

[−2.048, 2.048]

Table 8.4 Summary of the hyper-parameters. Note that P(C) and P(M) indicate the crossover
and the mutation probabilities, respectively

Parameters Values

No Train/test split Real-world problems: 70/30%; synthetic problems: 50–50%

Cross-validation Monte-Carlo (repeated random subsampling)

No runs 60

No generations 50

Population’s size 100

Functions (F) {+, -, x, / sin(x), cos(x), tanh(x), x2, x−1,
√
x, ex , log(x)}

Initialization Ramped Half&Half (RHH) with max depth of 5

Selection double tournament with sizes 6 and 3, respectively

Genetic operators {swap crossover, subtree mutation}

P(C) 0.8

P(M) 0.2

Maximum depth limit Not applied

Stopping criteria Maximum No generations

SAM noise magnitude (ε) {0.1, 0.2, 0.5, 1.0}

SAM number of noisy
perturbations (n)

{10, 20, 50}
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3, respectively. At each selection event, a criterion for selection is chosen at random
(either training fitness or sharpness). The returned individual is the one that exhibits
the highest R2

train and the smallest sharpness.
Recently, Banzhaf andBakurov [4] proposed an effective approach tomap a geno-

type to its phenotype in TGP by removing semantically ineffective code from the
former. This genotype-phenotype mapping (GPM) is highly efficient as it is built
upon the mechanics of the fitness evaluation (which inevitably needs to take place),
avoiding, therefore, redundant function calls and calculations. The authors show
that smaller phenotypes are hidden within larger genotypic trees, easily extracted to
facilitate interpretability. They also studied the population dynamics of both geno-
types and phenotypes and concluded that population behavior is normally based on
a scarce number of unique and small phenotypes, which—curiously—happens even
when evolution is more explorative. The authors observed that the growth rate of
phenotype size is notably smaller than that of genotypes. All of this suggests that
using the GPM approach presented in [4], one can extract valuable insights about
evolutionary dynamics. To make the best use of these results and allow an unbiased
assessment of the impact of SAM in terms of bloat, no limit to tree depth was applied
during evolution. Initially, we did not have any assumption about SAM’s impact on
solution size; instead, we wanted to allow for more degrees of freedom for SAM to
manifest its features.

To conduct our experiments,we use theGeneral PurposeOptimizationLibrary [1].
GPOL is a flexible and efficient multi-purpose optimization library in Python that
covers a wide range of stochastic iterative search algorithms, including GP. Its mod-
ular implementation allows for solving optimization problems, like the one in this
study, and easily incorporates new methods. The library is open-source and can be
found by following this link. The implementation of the proposed approach can be
found there.

8.5 Experimental Results

Table8.5 reports the ranks on the generalization ability obtained by different SAM
variants and baseline TGP. To build the table, the R2 fitness values on the test data
observed in the last generation were ranked in ascending order. Then, the ranks
were averaged by algorithm type (standard GP and SAM variants). From the table,
one can observe that several of the proposed SAM variants tend to rank the best
more often than standard GP in terms of generalization ability. When comparing
two distinct SAM approaches, SAM-IN ranks above its SAM-OUT counterpart.
Additionally, from this table, we can extract the reference parameters for the two
SAM variants. Both tend to produce better ranks using mild perturbations (0.1) and
small neighborhood (10 and 20 for SAM-IN and SAM-OUT, respectively). From
the table, these are SAM-IN0.1

10 and SAM-OUT0.1
20 . These SAM configurations were

used in all figures of this section as the default SAM-IN and SAM-OUT, depicted as
dashed dark blue and dark red lines.

https://gitlab.com/ibakurov/general-purpose-optimization-library
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Fig. 8.3 Average population training (left) and test (right) fitness of SAM approaches versus
standard GP on the 4 real-world datasets

Figures8.3 and 8.4 show the average fitness in the population for real-world and
synthetic problems, respectively. Each problem is depicted in a given row, whereas
each column represents a given partition: training on the left, and test on the right. The
solid green lines represent standard GP (in green). The solid red and royal blue lines
represent the SAM-IN and SAM-OUTmethods that achieved the best generalization
ability on a given problem. The SAM-IN and SAM-OUT configurations that were
found to score the best more often across all the problems are depicted as dashed
blue and dark red lines (these are the recommended SAM configurations and were
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Fig. 8.4 Average population training (left) and test (right) fitness of SAM approaches versus
standard GP on the 4 synthetic datasets

obtained from Table8.5). The remaining SAM-IN and SAM-OUT configurations
are depicted as thin dotted lines, in blue and dark red, respectively. When looking
at Fig. 8.3, the average population fitness is roughly the same for standard GP and
the SAM approaches on Boston, Diabetes, and Heating. On the Boston problem,
however, SAM-IN shows a slower convergence.On theConcrete problem, the highest
fitness values are observed for standard GP, followed by SAM-IN and ultimately
SAM-OUT. This particular problem seems more challenging to generalize on test
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data for all the GP variants. It is also relevant to point out that the recommended
SAM configurations tend to overlap with the best SAM configuration for particular
problems, highlighting their robustness across problems.

When looking at Fig. 8.4, we observe a higher average fitness in the popula-
tion when using standard GP on all the problems, across both partitions. SAM-IN
follows standard GP and SAM-OUT achieves the worst average fitness values on
both partitions. This is not the case, however, on the Rosenbrock problem where
the best SAM-IN and SAM-OUT achieve competitive performance. In conclusion,
the proposed SAM approaches tend to produce similar population training and test
fitness on real-world problems when compared to standard GP, while on synthetic
low dimensional problems they report worse fitness.

Figures8.5 and 8.6 show the training and test fitness of the elite individuals,
averaged across the evolutionary runs. The figure arrangement conforms to that of
Figs. 8.3 and 8.4.When looking at Fig. 8.5, SAM-OUT converges faster and achieves
better generalization when compared to both standard TGP and SAM-IN. Specif-
ically, it achieves better test fitness than TGP on Boston and Heating problems,
and similar fitness on Diabetes. Only on the Concrete problem, which seems to be
challenging to generalize for all the algorithms, SAM-OUT achieves worse gener-
alization. SAM-IN produces similar results to TGP across three problems (Boston,
Diabetes, and Concrete) and scores the worst on Heating. For the elite fitness on
synthetic problems, depicted in Fig. 8.6, standard TGP provided the best generaliza-
tion, followed by SAM-IN which achieved the highest test scores on Rastrigin and
similar scores on the Levy problem. SAM-OUT achieved the worst generalization
ability, except on the Rosenbrock problem where it outperformed SAM-OUT but
remained below TGP. In conclusion, the proposed SAM approaches tend to generate
elites with equivalent or superior training and test fitness on real-world problems,
while on synthetic low dimensional problems they report worse fitness.

We also recorded the average length of trees (node count) in the population across
the evolutionary runs for all problems. Additionally, we measure the average differ-
ence between the whole genotype and the behavioral determinants (phenotype) of
the individuals in the population using the GPM proposed in [4]. The latter was used
to compute the ratio of redundant code (introns) in the trees. We display those results
in Figs. 8.7 and 8.8 for the real-world and synthetic problems, respectively. The left
column represents the average length, whereas the column on the right represents
the average proportion of redundancy. Each problem is depicted in a given row. The
results show that both SAM methods tend to produce notably smaller trees and,
within those trees, the amount of nodes that do not contribute to the behavior is sig-
nificantly smaller (i.e., there is a higher utilization of the code). Usually, SAM-OUT
produces smaller trees with less redundancy than SAM-IN. Although this happens
in real and synthetic problems, it is particularly notable for the latter.

Figure8.9 reports the number of seconds per generation (first vertical axis) and
the population size (second vertical axis) averaged across 10 runs on two problems:
Levy and Concrete. The experiment was performed on an Intel(R) Core(TM) i7-
8750H CPU processor with 2.20GHz, and 16GB of RAM. Solid lines represent the
time, and dashed lines represent the size. One can notice that both SAM approaches
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Fig. 8.5 Average best-performing model fitness of SAM approaches versus standard GP on the 4
real-world datasets

report smaller runtimes and average lengths of individuals than standard GP, with
SAM-OUT notably more efficient. Smaller average length was already observed in
Figs. 8.7 and 8.8. The efficiency of SAM-OUT is expected as it operates exclusively
on the semantics of trees, without executing them; moreover, it provides notably
smaller trees, which gives additional benefits in terms of runtime. SAM-IN is shown
to outperform standard GP in terms of both runtime and average length.

We would like to point out a further potential benefit of optimizing against sharp-
ness: In scenarioswhere the goal is to use themodel to predict a global optimum, such
as in an active design of experiment context. In those scenarios, developing a model
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Fig. 8.6 Average best-performing model fitness of SAM approaches versus standard GP on the 4
synthetic datasets

with a smoother surfacewouldmake optimizing on the surface simpler and could lead
to a convex surface which would make finding the global optima even trivial. This is
demonstrated in Fig. 8.10, where a sparse training dataset of 50 points was gathered
from the 2D Rastrigin function (left-most subplot), which is notoriously rugged, and
then TGP along with the two SAM approaches were used to generate approximation
models of the dataset. The resulting SAMmodels are remarkably smoother than that
provided by TGP (second subplot from the left). Both of them are convex and exhibit
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Fig. 8.7 Average length trees in the population (left) and the average amount of redundancy (right).
The latter was calculated as the difference between the genotype and phenotype using the method
proposed in [4]. The figure regards 4 real-world datasets

a global minimum in the same location as the target function. Notice, however, that
SAM-IN generated a better approximation of the target surface, which is supported
by the analysis of aggregated performances on Synthetic problems in Fig. 8.6.
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Fig. 8.8 Average length trees in the population (left) and the average amount of redundancy (right).
The latter was calculated as the difference between the genotype and phenotype using the method
proposed in [4]. The figure regards 4 synthetic datasets

8.6 Conclusions

In Machine Learning, the term learning often refers to the task of inducing a general
pattern from a provided set of examples, instead of memorizing them. This ability is
known as generalization and represents one of the main battlegrounds in the field.
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Fig. 8.9 Average number of seconds per generation (first vertical axis) and average population
size (second vertical axis) on two problems: Levy and Concrete. The figure aggregates data from
10 runs executed on an Intel(R) Core(TM) i7-8750H CPU processor with 2.20GHz, and 16GB of
RAM. Solid lines represent the time and dashed lines represent the size

In this study, we adapt the Sharpness-Aware Minimization (SAM), previously intro-
duced in Deep Learning (DL) to improve model generalization by simultaneously
minimizing the loss and sharpness of the loss landscape through promoting param-
eters that lie in neighborhoods of uniformly low loss values. To accommodate SAM
in GP, we propose two methods. The first, called SAM-IN, measures sharpness by
adding slight perturbations to the terminals of the programs (i.e., to both constants
and input features). The second, called SAM-OUT, measures sharpness by applying
slight perturbations to the output of the programs (i.e., the semantics). Both penalize
individuals for large fitness changes upon perturbation. In the latter case, sharpness
is assessed without the need to execute the program, which makes it computationally
more efficient.

Comparing the two SAM approaches to standard GP, we observe that co-selecting
individuals by fitness and SAM leads to evolution to find smaller and less redundant
models. On top of that, it allows for faster training times. For real-world problems
which are characterized by high data dimensionality and noisy data, thiswas achieved
without degradation of generalization ability. These findings are complementarywith
those observed in [40], who analyzed tree size distribution and found their SAM
approach produces smaller trees than the standard GP. Following their formulation,
SAMcan be seen as a regularization technique in GP; however, unlikemanymethods
like Parsimony Pressure [23], Grand Complexity [25], or Dynamic Limits [30], SAM
does not consider model size as an optimization target.

Subsampling led to faster evaluation of sharpness, but itmay have caused the SAM
metric to be unstable compared to evaluating sharpness using the whole dataset. The
subsampled metric may overlook localized sharpness in models if the subsample
happens to select points only in smoother regions. Future work could explore the
trade-off between subsample size and stability in the sharpness metric.

Incorporatingmodel sharpness as ametric to detect model overfitting and instabil-
ity could be essential for improving the stability, generalization ability, and simplicity
of models developed by GP, leading to more trustworthy models. If a model becomes
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unstable when being applied to make predictions and returns values that are wildly
infeasible, a user would likely lose trust in the approach and seek out another method
for developing models.

Our method for detecting sharpness is agnostic to the specific machine learning
method being used since the perturbations only occur at the inputs and outputs of
models. This means that our approach is general and can easily be adopted for other
machine learning approaches as long as assumptions about training data distribution
are not violated. We believe that the proposed sharpness metric should become part
of the standard machine learning pipeline either during model training as a fitness
metric or, minimally, as a post-processing selection criterion to ensure the models
being deployed are stable.

Acknowledgements WB acknowledges support from the Koza Endowment fund administered by
Michigan State University. Computer support byMSU’s iCER high-performance computing center
is gratefully acknowledged.

References

1. Bakurov, I., Buzzelli, M., Castelli, M., Vanneschi, L., Schettini, R.: General purpose optimiza-
tion library (GPOL): a flexible and efficientmulti-purpose optimization library in python. Appl.
Sci. 11(11), 4774 (2021). https://www.mdpi.com/2076-3417/11/11/4774

2. Bakurov, I., Castelli, M., Gau, O., Fontanella, F., Vanneschi, L.: Genetic programming for
stacked generalization. Swarm Evol. Comput. 65, 100913 (2021). https://doi.org/10.1016/j.
swevo.2021.100913

3. Bakurov, I., Muñoz Contreras, J.M., Castelli, M., Rodrigues, N., Silva, S., Trujillo, L., Van-
neschi, L.: Geometric semantic genetic programming with normalized and standardized ran-
dom programs. Genet. Program. Evol. Mach. 25(1) (2024). https://doi.org/10.1007/s10710-
024-09479-1

4. Banzhaf, W., Bakurov, I.: On the nature of the phenotype in tree genetic programming. In:
Li, X., Handle, J., et al. (eds.) Proceedings of the Genetic and Eovlutionary Computation
Conference (GECCO-2024), pp. 868–877. ACM Press, New York (2024). https://dl.acm.org/
doi/10.1145/3638529.3654129

5. Banzhaf, W., Hu, T., Ochoa, G.: How the combinatorics of neutral spaces leads genetic pro-
gramming to discover simple solutions. In: Winkler, S., Trujillo, L., Ofria, C., Hu, T. (eds.)
Genetic Programming Theory and Practice XX, pp. 65–86. Springer Nature, Singapore (2024).
https://doi.org/10.1007/978-981-99-8413-8_4

6. Biggio, L., Bendinelli, T., Neitz, A., Lucchi, A., Parascandolo, G.: Neural symbolic regression
that scales. In: International Conference on Machine Learning, pp. 936–945. PMLR (2021)

7. Brunton, S.L., Proctor, J.L., Kutz, J.N.: Discovering governing equations from data by sparse
identification of nonlinear dynamical systems. Proc. Natl. Acad. Sci. 113(15), 3932–3937
(2016)

8. Da Costa, L., Landry, J.A., Levasseur, Y.: Treating noisy data sets with relaxed genetic pro-
gramming. In: Artificial Evolution: 8th International Conference, Evolution Artificielle, EA
2007, Tours, France, October 29–31, 2007, Revised Selected Papers, pp. 1–12. Springer, Berlin,
Heidelberg (2023). https://doi.org/10.1007/978-3-540-79305-2_1

9. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32(2),
407–499 (2004). https://doi.org/10.1214/009053604000000067

10. Foret, P., Kleiner, A., Mobahi, H., Neyshabur, B.: Sharpness-aware minimization for efficiently
improving generalization. In: ICLR Spotlight (2021). https://arxiv.org/abs/2010.01412

https://www.mdpi.com/2076-3417/11/11/4774
https://doi.org/10.1016/j.swevo.2021.100913
https://doi.org/10.1016/j.swevo.2021.100913
https://doi.org/10.1007/s10710-024-09479-1
https://doi.org/10.1007/s10710-024-09479-1
https://dl.acm.org/doi/10.1145/3638529.3654129
https://dl.acm.org/doi/10.1145/3638529.3654129
https://doi.org/10.1007/978-981-99-8413-8_4
https://doi.org/10.1007/978-3-540-79305-2_1
https://doi.org/10.1214/009053604000000067
https://arxiv.org/abs/2010.01412


174 I. Bakurov et al.

11. Gonçalves, I., Silva, S., Fonseca, C.M.: On the generalization ability of geometric semantic
genetic programming. In: Machado, P., Heywood, M.I., McDermott, J., Castelli, M., García-
Sánchez, P., Burelli, P., Risi, S., Sim, K. (eds.) Genetic Programming, pp. 41–52. Springer
International Publishing, Cham (2015)

12. Gonçalves, I., Silva, S., Fonseca, C.M., Castelli, M.: Unsure when to stop? In: Proceedings of
the Genetic and Evolutionary Computation Conference. ACM (2017). https://doi.org/10.1145/
3071178.3071328

13. Gonçalves, I., Silva, S., Melo, J.B., Carreiras, J.M.B.: Random sampling technique for over-
fitting control in genetic programming. In: Moraglio, A., Silva, S., Krawiec, K., Machado, P.,
Cotta, C. (eds.) Genetic Programming, pp. 218–229. Springer, Berlin, Heidelberg (2012)

14. Harrison, D., Rubinfeld, D.L.: Hedonic housing prices and the demand for clean air. J. Env-
iron. Econ. Manag. 5(1), 81–102 (1978). https://www.sciencedirect.com/science/article/pii/
0095069678900062

15. Haut, N., Banzhaf, W., Punch, B.: Correlation versus RMSE loss functions in symbolic regres-
sion tasks. In: Trujillo, L., Winkler, S.M., Silva, S., Banzhaf, W. (eds.) Genetic Programming
Theory and Practice XIX, pp. 31–55. Springer Nature, Singapore (2023). https://doi.org/10.
1007/978-981-19-8460-0_2

16. Jin,Y., Branke, J.: Evolutionary optimization in uncertain environments—a survey. IEEETrans.
Evol. Comput. 9(3), 303–317 (2005)

17. Keijzer, M.: Improving symbolic regression with interval arithmetic and linear scaling. In:
Ryan, C., Soule, T., Keijzer, M., Tsang, E., Poli, R., Costa, E. (eds.) Genetic Programming, pp.
70–82. Springer, Berlin, Heidelberg (2003)

18. Koza, J.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press (1992)

19. Koza, J.R.: Genetic programming as a means for programming computers by natural selection.
Stat. Comput. 4, 87–112 (1994)

20. La Cava, W., Orzechowski, P., Burlacu, B., de Franca, F., Virgolin, M., Jin, Y., Kommenda, M.,
Moore, J.: Contemporary symbolic regressionmethods and their relative performance. In: Van-
schoren, J., Yeung, S. (eds.) Proceedings of the Neural Information Processing Systems Track
on Datasets and Benchmarks, vol. 1 (2021). https://datasets-benchmarks-proceedings.neurips.
cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf

21. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape of neural
nets. In: Proceedings of the 32nd International Conference on Neural Information Processing
Systems, NIPS’18, pp. 6391–6401. Curran Associates Inc., Red Hook, NY, USA (2018)

22. Livadiotis, G.,McComas, D.J.: Fittingmethod based on correlationmaximization: applications
in space physics. J. Geophys. Res.: Space Phys. 118(6), 2863–2875 (2013). https://agupubs.
onlinelibrary.wiley.com/doi/abs/10.1002/jgra.50304

23. Luke, S., Panait, L.: Fighting bloat with nonparametric parsimony pressure. In: Guervós, J.J.M.,
Adamidis, P., Beyer, H.G., Schwefel, H.P., Fernández-Villacañas, J.L. (eds.) Parallel Problem
Solving from Nature - PPSN VII, pp. 411–421. Springer, Berlin, Heidelberg (2002)

24. Moraglio, A., Krawiec, K., Johnson, C.: Geometric semantic genetic programming. In: Coello,
C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone, M. (eds.) Parallel Problem Solving
from Nature - PPSN XII. Lecture Notes in Computer Science, vol. 7491, pp. 21–31. Springer,
Berlin Heidelberg (2012)

25. Ni, J., Rockett, P.: Tikhonov regularization as a complexity measure in multiobjective genetic
programming. IEEE Trans. Evol. Comput. 19(2), 157–166 (2015). https://doi.org/10.1109/
TEVC.2014.2306994

26. Nordin, P., Banzhaf, W.: An on-line method to evolve behavior and to control a miniature robot
in real time with genetic programming. Adapt. Behav. 5(2), 107–140 (1997)

27. Pietropolli, G., Manzoni, L., Paoletti, A., Castelli, M.: Combining geometric semantic GP with
gradient-descent optimization. In: Genetic Programming: 25th European Conference. EuroGP
2022, Held as Part of EvoStar 2022,Madrid, Spain, April 20–22, 2022, Proceedings, pp. 19–33.
Springer, Berlin, Heidelberg (2022)

https://doi.org/10.1145/3071178.3071328
https://doi.org/10.1145/3071178.3071328
https://www.sciencedirect.com/science/article/pii/0095069678900062
https://www.sciencedirect.com/science/article/pii/0095069678900062
https://doi.org/10.1007/978-981-19-8460-0_2
https://doi.org/10.1007/978-981-19-8460-0_2
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf
https://datasets-benchmarks-proceedings.neurips.cc/paper_files/paper/2021/file/c0c7c76d30bd3dcaefc96f40275bdc0a-Paper-round1.pdf
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgra.50304
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1002/jgra.50304
https://doi.org/10.1109/TEVC.2014.2306994
https://doi.org/10.1109/TEVC.2014.2306994


8 Sharpness-Aware Minimization in Genetic Programming 175

28. Pietropolli, G.,Manzoni, L., Paoletti, A., Castelli,M.:On the hybridization of geometric seman-
tic GP with gradient-based optimizers. Genet. Program. Evol. Mach. 24(2), Article number:
16 (2023). https://rdcu.be/dpWsR. Online first

29. Rakshit, P., Konar, A., Das, S.: Noisy evolutionary optimization algorithms-a comprehensive
survey. Swarm Evol. Comput. 33, 18–45 (2017)

30. Silva, S., Costa, E.: Dynamic limits for bloat control in genetic programming and a review of
past and current bloat theories. Genet. Program. Evol. Mach. 10, 141–179 (2009). https://api.
semanticscholar.org/CorpusID:10925054

31. Sudholt, D.: Analysing the robustness of evolutionary algorithms to noise: refined runtime
bounds and an examplewhere noise is beneficial.Algorithmica 83(4), 976–1011 (2021). https://
doi.org/10.1007/s00453-020-00671-0

32. Topchy, A., Punch,W.F.: Faster genetic programming based on local gradient search of numeric
leaf values. In: Proceedings of the 3rd Annual Conference on Genetic and Evolutionary Com-
putation, GECCO’01, pp. 155–162. Morgan Kaufmann Publishers Inc., San Francisco, CA,
USA (2001)

33. Tsanas, A., Xifara, A.: Accurate quantitative estimation of energy performance of residential
buildings using statistical machine learning tools. Energy Build. 49, 560–567 (2012). https://
www.sciencedirect.com/science/article/pii/S037877881200151X

34. Vanneschi, L.: An introduction to geometric semantic genetic programming. In: Schütze, O.,
Trujillo, L., Legrand, P., Maldonado, Y. (eds.) NEO 2015: Results of the Numerical and Evolu-
tionary OptimizationWorkshop NEO 2015 held at September 23–25 2015 in Tijuana, Mexico,
pp. 3–42. Springer International Publishing, Cham (2017)

35. Vanneschi, L., Castelli, M., Silva, S.: Measuring bloat, overfitting and functional complex-
ity in genetic programming. In: Proceedings of the 12th annual Conference on Genetic and
Evolutionary Computation, pp. 877–884 (2010)

36. Vanneschi, L., Gustafson, S.: Using crossover based similarity measure to improve genetic
programming generalization ability. In: Proceedings of the 11th Annual Conference onGenetic
and Evolutionary Computation, pp. 1139–1146 (2009)

37. Vanneschi, L., Silva, S., Castelli, M., Manzoni, L.: Geometric semantic genetic programming
for real life applications. In: Riolo, R.,Moore, J.H., Kotanchek,M. (eds.) Genetic Programming
Theory and Practice XI, pp. 191–209. Springer, New York, NY (2014)

38. Vladislavleva, E.J., Smits, G.F., den Hertog, D.: Order of nonlinearity as a complexity measure
for models generated by symbolic regression via pareto genetic programming. IEEE Trans.
Evol. Comput. 13(2), 333–349 (2009)

39. Yeh, I.C.: Concrete compressive strength. UCI machine learning repository (2007). https://doi.
org/10.24432/C5PK67

40. Zhang, H., Chen, Q., Xue, B., Banzhaf, W., Zhang, M.: Sharpness-aware minimization for
evolutionary feature construction in regression (2024). arXiv: https://arxiv.org/pdf/2405.06869

https://rdcu.be/dpWsR
https://api.semanticscholar.org/CorpusID:10925054
https://api.semanticscholar.org/CorpusID:10925054
https://doi.org/10.1007/s00453-020-00671-0
https://doi.org/10.1007/s00453-020-00671-0
https://www.sciencedirect.com/science/article/pii/S037877881200151X
https://www.sciencedirect.com/science/article/pii/S037877881200151X
https://doi.org/10.24432/C5PK67
https://doi.org/10.24432/C5PK67
https://arxiv.org/pdf/2405.06869

	8 Sharpness-Aware Minimization in Genetic Programming
	8.1 Introduction
	8.2 Related Work
	8.2.1 Sharpness-Aware Minimization in Deep Learning
	8.2.2 Semantic Awareness in Genetic Programming
	8.2.3 Noisy Data and Fitness Functions
	8.2.4 SAM in GP

	8.3 The Proposed Approach
	8.3.1 SAM on Input (SAM-IN)
	8.3.2 SAM on Output (SAM-OUT)

	8.4 Experimental Settings
	8.5 Experimental Results
	8.6 Conclusions
	References


