
Optimizing LLVM Pass Sequences with Shackleton:
A Linear Genetic Programming Framework

Hannah Peeler∗
hpeeler@utexas.edu

Arm Ltd.
USA

Shuyue Stella Li
sli136@jhu.edu

Department of Computer Science,
Johns Hopkins University, USA

Andrew N. Sloss†
andrew@sloss.net

Arm Ltd.
USA

Kenneth N. Reid
ken@kenreid.co.uk

Department of Animal Science,
Michigan State University, USA

Yuan Yuan‡
yyuan@msu.edu

Department of CSE, Michigan State
University, USA

Wolfgang Banzhaf
banzhafw@msu.edu

Department of CSE, Michigan State
University, USA

ABSTRACT
In this paper we explore the novel application of a linear genetic
programming framework, Shackleton, to optimizing sequences of
LLVM optimization passes. The algorithm underpinning Shackleton
is discussed, with an emphasis on the effects of different features
unique to the framework when applied to LLVM pass sequences.
Combined with analysis of different hyperparameter settings, we
report the results on automatically optimizing pass sequences with
Shackleton for two software applications at differing complexity
levels. Finally, we reflect on the advantages and limitations of our
current implementation and lay out a path for further improve-
ments. These improvements aim to surpass hand-crafted solutions
with an automatic discovery method for an optimal pass sequence.

CCS CONCEPTS
• Computing methodologies → Genetic programming; • Soft-
ware and its engineering → Compilers.

KEYWORDS
Evolutionary Algorithms, Genetic Programming, Compiler Opti-
mization, Parameter Tuning, Metaheuristics

ACM Reference Format:
Hannah Peeler, Shuyue Stella Li, Andrew N. Sloss, Kenneth N. Reid, Yuan
Yuan, and Wolfgang Banzhaf. 2022. Optimizing LLVM Pass Sequences with
Shackleton: A Linear Genetic Programming Framework. In Genetic and
Evolutionary Computation Conference Companion (GECCO ’22 Companion),
July 9–13, 2022, Boston, MA, USA. ACM, New York, NY, USA, 4 pages. https:
//doi.org/10.1145/3520304.3528945

∗At time of publication, is no longer affiliated with Arm.
†Now at University of Washington, Seattle, WA, USA.
‡Now at Beihang University, Beijing, China. Reachable at yyxhdy@gmail.com

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9268-6/22/07.
https://doi.org/10.1145/3520304.3528945

1 INTRODUCTION
In this paper we introduce and utilize Shackleton, a generalized
framework that allows for the exploration of applying Linear Ge-
netic Programming (LGP) [5] – a subset of Genetic Programming
techniques [4, 10] – to novel use cases with minimal background
knowledge. The core of this work assesses the performance of
Shackleton on the optimization of a practical and complex use-case:
the optimization of LLVM compiler optimization pass sequences.
Optimizing compiler optimization pass sequences is a rare target
for Evolutionary Algorithms (EAs) despite its pervasive importance
to programming as a whole. We provide an analysis of the optimiza-
tion sequences that Shackleton’s evolutionary scheme generates
compared to default general solutions.

2 BACKGROUND AND RELATEDWORK
The work presented in this paper is a combination of method, im-
plementation, and target application, but is built upon structures
created by other researchers and software developers. We utilize a
LGPs framework of our own creation, Shackleton, to target LLVM
optimization pass sequences. Our framework was inspired by sim-
ilar efforts to make EAs methods more accessible like Python’s
DEAP package [8] or PushGP [16].

To understand LGP, it is important to recall that Genetic Pro-
gramming (GP) is an “Evolutionary Computation (EC) technique
that automatically solves problems without requiring the user to
know or specify the form or structure of the solution in advance”
[15]. LGP further specifies that programs are represented as lin-
ear sequences of instructions, leveraging the fact that computers
often represent and run programs in a linear fashion. Shackleton
leverages this quality to target optimizing compiler pass sequences.

A compiler translates computer code written in one source lan-
guage to a target language in an executable form. An optimizing
compiler tries to minimize or maximize attributes of the computer
program output in the target language to achieve some benefit at
execution time [1]. Recent research aims to improve on a priori opti-
mization methods by targeting machine learning based compilation
[20]. GP and GAs as methods are no exception to this. A genetic
algorithm approach has been applied to GNU Compiler Collection
(GCC), a compiler similar to LLVM but differentiated by its fixed
number of supported languages and reuse constraints [3, 9]. Further,

578

https://doi.org/10.1145/3520304.3528945
https://doi.org/10.1145/3520304.3528945
https://doi.org/10.1145/3520304.3528945
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3520304.3528945&domain=pdf&date_stamp=2022-07-19


GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Peeler and Li, et al.

GP was already applied to a compiler context to take advantage
of GP’s optimization potential for well-known compiler heuristics
[17]. Here we specifically target the LLVM Project - a collection of
modular and reusable compiler and tool-chain technologies [12] -
and evaluate Shackleton’s effectiveness at optimizing the source-
and target-independent segment of LLVM’s core framework.

3 METHODS
3.1 Problem Space
While Shackleton is designed to be applied to various use cases,
here we focus on the LLVM use case as mentioned above. The
framework takes in the source code of a target program, and outputs
a near-optimal optimization pass sequence that the LLVM compiler
can use to optimize this program. In our experiments, Ant Colony
Optimization for the Traveling Salesman Problem (ACOTSP) [18]
and the Backtrack Algorithm for the Subset Sum Problem (SSP) [13]
are explored as the target programs. SSP is used for all the results
shown in the following sections.

The Ant Colony Optimization (ACO) algorithm is inspired by
foraging behavior of some ant species [7], in which paths with
more visits would be reinforced after each iteration. In the traveling
salesman problem, a graph of cities and the distance between each
pair of cities are given, and the goal is to find a path in the topology
that minimizes total distance travelled.

In the SSP, we are given a set of 𝑁 numbers from 1 to 1,000,000,
and we are asked to find a subset that sums up to a random number
𝑋 (where 1, 000, 000 < 𝑋 < 𝑁 × 1, 000, 000) [2, 6, 11, 13]. Although
it might run into halting states, the backtracking algorithm approx-
imates the solution in a reasonable time. Both ACOTSP and SSP
are NP-complete problems, as they do not have polynomial-time
solutions. Therefore, optimizing the algorithms is non-trivial and
worth inspection here.

3.2 The Shackleton Framework
Shackleton is a generic GP framework that aims to make GP easier
for a myriad of uses. Currently, the main target of Shackleton is to
use the framework for optimization of LLVM pass sequences that
ultimately optimize executable code. The source code for Shackleton
is publicly available on Arm’s GitHub page.

3.2.1 Genetic Programming Design in Shackleton. In the Shackleton
Framework of LGP for LLVM, see FIG 1, each chromosome consists
of a sequence of optimization passes. First, a population of random
individuals is generated. For each sequence, its fitness is calculated
by compiling the program with that sequence of passes and averag-
ing the program runtime over 40 runs. In each generation, a portion
of the individuals with the best fitness scores are chosen as the elite
group and copied over to the next generation unchanged. Then, in
the special offspring selection process, a tournament-style selection
approach is used to select parent individuals. Genetic operators
including one-point crossover and one-point substitution mutation
are applied to their genomes to produce a ‘brood’ of 4 offspring
individuals; in each brood, the two best performing individuals
out of the four offspring and the two parents are selected to join
the next generation. This special offspring selection mechanism
is inspired by Tackett’s brood selection [19]. Finally, some new

Figure 1: Shackleton LGP for LLVM

individuals are randomly generated to be included in the next gen-
eration in order to preserve diversity in the population. The fitness
of the new generation is then evaluated and evolution continues. At
termination, the program outputs individuals with the best fitness
scores as the final solution. For the experiments in this paper, the
termination criterion is when the number of generations reaches
the set limit, but other implementations (e.g., converging fitness
values) are also available and can be further explored. Shackleton’s
evolution hyperparameters (i.e., number of generations, population
size, and tournament size) are set before program execution. Tuning
of these hyperparameters is further explored in [14].

4 EXPERIMENTS AND RESULTS
We conduct two primary experiments in this paper. We first test
out extreme combinations of the number of generations and num-
ber of individuals to determine the effect of these parameters. We
then explore the robustness of the framework’s optimization ben-
efits. The experiments were conducted on HPCC nodes running
CentOS Linux version 7 and Clang version 8.0.0. We utilized the
Backtrack Algorithm (from SSP), which contains recursive loops
that are potential sites of optimization. Preliminary testing found
this problem to be of adequate complexity for our experimentation
purposes, considering both the runtime and human-verifiable testa-
bility. Expanded results and additional experiments can be found
in [14].

579

https://github.com/ARM-software/Shackleton-Framework


Optimizing LLVM Pass Sequences with Shackleton GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA

Table 1: Number of Generations vs. Population Size Experi-
ment Parameters

Experiment Nr. Number of Generations Population Size

0 50 40
1 250 8
2 200 10
3 10 200
4 8 250
5 4 500

The number of generations and population size directly deter-
mine the number of runtime evaluations. These two hyperparame-
ters are roughly proportional to how many individuals will appear
throughout the evolutionary process. Therefore, in order to reduce
the overhead runtime of Shackleton, it is essential to determine
how much these two factors influence the search process of the
optimal solution. In our first experiment, we tracked the fitness
of the best individual in each generation with extreme settings of
number of generations and population size. This is to see whether
more computing power and runtime should be allocated to a large
number of generations or a larger population size, when their prod-
uct is fixed. The values are set such that each parameter setting
has a constant product, so the same number of total individuals are
represented in the entire run of Shackleton.

Table 1 shows the combinations of parameters used for this
experiment. Six trials were run for each setting. FIG 2 plots the
control set up with 50 generations and a population size of 40; FIG
3 and FIG 4 plot two representative cases of a setting with a large
num_generation value and a setting with a large population_size
value. The 𝑦-axis is the runtime of the sample use case - the SSP
with the Backtrack Algorithm - in seconds, which we use as the
fitness of the individuals, and the 𝑥-axis is the generation number.
The runtime of the program with no optimization and with default
LLVM optimization passes (first 8 data points of each trend line)
is plotted with the runtime of the individuals across generations.
FIG 5 shows the percentage improvement of the parameter settings
compared to each of the baseline optimization levels.

By exploring the extreme ends of the search space, this exper-
iment shows that more computing power and runtime should be
allocated to the population size rather than the number of gen-
erations. In the hyperparameter setting plotted in FIG 3, a small
population size of 10 is allowed to undergo 200 generations in
search for the optimal solution, but the fitness of the best individ-
ual is noisy and does not tend to converge, with a final percent
improvement of 4.08%. On the other hand, a large population size
of 200 shows converging fitness within just 10 generations and a
final percent improvement of 5.25%. This result gives support to
the claim that the greater diversity in a large population is crucial
in the search for an optimal solution.

Even though the hyperparameter settings for Shackleton are
problem-specific and can be set by the user, it is important to make
sure that most (if not all) hyperparameter combinations will speed
up the execution of the target source code. We tested a variety of
combinations to examine the robustness of Shackleton, the details

Figure 2: SSP Runtime - gen=50, pop=40.
Fitness decreases then converges to a stable level.

Figure 3: SSP Runtime - gen=200, pop=10.
Fitness fluctuates significantly and does not converge.

Figure 4: SSP Runtime - gen=10, pop=200.
Fitness converges very quickly but longer
overhead runtime (not shown in plot).

580



GECCO ’22 Companion, July 9–13, 2022, Boston, MA, USA Peeler and Li, et al.

Figure 5: SSP Runtime - Improvement over Baseline.
Percent improvement of top 6 hyperparameter settings

when plotted against each baseline level. As shown in plot,
all combinations result in reduced runtime compared to the

default LLVM optimization levels.

Table 2: Percent Improvement

Comparison Average % Improvement Additional %

O2-raw 1.40 74.09
Shackleton-raw 6.20 93.88
Shackleton-O2 4.77 90.17

of which can be found in [14]. Two metrics are of importance in
this evaluation - percent optimization from the raw source code
and the percent improvement of the automatically-generated se-
quence compared to the default optimization. We first want to
ensure that Shackleton will produce optimization sequences that
speed up the execution of the target source code. Then, we want
the automatically-generated sequences to perform better than the
default LLVM optimization. 94% of these runs produced faster code
compared to the unoptimized source code.

Shackleton’s use of stochastic elements in its evolutionary scheme
means that speed improvements over the raw source code after
optimization are not always guaranteed. However, the experiments
shown here indicate that Shackleton consistently produces opti-
mized code that is faster and offers a larger average improvement
than that produced by the default LLVM optimization sequences.

5 CONCLUSION AND FUTURE WORK
The existing predefined LLVM optimization levels of the -Ox type
are used for general purpose program optimization and are not
problem specific. Targeted runtime optimization of a program by a
hand-crafted LLVM pass or a pass sequence would require expert
knowledge in both LLVM and the program to be optimized. In this
paper, we presented the Shackleton Framework, which is able to
automatically generate near-optimal LLVM optimization pass se-
quences for specific programs. The Shackleton Framework, without
any prior knowledge of the compiler, the optimization passes, or the
program, consistently produces optimization pass sequences that
achieve significant runtime improvement over default optimization
options.

There are numerous opportunities to further improve and an-
alyze the Shackleton Framework. Widening the scope of LLVM
passes considered (including custom passes) and allowing for a
comparison against sequences fit for a specific use case could of-
fer insights beyond what is shown here. In addition to benefits
for LLVM, the generic Shackleton Framework could be improved
by allowing for hyperparameter tuning beyond what is currently
supported. With further improvements, the pass sequences auto-
matically generated by the Shackleton Framework could potentially
surpass hand-crafted pass sequences while simultaneously freeing
developers’ time to pursue other advancements for compilers.

ACKNOWLEDGMENTS
This work was generously funded by the EnSURE (Engineering
Summer Undergraduate Research Experience) program at Michigan
State University as well as the John R. Koza Endowment. We also
gratefully acknowledge The Institute of Cyber-Enabled Research
(ICER) at MSU for providing the hardware infrastructure that made
the computation required to complete this work possible.

REFERENCES
[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers:

Principles, Techniques, and Tools (2nd Edition). Addison Wesley, Boston, MA.
[2] Michael Alekhnovich, Allan Borodin, Joshua Buresh-Oppenheim, Russell Impagli-

azzo, Avner Magen, and Toniann Pitassi. 2011. Toward a model for backtracking
and dynamic programming. Computational Complexity 20, 4 (2011), 679–740.

[3] Prathibha A. Ballal, H. Sarojadevi, and Harsha P S. 2015. Compiler Optimization:
A Genetic Algorithm Approach. International Journal of Computer Applications
112, 10 (2015), 9–13.

[4] Wolfgang Banzhaf, Peter Nordin, Robert E. Keller, and Frank Francone. 1998.
Genetic Programming – An Introduction. Morgan Kaufmann Publishers, San
Francisco, CA.

[5] Markus F. Brameier and Wolfgang Banzhaf. 2007. Linear Genetic Programming.
Springer, New York, NY.

[6] Pinar Civicioglu. 2013. Backtracking search optimization algorithm for numerical
optimization problems. Appl. Math. Comput. 219, 15 (2013), 8121–8144.

[7] Marco Dorigo, Mauro Birattari, and Thomas Stutzle. 2006. Ant colony optimiza-
tion. IEEE Computational Intelligence Magazine 1, 4 (2006), 28–39.

[8] Félix-Antoine Fortin, François-Michel De Rainville, Marc-André Gardner, Marc
Parizeau, and Christian Gagné. 2012. DEAP: Evolutionary Algorithms Made Easy.
Journal of Machine Learning Research 13 (2012), 2171–2175.

[9] William von Hagen. 2006. The Definitive Guide to GCC, Second Edition. Apress
Media, Springer, New York, NY.

[10] John R. Koza. 1992. Genetic Programming. MIT Press, Cambridge, MA.
[11] Jeffrey C Lagarias and Andrew M Odlyzko. 1985. Solving low-density subset sum

problems. J. ACM 32, 1 (1985), 229–246.
[12] llvm-admin team. 2021. The LLVM Compiler Infrastructure. https://llvm.org.
[13] Parth Shirish Nandedkar. 2019. SubsetSum-BacktrackAlgorithm. https://github.

com/parthnan/SubsetSum-BacktrackAlgorithm.
[14] Hannah Peeler, Shuyue Stella Li, Andrew N. Sloss, Kenneth N. Reid, Yuan Yuan,

and Wolfgang Banzhaf. 2022. Optimizing LLVM Pass Sequences with Shackleton:
A Linear Genetic Programming Framework. arXiv 2201.13305 (2022). https:
//arxiv.org/abs/2201.13305

[15] Riccardo Poli, William Langdon, and Nicholas Mcphee. 2008. A Field Guide to
Genetic Programming. Lulu Enterprises, UK Ltd, Egham, UK.

[16] Lee Spector. 2010, last accessed 2022. Evolutionary Computing with Push. http:
//faculty.hampshire.edu/lspector/push.html

[17] Mark Stephenson, Una-May O’Reilly, Martin C. Martin, and Saman Amarasinghe.
2003. Genetic Programming Applied to Compiler Heuristic Optimization. In
Genetic Programming, Conor Ryan, Terence Soule, Maarten Keijzer, Edward Tsang,
Riccardo Poli, and Ernesto Costa (Eds.). Springer, Berlin, Heidelberg, 238–253.

[18] Thomas Stützle. 2002. ACOTSP: A software package of various ant colony
optimization algorithms applied to the symmetric traveling salesman problem.
URL http://www. aco-metaheuristic. org/aco-code (2002).

[19] Walter A. Tackett and A. Carmi. 1994. The unique implications of brood selection
for genetic programming. In Proceedings of the First IEEE Conference on Evolu-
tionary Computation. IEEE World Congress on Computational Intelligence, Vol. 1.
IEEE, Orlando, Florida, 160–165.

[20] Zheng Wang and Michael O’Boyle. 2018. Machine learning in compiler optimiza-
tion. Proc. IEEE 106, 11 (2018), 1879–1901.

581

https://llvm.org
https://github.com/parthnan/SubsetSum-BacktrackAlgorithm
https://github.com/parthnan/SubsetSum-BacktrackAlgorithm
https://arxiv.org/abs/2201.13305
https://arxiv.org/abs/2201.13305
http://faculty.hampshire.edu/lspector/push.html
http://faculty.hampshire.edu/lspector/push.html

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methods
	3.1 Problem Space
	3.2 The Shackleton Framework

	4 Experiments and Results
	5 CONCLUSION AND FUTURE WORK
	Acknowledgments
	References

