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Abstract
The development of peptides for therapeutic targets or biomarkers for disease diagnosis is a challenging task in protein 
engineering. Current approaches are tedious, often time-consuming and require complex laboratory data due to the vast 
search spaces that need to be considered. In silico methods can accelerate research and substantially reduce costs. Evolution-
ary algorithms are a promising approach for exploring large search spaces and can facilitate the discovery of new peptides. 
This study presents the development and use of a new variant of the genetic-programming-based POET algorithm, called 
 POETRegex, where individuals are represented by a list of regular expressions. This algorithm was trained on a small curated 
dataset and employed to generate new peptides improving the sensitivity of peptides in magnetic resonance imaging with 
chemical exchange saturation transfer (CEST). The resulting model achieves a performance gain of 20% over the initial 
POET models and is able to predict a candidate peptide with a 58% performance increase compared to the gold-standard 
peptide. By combining the power of genetic programming with the flexibility of regular expressions, new peptide targets 
were identified that improve the sensitivity of detection by CEST. This approach provides a promising research direction for 
the efficient identification of peptides with therapeutic or diagnostic potential.

Keywords Peptide discovery · Genetic programming · CEST MRI · Contrast agent · Regular expressions · Evolutionary 
algorithm
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NMR:  Nuclear magnetic resonance
LLM:  Large language model

Introduction

Peptide‑based therapies and diagnostics

Peptides are molecules composed of amino acids (AA) 
joined by peptide bonds. They are short sequences usually 
comprised of 2 to 50 AAs. Peptides are one of the corner-
stones of living organisms and participate in many meta-
bolic and physiologic activities, acting as hormones (e.g. 
insulin) [1], neurotransmitters [2], antimicrobial agents [3] 
or venoms [4–6]. Because of their intrinsic physicochemical 
properties (e.g. high selectivity and efficacy, low toxicity), 
peptides are a powerful target for therapeutic development 
[7–10]. Indeed, since the first use of insulin over 100 years 
ago, peptides have been extensively studied as potential 
targets for various therapeutic applications such as cancer 
[11–13] or diabetes treatments [14]. They are also used to 
cater to a wide range of chronic [15] or rare diseases [16, 
17], and have the potential to be used as vaccines [18]. More 
recently, they have been used to fight against Covid-19 [19]. 
In addition, peptides can serve as biomarkers for disease 
diagnostics. Indeed, human fluids, such as blood plasma, 
contain a wide range of proteins and peptides that represent 
a large source of physiologic information. Peptide biomark-
ers are used in different disease diagnostics such as cancer 
[20, 21], type II diabetes [22] or neurodegenerative disorders 
such as Alzheimer’s disease [23]. Peptides are also used in 
imaging diagnostics such as positron emission tomography 
[24], single-photon emission computerized tomography [25] 
and chemical exchange saturation transfer (CEST) magnetic 
resonance imaging (MRI) [26–28].

Protein engineering

Because of their wide range of applications in therapies 
and diagnostics and their advantages over traditional drugs, 
peptides have tremendous potential in biomedical fields. 
However, despite billions of years of evolution, the protein 
and peptide search space is not fully explored. Thus, the dis-
covery and design of new peptides is a gargantuan task that 
researchers are trying to solve through two main approaches: 
(i) rational design and (ii) Directed Evolution (DE). In 
rational design, scientists use knowledge of a protein/pep-
tide (e.g. crystalline structure) to optimize a new valuable 
target with desired functional and structural properties [9, 
29]. DE is based on a model protein with similar function to 
the desired one, however, does not require more prior knowl-
edge. This approach uses iterative mutagenesis and screen-
ing, which are the main operators to generate new targets 

guided by artificial evolution [30–32]. Unfortunately, these 
methods are not the Holy Grail for generating new therapeu-
tic/diagnostic peptides, and some disadvantages slow down 
the research [33]. Indeed, these methods are time-consuming 
and costly. Moreover, necessary prior knowledge and wet 
lab experiments can pose limits. Finally, the search space is 
extremely complex, and the optimization trajectories could 
easily get stuck in local optima rather than global.

Computer‑aided design of peptides

To overcome these problems, researchers have started to use 
new computational methods generally based on machine 
learning (ML) and optimization techniques. The advent of 
artificial intelligence (AI) has allowed the development of 
new methods and tools to predict the structure or the func-
tion of proteins and peptides [34, 35]. Furthermore, Evo-
lutionary Algorithms (EAs) are widely used in the compu-
tational design of proteins and peptides [36, 37]. EAs are 
bioinspired metaheuristic optimization algorithms and are 
powerful tools to solve search and optimization problems 
[38]. One of the main advantages of EAs is their ability to 
explore a large search space [39]. Considering the creation 
of a peptide with 12 AAs (using only 20 classic AAs), the 
search space has already 2012 possible targets. Thus, EAs 
should be very suitable for navigating in this space in order 
to discover new therapeutic/diagnostic peptides.

Related work

The journey of EAs in protein design is relatively recent, 
with about 30 years of research. Many works focus on the 
prediction of the three-dimensional structure of proteins or 
their function, or on motif discovery. In the 1990 s Unger 
et al. developed an approach based on a genetic algorithm 
(GA) for protein folding simulations [40]. In 1995, Koza 
et al. exploited genetic programming (GP) to evolve motifs 
for the identification of the D-E-A-D box family of proteins 
and for the detection of the manganese superoxide dismutase 
family [41]. One year later, Yokobayashi et al. developed a 
method based on DE and a GA to generate new peptides 
with more efficient inhibitory activities. By carrying out 
artificial evolution, they obtained an improvement of more 
than 90% for some peptides [42]. Hu et al. proposed a GP 
method to identify patterns in protein sequences. They used 
a PROSITE [43] pattern representation, close to regular 
expressions (REs) for representing individuals [44]. Based 
on Hu’s works, Ross et al. used stochastic REs as a new 
representation language for protein sequences classification. 
A GP algorithm is then applied to evolve the stochastic REs 
and obtained promising results [45]. Heddad et al. also used 
a GP algorithm to generate and evolve RE-based classifi-
ers. Their approach uses these classifiers to determine the 
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nuclear localization of a protein [46]. In 2005, Seehuus et al. 
exploited a GP algorithm to discover patterns in biologi-
cal sequences. They applied linear GP to evolve individuals 
represented by REs. Their method has shown comparable 
results to those found in PROSITE [47]. In 2007, Yagi et al. 
proposed a new approach called ’in silico panning’ for the 
selection of peptide inhibitors. They exploited a docking 
simulation associated with a GA to evolve target peptides. 
Interestingly, they showed the effectiveness of in silico 
evolution combined with experimental data [48]. In 2011, 
Becerra et al. proposed a procedure to predict the three-
dimensional structure of proteins. Their strategy is based 
on a multi-objective parallel ab initio algorithm. They used 
the NSGA-II multi-objective GA to optimize the energetic 
contributions of the protein [49]. Yousef et al. combined a 
GA and protein free energy minimization calculations for 
the prediction of the three-dimensional structure of proteins 
[50]. Recently, Yoshida et al. used a combination of a GA 
and an in vitro evaluation. The individuals are potential 
antimicrobial peptides, and the fitness function is the wet 
lab test. With this in silico-in vitro approach, they obtained 
promising results and identified 44 new antimicrobial pep-
tides with 160-fold efficiency [51]. In the same year, Porto 
et al. published an approach based on a GA to design a guava 
antimicrobial peptide (one of the first plant-based peptides) 
[52].

Development of the  POETRegex tool

in this context, we developed a new computational approach 
based on GP for new peptide discovery, called  POETRegex. 
Our method is an extension of the initial version of the Pro-
tein Optimization Engineering Tool (POET) [53, 54]. This 
extension replaces the motif discovery mechanisms of POET 
with a more comprehensive process by incorporating regu-
lar expressions (REs). We have modified the representation 
of individuals by evolving lists of REs instead of lists of 
motifs of contiguous AAs, to identify relevant patterns with 
more flexibility. The specific characteristics of the elements 
(operators) comprising the syntax of REs enable them to 
effectively identify motifs through the combination of these 
elements. The second enhancement to POET involves the 
weight adjustment step, also called the training step. Unlike 
the initial version of POET, where weights are randomly 
assigned, here, the weights of an RE are adjusted based on 
the significance of that motif (see Materials and Methods). 
Therefore, the main objectives of this study are to evolve 
protein-function models based on REs using a GP algorithm, 
to obtain a trained model, which can then be used to generate 
new peptides for a specific problem. Evolving REs with a GP 
algorithm is a method capable of exploring a huge search 
space and finding good solutions. REs are powerful tools 

and are widely used in computational evolutionary research 
for pattern or motif discovery, and text extraction [55–63].

As proof of concept, we apply our method to address the 
problem of the sensitivity of peptides to be detected by MRI 
with chemical exchange saturation transfer. CEST is an MRI 
contrast approach where exchangeable protons are saturated 
by radiofrequency irradiation [64]. This saturation is then 
transferred to water protons and the signal can be detected. 
Contrast detection by CEST has great potential for clinical 
imaging [65]. Initially, poly-L-lysine (composed of 12 lysine 
residues) was used as a CEST contrast agent to pave the way 
for the search for new sensitive agents and is now considered 
the gold standard [66]. Since peptides are interesting agents 
for CEST contrast [27], we used our method to train a model 
based on GP with CEST data, and we discovered new pep-
tides that provide high CEST contrast.

Materials and methods

This section describes the data used, the GP algorithm com-
bined with REs and the different steps to obtain predicted 
peptides and validate them experimentally.

Datasets

Having good quality and curated data is a fundamental 
requirement to train an accurate model. Unfortunately, high-
quality data is rare, and databases often contain a significant 
amount of erroneous data [67]. Therefore, the curated data-
set used in this study is mainly based on data from nuclear 
magnetic resonance (NMR) measurements of CEST contrast 
from various peptide samples dissolved in a buffer solution 
[54, 55]. The dataset contains 158 sequences of peptides 
ranging from 10 to 13 AAs in length. The 20 standard AAs 
were used and the CEST values were measured at 3.6 ppm, 
corresponding to amide proton exchange. Then, two sub-
datasets are generated, one to train the models (training set) 
and the other to evaluate model performances on unseen 
data (test set). The training set contains 127 ( 80%) randomly 
drawn sequences, and the test set contains the remaining 31 
( 20%) sequences. The whole dataset is available as Addi-
tional file 1: Table S1.

Motif database construction

To train the model by adjusting the weight of each RE, the 
algorithm uses a list of motifs extracted from data in the 
training set. Extracted motifs are the basic units of informa-
tion in the evolutionary process. These motifs are recov-
ered using a sliding window of a size varying from 2 to 6 
AAs, which is applied to each sequence (single AAs are also 
extracted). To determine whether a motif should be favored 
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or not, it is assigned a class based on the CEST value of the 
sequence from which the motif was extracted. Class 0 is cho-
sen if the motif has a negative impact on the peptide results 
(< threshold) and class 1 if the motif has a positive impact 
on the peptide results (> threshold). The threshold is defined 
based on the experimental target and was set in this study 
to a value of 12.5, which corresponds to the CEST value of 
the poly-L-lysine peptide (K12) in the dataset, the ”gold-
standard peptide” [64, 68]. Since each training sequence is 
associated with a CEST value, it is possible to associate a 
CEST value with each extracted motif. However, the same 
motif may be present in several training sequences with dif-
ferent CEST values. To address this issue, a strategy called 
‘occurrence’ is implemented to associate a CEST value with 
a motif. To do this, the number of motifs present in both 
class 1 and class 0 sequences is counted. The class exhibit-
ing the highest number of motifs is chosen, and the average 
value is calculated. The final motif database (MDB) contains 
5,360 motifs from 2 to 6 AAs, each associated with a CEST 
value and a class.

Sequence identity

In order to verify that there is no over-representation of 
sequences with identical motifs or identical sequences in 
the dataset, a sequence similarity search was performed on 
all sequences in the dataset to calculate the percent identity 
per pair. This calculation was done according to the follow-
ing formula:

Regular expressions

A RE is a sequence of characters, including operators and 
variables, that describes a search pattern in a target text 
according to a precise syntax. The operators used for this 
study are presented in Table 1. REs are implemented with 
the re library of Python version 2.2.1.

%Identity =

(

# of Identical AA

Sequence Length

)

× 100

Model evolution using genetic programming

GP algorithms [69, 70] are powerful evolutionary com-
puting techniques, a branch of AI widely used in different 
fields such as engineering or bioinformatics [71]. GP is a 
stochastic algorithm (an extension of the Genetic Algorithm) 
inspired by the concepts of Darwinian evolution and is use-
ful for automatically solving complex optimization problems 
[69].

This type of algorithm is designed to explore a large 
search space and generate potential solutions through evo-
lutionary mechanisms: selection, recombination (or crosso-
ver) and mutation. The solutions represent individuals in 
the population P that GP will evolve. In each iteration, all 
individuals are evaluated based on a fitness function (here: 
Pearson correlation coefficient) to obtain a fitness value, 
which is used to rank each individual according to their abil-
ity to solve the problem (here the ability to generate new 
peptides with the highest CEST contrast at 3.6 ppm). Two 
evolutionary operators are then typically applied: crossover 
and mutation. During crossover, two individuals (”parents”) 
are selected and a part of parent 1 is exchanged with a part 
of parent 2. This operation generates two new individu-
als (”offspring”) with a mix of the characteristics of their 
parents. Consequently, the size of population P increases. 
The mutation operators are then applied. Depending on 
the problem and the representation of the individual, these 
operators can vary. Typically, mutation operators involve the 
addition, deletion or substitution of an element of the target 
individual. Finally, the new individuals are evaluated using 
the fitness function and in the reduction step only the S best 
individuals (with S the initial size of the population P) are 
selected to be included in the population in the new genera-
tion to continue their evolutionary journey in the run. The 
evolutionary cycle ceases when a stop condition is reached, 
such as time, number of runs, or the algorithm finding a 
satisfying solution. At the end of the evolutionary process, 
we obtain the best individual representing the best evolved 
model, which we use for peptide generation. Figure 1 illus-
trates the evolutionary cycle of GP used in this study.

Table 1  RE operators used in this study

Operator Symbol Description Arity

Concatenation ∅(invisible) Concatenate two elements 2
Alternative choice (or) | Choice between two elements 2
Quantifier 1,n + Define a group present once or n time 1
Curly braces { } Define the number of times the element is repeated 1
Bracket [ ] Define a list of choice between elements in the bracket 1
Excluding bracket [⌃] Define a list of choice between elements that are not in the bracket 1
Parenthesis ( ) Define a group 1
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Representation of individuals

Unlike in a GA, in which individuals are fixed-length strings, 
individuals in GP are represented by computational pro-
grams, usually as a tree structure (an acyclic network con-
sisting of nodes connected by edges) [70] or linear sequences 
(such as instructions) [72]. GP manipulates these programs 

with different operations, however the tree structure also 
allows the use of the syntax of REs.

In our method, an individual is a protein-function model 
represented by a list of rules, with each rule being com-
posed of a number (ID), a regular expression, and a weight 
(Fig. 2a). Each RE is represented by a binary tree imple-
mented as a list where node i is the parent, and node (i*2)+1 
and (i*2)+2 are children (Fig.  2b). Each internal node 

Fig. 1  Classical evolutionary 
cycle of a GP algorithm

Fig. 2  a Representation of an individual (a protein-function model) 
as a list of rules with 3 columns (ID, regular expression pattern and 
weight). An example (RE3) is represented as a built-in list structure 
in Python, where a parent node i has 2 children: (i*2)+1 and (i*2)+2. 

b Representation of RE3 as a binary tree. The yellow node is the root, 
grey nodes are the internal nodes and green nodes are the leaves. The 
small dotted nodes with red numbers are unexpressed nodes repre-
sented by “None”
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represents an operator, and each leaf (or terminal node) rep-
resents a variable. The maximal depth of a tree is 6, which 
prevents having REs that are too long and time-consuming 
to evaluate. REs are randomly generated using the ramped 
half-and-half strategy [73] to create a population with het-
erogeneous individuals. Initially, individuals have a list of 
between 1 and 8 REs with weights of 0.

Evolutionary operators

Three main evolutionary operators are used in this study: (i) 
selection, (ii) crossover, and (iii) mutation. The next para-
graphs describe these operators in more detail.

(i) Selection

The selection operator plays a key role in evolution by deter-
mining which individuals will proceed to the next steps 
of evolution (crossover and mutations). The individuals 
selected for crossover are referred to as parents. One com-
monly used selection method in GP is tournament selection 
[74]. In tournament selection, a random sample of k individ-
uals (which represents the size of the tournament) is chosen 
from the population with replacement. The best individual 
in the tournament (i.e., the one exhibiting the greatest fitness 
value) is then selected to become a parent. Tournament size 
influences the selection pressure: a higher value of k reduces 
the likelihood of selecting a bad individual, thus increasing 
selection pressure, while a lower value of k increases the 
chance of selecting a bad individual, thus lowering selec-
tion pressure. In this study, a tournament size of k=5 has 
been chosen.

(ii) Crossover

The crossover operator involves combining a parts of both 
parents to generate offspring. A one-point strategy is used, 
wherein a point in a parent is selected cutting it to form two 
parts (A and B). This process is repeated with the second 
parent. The next step involves exchanging parts between 
parents to create two offspring with a mix of elements from 
both parents. The crossover operator provides diversity and 
can preserve important features, which make it a widely 
used method for generating offspring with desirable traits 
in evolutionary algorithms. Figure 3 illustrates the one-point 
crossover operator used in this study. However, the disadvan-
tage of crossover is that it may converge to a local maximum 
during the evolutionary process [75] because no new ele-
ments are introduced into the population.

(iii) Mutations

Mutations allow the exploration of the search space by 
inducing new elements into an individual increasing the 
diversity of the population. This study implements two 
groups of mutations, with the first group targeting the indi-
vidual as a whole and the second group targeting specific 
REs. Each individual or RE has a mutation rate of 10%.

Group I contains three types of mutations:

• Addition of a new rule (Fig. 4a): If the number of rules of 
an individual does not exceed a maximum of the number 
of rules allowed, then a new rule is randomly generated 
and added to the list of rules of the individual.

• Replacement of an existing rule (Fig. 4b): An existing 
rule is randomly selected and replaced by a newly gener-
ated rule.

Fig. 3  Representation of the one-point crossover: a part of parent 1 is merged with a part of parent 2 to produce offspring
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• Deletion of an existing rule (Fig. 4c): If the list of rules 
of an individual has at least two or more rules, then an 
existing rule is randomly selected and removed from the 
rule list.

Group II contains 4 types of mutations, only impacting one 
RE:

• Replacement of a branch of the tree (Fig. 4d): A branch 
of the tree (subtree) is randomly selected and replaceed 
with a new randomly generated one (its depth can vary).

• Exchange of a node (Fig.  4e): A node is randomly 
selected and its value is changed. For example, cat ( ∅ ) 
becomes or (|), including bracket ([ ]) becomes excluding 
bracket ([⌃ ]). If the node contains an AA, it is replaced 
by another random AA, and if the node is the value con-
tained in the curly braces, then the value is replaced by 
another one.

• Deletion of a subtree (Fig. 4f): A subtree is randomly 
selected and deleted.

• Addition of new AA in a leaf (Fig. 4g): 1 to 4 new ran-
dom AAs are added in the leaf, to create a specific motif.

Figure 4 illustrates the different mutation operators used in 
this study.

Evaluation with the fitness function

Each individual is assigned a fitness value during the evalu-
ation step. This fitness value reflects the degree of adap-
tation to the problem, with higher fitness values indicat-
ing better adaptation. In this study, a Pearson correlation 
coefficient-based objective function was used to evaluate 
the models, which attempts to obtain the best correlation 
between a predicted score and a true CEST value for each 
peptide sequence (details are given in section ’Determining 
the Fitness Value’ below). This coefficient ranges from -1 
(indicating a strong negative linear correlation) to 1 (repre-
senting a strong positive linear correlation), while a value 
of 0 signifies no correlation. To compute the fitness value 

Fig. 4  Representation of each type of mutation. a Addition of a new 
rule in the list of rules. b Replacement of a rule by a new rule. c 
Deletion of an existing rule in the list of rules. d Replacement of a 

branch of the tree. e Exchange of a node. f Deletion of a subtree. g 
Add one or more AAs to a leaf
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of an individual, each RE of its rule list is (i) trained (i.e., its 
weight is adjusted) and (ii) the fitness value is determined. 
These steps are parallelized on 20 CPU cores to expedite 
execution.

(i) Weight adjustment during the training step

As mentioned earlier, each RE is associated with a weight 
determining its importance in the model. The weights of the 
REs are initialized to 0 at the beginning of the algorithm. In 
each generation, fitness values are computed to determine 
the best individuals. The first step consists in adjusting the 
weight of each RE based on the motif data base (MDB) 
constructed from the training dataset. Each RE is tested 
against each training sequence, and the resulting matches 
(motifs) are extracted. For instance, if the RE ‘[PNYIQ]K+’ 
is applied to the sequence APVPKKPRLL, it will identify 
the motif ’PKK’. This motif is associated with a CEST value 
in the MDB. The score of the RE on this sequence corre-
sponds to the CEST value multiplied by the size of the motif. 
If the CEST value is equal or greater than the threshold (here 
12.5), then we add the value to the final score; otherwise, 
we subtract it. The final weight of the RE is the sum of all 
scores obtained on each training sequence, as shown in the 
following equation:

with n the number of extracted motifs in the training 
sequences and T the threshold.

(ii) Determining the fitness value

After the training step, each RE of an individual is applied 
to each sequence in the training set to ensure that the model 
effectively generalizes the data. The predicted_score is 
the sum of all final weights of the REs that match in the 
sequence. This predicted_score is then combined with the 
true CEST value of the sequence evaluated by the individ-
ual, and the Pearson correlation coefficient, corresponding 
to the objective function, is used to calculate the strength 
of the linear relationship between the True_CEST and the 
predicted_score, as shown in the following equation:

with r the Pearson correlation coefficient, PS the predicted 
score, PS the mean of the predicted scores, CEST the true 
CEST value and CEST  the mean of the CEST values. The 
closer the fitness value (r) is to 1, the better the individual 
(performance of the model). This means that the predicted 

Final_Weight =

(

n
∑

i=1

{

+CESTmotifi
× Sizemotifi

, if CEST ≥ T

−CESTmotifi
× Sizemotifi

, if CEST < T

)

r =

∑n

i=1
(PSi − PS)(CESTi − CEST)

�

∑n

i=1
(PSi − PS)2

�

∑n

i=1
(CESTi − CEST)2

,

scores for the sequences are closely related to their true 
CEST values. In other words, using the model, predictions 
can be made about CEST values, and as the predicted score 
increases, the associated CEST value is also expected to 
increase, reflecting a positive correlation between the two.

To prevent overfitting, cross-validation is performed 
using the k-fold method with k=6. Consequently, the fitness 
value of an individual corresponds to the average perfor-
mance of the (k-1)-folds used with the training data, while 
the average of the remaining 1-fold are used to evaluate the 
algorithm’s behavior and identify any signs of overfitting.

Elitism

Before each mutation and crossover step, the best individual 
(elite) is extracted and automatically included in the next 
generation with no change, to prevent the algorithm loosing 
the current best solution.

Peptide prediction with the best evolved model

Once the algorithm has reached a stopping condition, such 
as the maximum number of generations reached or the fit-
ness value plateauing, indicating that the algorithm has 
reached a local optimum, the best evolved individual can 
be used as a model for generating new peptides. Therefore, 
a higher predicted score should imply a higher CEST value 
for the predicted peptide.

In silico DE coupled with the best evolved  POETRegex 
model is employed for the prediction of new peptides. This 
approach has already been successfully applied in previous 
studies [42, 53, 76]. Three DE experiments were conducted 
with different cycle numbers (10, 100, and 1000 cycles). 
Insufficient cycles could result in heterogeneous peptides 
and hinder convergence of the algorithm, while a high num-
ber of cycles may lead to converged results and homogene-
ous peptides. A library of 1000 peptides is generated ran-
domly at the beginning of each experiment, and the peptide 
sequences then undergo three steps: mutagenesis, evaluation, 
and selection. The mutagenesis step consists of introducing 
random mutations (substitution of an AA) to generate new 
variants with increased fitness. The evaluation step employs 
the best evolved/trained model, replacing the long, tedious, 
and often expensive wet-lab screening process. Each peptide 
is evaluated using the best  POETRegex model, which provides 
a score correlated to the presumed CEST value. If the fitness 
of the mutated peptide exceeds that of the initial peptide, 
the mutated peptide will subsequently replace the initial 
peptide and be selected for the next cycle. In the context 
of identifying peptides with high CEST contrast, a filter is 
implemented to exclusively select hydrophilic peptides at 
the end of the evolutionary process. This filter calculates the 
sum of the hydrophobicity values of each AA in the peptide 
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(from [77], Additional file 1: Table S2). If the sum is greater 
than zero, the peptide is selected. Conversely, if the sum is 
equal to or less than zero, the peptide is eliminated from 
consideration and classified as non-soluble. Finally, from 
the remaining peptides, the top 20 are extracted, as they are 
considered to have the highest potential CEST value among 
the selected hydrophilic peptides.

Peptide synthesis and preparation

Each peptide generated by the best  POETRegex model was 
synthesized by Genscript USA Inc. (Piscataway, NJ). Pep-
tides were prepared by dissolving 4–5 mg of peptide in 
600 � L of PBS, then titrating the solution to pH 7.25−7.30 
(measured using a pH electrode calibrated between pH 7 and 
10 at room temperature) using 0.1 M HCl or 0.1 M NaOH. 
Each solution was then pipetted into a separate 5 mm NMR 
tube.

CEST NMR measurements

The CEST data were acquired on a 14.1 T vertical-bore 
Bruker Avance III HD NMR spectrometer with the sample 
temperature set to 37°C. For each sample, the probe was 
tuned and matched as soon as the sample temperature was 
reached and stable, then the sample was shimmed manu-
ally on the water proton resonance, and the 90° pulse length 
was calibrated by finding the 360° zero-crossing and divid-
ing by four. The spin–lattice relaxation time constant  (T1) 
was measured for each sample using an inversion-recovery 
sequence modified to include a z-gradient pulse at 5% of the 
maximum amplitude between the inversion and excitation 
pulses, to reduce radiation damping [78]. Z-spectra were 
obtained at least 40 min after the sample temperature probe 
reached stability, so that the sample had sufficient time to 
equilibrate. The CEST sequence was an ultrafast z-spectros-
copy sequence [79] with the following parameters: 2048 
acquired FID points, 42.6 kHz bandwidth, 32 scans, 10 s 
recovery delay between scans, 5% gradient applied during 
saturation and acquisition, pulse offset frequency set to be 
∼3250 Hz higher than the water frequency, 5 s saturation 
pulse, saturation power varying from ∼1.2–5.2 � T with 10 
powers measured per sample. Four dummy scans were per-
formed between each saturation power value. Each sample 
also included a reference scan  (S0, saturation power = 0 � T) 
at the beginning and end of the z-spectroscopy; all samples 
showed little to no change between the two reference scans, 
indicating sample stability.

All z-spectral data were processed using custom-writ-
ten MATLAB scripts, including scripts developed by the 
research group of Dr. Moritz Zaiss, publicly available on 
GitHub at

https:// github. com/ cest- sourc es. Raw FID data were 
loaded into MATLAB, zero-filled by a factor of 16, Fou-
rier transformed, and normalized by the first reference scan 
(saturation power = 0 � T) to obtain z-spectra. The magneti-
zation transfer ratio asymmetry  (MTRasym) was calculated 
using the z-spectral amplitudes at ±3.6 ppm and the follow-
ing equation:

Configuration

The computational experiments were performed on Michi-
gan State University’s High Performance Computing Center 
computers. Each experiment utilized 20 CPU cores and 15 
GB of RAM. A configuration file was employed to specify 
different hyper-parameters of the algorithm, which are sum-
marized in Table 2. The scripts are implemented in python 
v3.10.6 and are available at the following link: https:// gitlab. 
com/ Nicol asSca lzitti/ poet_ regex.

Results

Data

In order to verify that the dataset contains unique data and 
that certain sequences are not over-represented, we per-
formed a pairwise sequence similarity calculation on the 
entire dataset (Fig. 5). The results were averaged and bins 
of ten percent, showing that most sequences ( ∼80%) share 
less than 10% identity, demonstrating that the dataset used is 
heterogeneous. Only a very small portion of the data (1.22%) 
have more than 50% identity. Moreover, there are no com-
pletely identical sequences.

We then conducted a more detailed analysis of the data-
set. Initially, we examined the frequency of occurrence of 
each amino acid (AA) in both the training and test sets, as 
illustrated in Fig. 6a. Our observations indicate that lysine 
(K), threonine (T), arginine (R), and serine (S) are among 
the most commonly occurring AAs in both sets. These AAs 
are polar and possess either hydroxyl, amine, or guanidine (3 

MTRasym =
S(−3.6ppm)−S(3.6ppm)

S0

Table 2  Hyper-parameters used 
in  POETRegex experiments

Hyper-parameter Value

Population size 1000
Number of runs 300
Max RE 30
Crossover probability 0.9
Mutations probability 0.1
Tree depth 6

https://github.com/cest-sources
https://gitlab.com/NicolasScalzitti/poet_regex
https://gitlab.com/NicolasScalzitti/poet_regex
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amines) groups. In addition, K and R are positively charged, 
enabling them to accept protons and be soluble in water. 
Tyrosine (Y) and phenylalanine (F) are the least frequent 
AAs in the dataset. These AAs are relatively uncommon 
in natural proteins, accounting for only 2.92% and 3.86%, 
respectively. Their hydrophobic and aromatic nature may 
explain their low occurrence in the dataset.

Upon comparing the frequency of AA occurrence in 
our dataset with UniProtKB/Swiss-Prot (release 2023_01) 
(Fig. 6b), we noted an over-representation of K, R, T, and 
tryptophan (W), which is consistent with our earlier results. 
Interestingly, while W is infrequently present in UniProtKB/
Swiss-Prot proteins (at a frequency of 1.1%), it is present in 
our dataset at a frequency exceeding 5%, indicating that it 
could play a significant role. Previous studies have demon-
strated that the indole ring NH protons of W contribute to 
CEST contrast at approximately 5.5 ppm [80]. However, the 
CEST values in our dataset were measured at 3.6 ppm, sug-
gesting that the amide group in the backbone, which reso-
nates at this frequency, may be responsible for generating a 
signal at 3.6 ppm. The AAs that are underrepresented in our 
dataset are alanine (A), phenylalanine (F), isoleucine (I), and 
leucine (L), which are non-polar and hydrophobic, lacking 
amine or hydroxyl groups in their side chains, as well as 
glutamic acid (E) and aspartic acid (D), which are nega-
tively charged. Because a peptide with high CEST contrast 
is required to be soluble in water, it is not surprising to find 
fewer hydrophobic AAs in the dataset.

Next, we conducted an analysis of the impact each AA 
may have during the evolutionary process (Fig. 6c). Using 
the ‘occurrence’ method described in the Materials and 
Methods section, we calculated the potential CEST value 
associated with each AA. Our results indicate that AAs with 
the highest associated CEST values are K, R, S, Q, I, and W, 

while T, F, Y, and the two negatively charged AAs, E and 
D, have relatively low CEST values. However, it should be 
noted that these values may vary depending on the context 
in which the AA is present, as CEST values are measured 
on a global peptide sequence. For instance, while W has a 
potential CEST value of approximately 20, the ’KWR’ motif 
has a CEST value of 17.27, and the peptides containing this 
motif have CEST values of 18.46 and 16.08. This initial 
analysis has allowed us to identify two groups of AAs. Spe-
cifically, we have observed that six AAs have a CEST value 
>15, which could potentially guide the evolutionary process 
towards the production of REs with significant weight. Con-
versely, the other AAs have a CEST value < 10.

Subsequently, we conducted a similar analysis on the 
20 most prevalent motifs (ranging in size from 2 to 6) in 
the training set, as depicted in Fig. 6d. Since the focus of 
this study is on predicting peptides as short as 12 AAs, it is 
important to consider motifs that consist of only 2 AAs. As 
anticipated, motifs of size 2 and 3 dominate in the MDB. 
Notably, the most frequently occurring motifs consist of K or 
T. Although present, the divide between motifs with a CEST 
value greater than 10 and those below 10 is less noticeable. 
Many motifs with a high CEST contain K, R, and S, whereas 
motifs with low CEST values comprise T, E, and D. These 
findings are consistent with our earlier analyses and pro-
vide valuable insights for scrutinizing the performance of 
the evolutionary algorithm.

Assigning random weights to REs in  POETRegex

To confirm the effectiveness of the training step (i.e., weight 
adjustment) during the evolutionary process, we conducted 
two independent experiments, each comprising 50 rep-
licates, using identical parameters to those in Table 2. In 
the first experiment,  POETRegex was employed with weight 
adjustments (training step is active), whereas in the second, 
control experiment (called  POETRdm), weights are randomly 
defined during the initialization step and randomly changed 
with a probability of p=0.1 for each rule (training step is 
inactive). After selecting a rule for change, the mechanism 
of  POETRdm replaces the rule’s weight with a new random 
value, uniformly sampled from the interval -10 and 10. 
The remaining parts of the two algorithms operate simi-
larly. Choosing random weights in  POETRdm, as opposed to 
incorporating a training step, favors random exploration of 
weights over attempting to directly converge towards optimal 
weights. If random changes in weights result in an individual 
achieving higher fitness, there is a chance that tournament 
selection will choose this individual to contribute part of 
its genetic material to subsequent generations. The results 
of these experiments obtained on the test set are presented 
in Fig. 7a.

Fig. 5  Average pairwise sequence identity in the dataset in percent, 
with [i–j] indicating values from i (included) to j (excluded)



Journal of Computer-Aided Molecular Design (2024) 38:17 Page 11 of 22 17

As expected, the results of the experiments with ran-
dom weights  (POETRdm) are lower than the results of the 
experiments with the training step  (POETRegex). A paired 
t-test was performed and confirmed that the difference 
is statistically significant (p-value=1.07e−3). Indeed, 
the average fitness value obtained on the test set with 
 POETRdm is 0.359 compared to  POETRegex which is 0.443. 
The results of  POETRegex are about 23% (+0.084) higher 
than the experiments with  POETRdm. Among the  POETRdm 
models, the best model (Fig. 7b) has a fitness value of 
0.58 (with p-value=5.04e-4) on the test set. This fitness 
value is 0.13 ( ∼22%) lower than the best model achieved 
using  POETRegex. These results confirm the importance 
and efficiency of the training step during the execution of 
the algorithm.

Best  POETRegex, model obtained 
after the evolutionary process

Out of all the previous experiments, the best  POETRegex 
model (Additional file 2) exhibited interesting results 
with a strong correlation of 0.88 (p-value=1.2e-41) on 
the training set and 0.71 (p-value=7.7e-6) on the test set 
(Fig. 8a). A correlation exceeding 0.5 indicates a highly 
positive correlation between the predicted values of the 
model and the actual wet lab measurements. Further-
more, a p-value below 0.05 indicates that the results are 
statistically significant. As shown in Fig. 8b, the fitness 
values of the best individual and for the entire popula-
tion continue to improve until around 100 generations 
and then tend to stabilize. This means that the algorithm 

Fig. 6  a Frequency of occurrence of each AA in both training (blue) 
and test (orange) sets. Molecules are illustrated for the four most 
prevalent AAs in the training set, and hydroxyl or amine groups are 
highlighted. b Comparison of the frequency of each AA in our data-
set (yellow) and in the UniProtKB/Swiss-Prot database (green). The 

different values represent the percentage of occurrence. c Potential 
CEST value associated with each AA by occurrence method. The 
green box represents positively charged AAs, and the red box repre-
sents negatively charged AAs. d) Frequency of the 20 most observed 
motifs (size 2 to 6) in the training set with the associated CEST value
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converges to a good solution. It is interesting to note that 
this model comprises 29 rules, consisting of a combi-
nation of REs (80%) and contiguous motifs (20%). For 
instance, the ’KL’ motif is one of the contiguous motifs 
with a weight of 3.397. Finally, these results confirm that 
our GP algorithm is capable of evolving protein-function 
models adapted to the CEST problem. Consequently, 
the algorithm is effective in identifying motifs that can 
enhance the CEST signal.

Comparison between  POETRegex and initial POET

In order to evaluate the efficiency of adding REs to build 
protein-function models, we conducted 100 experiments 
using the initial version of POET as a baseline for com-
parison. The initial version of POET has previously dem-
onstrated effectiveness in predicting high CEST contrast 
peptides. In the initial algorithm, models consist of col-
lections of evolved rules comprising sequences of peptide 
or AA patterns and a numerical weight indicating their 

Fig. 7  a Comparison of  POETRegex (blue) and  POETRdm (purple) 
models on the test set. b Performance of the best  POETRdm model 
on the training set (orange) and the test set (green). The translucent 

bands around the regression line represent the confidence interval for 
the regression estimate

Fig. 8  a Performance of the best  POETRegex model on the training set 
(orange) and on the test set (green). The strong correlation indicates 
that the algorithm has converged to a good solution. The translucent 
bands around the regression line represent the confidence interval for 

the regression estimate. b Evolution of the fitness value during the 
evolutionary process. The green curve represents the fitness value of 
the best individual, and the orange curve represents the fitness value 
of the entire population
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importance in producing high contrasts. While these mod-
els are nonlinear, they employ a linear method to represent 
the discovered patterns in each rule. Our hypothesis is 
that REs can enhance motif discovery in  POETRegex and, 
in turn, increase the efficacy of the evolved models. For a 
fair comparison of the 2 programs, the same training set 
was used to train the POET and  POETRegex models, and the 
same test set was also used to evaluate them. The default 

parameters utilized in [53] were employed throughout the 
experiments.

On average, POET exhibits a correlation of 0.292 and 
a p-value of 0.205. Some models drastically reduce the 
average because the evolutionary process was unable to 
find a good solution, or the algorithm converged too fast 
and got stuck in a local maximum. Therefore, we focus 
only on the 9 best models to take advantage of the best 
results. The average correlation of the top 9 POET models 

Fig. 9  The 9 best POET models. Each dot represents a datapoint with a true CEST value associated with a predicted CEST value. The green line 
represents the regression line and the translucent bands around the regression line represent the confidence interval for the regression estimate
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is 0.504 (average p-value of 4.68e-3), which is very close 
to the performance obtained by  POETRegex. Fig. 9 displays 
the results of the top 9 POET models. Model 1 obtains 
the best performance with a correlation coefficient of 0.59 
and a p-value of 4.4e-4, meaning the result is statistically 
significant. These results demonstrate the potential of the 
initial version of POET. However, the best  POETRegex 
model performed better than POET and indicates that REs 
add flexibility that POET does not have and improves the 
learning and prediction potential. The power and accuracy 
of the REs allowed the best  POETRegex model (among all 
replicates) to perform better with an increase in perfor-
mance of 20% (+0.12).

Peptide predictions with the best evolved model

After evolving the models and identifying the best one, 
we utilized the best model to predict peptides that could 
potentially outperform the gold-standard K12 peptides by 
exhibiting high CEST values. We employed a computational 
DE process in which the best  POETRegex model (Additional 
file 2) and the standard encoding with 20 AAs were used 
to predict new peptides. In this context, higher prediction 
scores correlate with higher CEST values. We conducted 
3 experiments with varying numbers of cycles (1000, 100 
and 10 cycles) during an in silico DE process. This approach 
replaces the DE screening step by selecting peptides with a 
potentially high CEST value using the best  POETRegex model 
and drastically reduces experimental time and costs. The 
results for peptides with the highest predicted score (top 
1) and peptides with both a high predicted score and high 
hydrophilicity (best) for each experiment can be found in 
Table 3, while all predictions are available in Additional 
file 1: Table S3. It is important to highlight that in the DE 
process applied for peptide prediction, the higher the number 
of cycles, the more the peptides generated will be similar 
and converge towards an identical solution. Conversely, a 
limited number of cycles results in less accurate predictions, 
but it allows for broader exploration and the generation of 
original peptides. Thus, determining the optimal number of 
cycles is a key point in the employed DE.

Next, we analyze the AA composition of the predicted 
peptides. The results are illustrated in Fig. 10a. As expected, 

Table 3  Predicted peptides with highest predicted score (Top 1) and 
best predicted peptides with highest hydrophilicity and high score 
(Best), with 1000, 100 and 10 cycles during DE

Cycles Predicted peptide (Top 1) Predicted score Hydrophilicity

1000 ICKLLKLLKLLK 97.66 0.05
100 RLKSMQLKLDKL 82.83 3.25
10 QSCKYCQSLKFD 52.85 1.52
Cycles Predicted peptide (Best) Predicted score Hydrophilicity
1000 QSLKQSIKKLKK 92.52 4.94
100 QDGSKKSLKSCK 74.55 5.37
10 SEVEKPFWEQDK 39.91 7.52

Fig. 10  a Number of AAs present in the predicted peptides in the 3 
types of DE experiments: 1000 (blue), 100 (orange) and 10 (green) 
cycles. b Sequence logos highlighting the probability of each AA 
at a given position, for the 3 experiments. As the number of cycles 

increases, the predicted peptides are more similar with high rates of 
lysine and leucine. The polar AAs are in green, the neutral in purple, 
the positively charged in blue, the negatively charged in red and the 
hydrophobic in black
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peptides generated after 1000 cycles exhibit a homogeneous 
AA composition achieving high predicted scores (>90). In 
contrast, peptides generated after 100 and 10 cycles display 
a more heterogeneous AA composition with lower scores 
(approximately 70-80 for 100 cycles and 40-50 for 10 
cycles). The sequence logos in Fig. 10b generated with the 
WebLogo 3 tool [81], highlight the probability of each AA 
at a given position. With an increasing number of cycles, the 
presence of Q, L, S, and K becomes more prominent, con-
firming the tendency to converge towards similar peptides 
with a homogeneous AA composition.

Also, we observed a significant presence of isoleucine 
in predicted peptides in experiments involving 100 and 
10 cycles (Additional file 1: Table S4). The abundance of 
lysine, glutamine, and serine in the predicted peptides is 
consistent with our initial analysis of the dataset. Lysine, 
a positively charged AA, plays a crucial role in detecting 
CEST signals. Glutamine and serine, non-charged polar AAs 
with amide and hydroxyl groups, respectively, facilitate pro-
ton exchange with water molecules. Hence, we expected to 
find these AAs in the predicted peptides. Conversely, we 
anticipated a high presence of arginine and tryptophan, 
given their abundance in the dataset. However, the peptides 
predicted for 10, 100, and 1000 cycles only contained 1.6%, 
3.3%, and 0% arginine, respectively, and 4.5%, 2.5%, and 
1.6% tryptophan. Interestingly, we observed a significant 
occurrence of leucine in the predicted peptides, with per-
centages of 5.83% for 10 cycles, 15.42% for 100 cycles, and 
32.92% for 1000 cycles. This is notable because leucine is 
not very abundant in the dataset. Leucine, a hydrophobic 
AA, contradicts the preference for hydrophilic and soluble 
peptides in CEST experiments. However, leucine plays a key 
role in protein structure folding and has a strong tendency 
to form alpha helices while maintaining their stability. Con-
sequently, we used the ColabFold tool [82] based on the 
AlphaFold2 model [34] to perform 3D structure predictions 
of the leucine-rich predicted peptides. The results presented 
in Additional file 1: Figure S1 demonstrate that the predicted 
patterns tend to form alpha helices. Thus, the model can 
identify leucine-rich motifs that play a significant role in 
the formation of specific secondary structures, such as the 
alpha helix. In this manner, the GP algorithm has produced 
original results. Despite our initial expectation of observing 
a substantial number of arginine, threonine, and tryptophan, 
it found and favored glutamine, leucine, and isoleucine. 
This suggests that the algorithm was capable of discovering 
motifs that contribute to the function and/or structure of the 
predicted peptides.

We identified the main motifs present in the predicted 
peptides for the three types of experiments. As anticipated, 
these motifs primarily consisted of the residues K, L, Q, S, 
and I. In the peptides predicted after 1000 cycles, the main 
motifs involve lysine and leucine, such as LK (45), KL (38), 

LLK (28), or LKLL (17). However, there are also motifs that 
incorporated other AAs, such as LQS (10) or SLK (16). In 
experiments involving fewer than 100 and 10 cycles, motifs 
such as QS, GS, SI, SL, and SLK, LKS, IKK, LQS, QSL were 
observed. These results confirm the ability of our algorithm 
to extract valuable information from the data and leverage 
it to generate peptides with potentially significant CEST 
values.

Experimental validation of predicted peptides

The best protein-function model evolved by  POETRegex was 
used to generate novel peptides that have the potential to 
enhance CEST contrast. In order to validate the reliability 
of our approach, we selected the top 3 predicted peptides 
with higher hydrophilicity and high score from each DE 
experiment (10, 100, and 1000 cycles) and evaluated their 
performance in the wet lab.

The 9 peptides were synthesized, and the magnetiza-
tion transfer ratio asymmetry  (MTRasym), a measure of 
CEST contrast, was obtained using NMR spectroscopy. 
The  MTRasym was normalized to the molar concentration 
of the peptide (Additional file 3: Table S1) and plotted as a 
function of the saturation frequency offset (Fig. 11). Since 
the  POETRegex was trained from the  MTRasym contrast at 3.6 
ppm, the MRI results are presented in Table 4 for  MTRasym 
at 3.6 ppm. Data are normalized relative to the gold standard 
K12 peptide.

It is interesting to note that the results obtained from both 
the 1000-cycle and 10-cycle experiments do not demonstrate 
convincing results, showing an average  MTRasym of 6.47 (1000 
cycles) and 7.67 (10 cycles). This outcome is likely due to 

Fig. 11  MTRasym plot of nine peptides and the gold standard peptide 
(K12) measured by NMR
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either too many or too few cycles, leading to the generation of 
either too a too homogenous or a too diverse set of peptides. 
For instance, in the 1000-cycle experiments, 66% of the pep-
tides consisted of QSLK or KLKK motifs, while no dominant 
motif was identified in the peptides from the 10-cycle experi-
ments. These results highlight the limitations of our approach 
and allow us to explore relevant search spaces that are nei-
ther too constricted nor overly expansive, striking a balance 
between generating homogenous and overly diverse peptides. 
Conversely, among the 3 predicted peptides in the experiment 
with 100 cycles, peptide QDGSKKSLKSCK (QDGSK brown 
line in Fig. 11) generated  MTRasym 58% (17.59  MTRasym) 
larger than the gold standard peptide K12 at 3.6ppm (10.51 
 MTRasym). This prediction not only demonstrates superior 
CEST sensitivity, but also has a high predicted score and 
the highest hydrophilicity among the peptides considered 
(Table 3).

An interesting observation is that this peptide contains only 
25% K residues, which is important for increasing the diver-
sity of the AA composition of genetically encoded reporters 
[28]. QDGSKKSLKSCK is also unique compared to other 
peptides since it has a distinct peak at 3.6 ppm, resulting from 
the amide exchangeable protons, with little or no contribu-
tion from amine or guanidine exchangeable protons resonating 
between 1.8 and 2.0 ppm.

These findings confirm that after training/evolving and 
employing the best  POETRegex model, the search space was 
successfully narrowed down, allowing us to highlight a can-
didate peptide that exhibits a performance exceeding 58% in 
comparison to the gold standard peptide K12.  POETRegex has 
proven its ability to extract motifs with compelling proper-
ties, facilitating the generation of peptides tailored to address 
specific problems.

Discussion

Challenges of computational approaches to peptide 
discovery

Peptides have emerged as highly promising candidates for 
therapeutic targets, biomarkers for disease diagnostics, and 
medical imaging [9], particularly as MRI CEST contrast 
agents [27]. They offer several advantages, including high 
specificity, biodegradability, minimal tissue accumula-
tion, and low toxicity. However, they also present certain 
disadvantages, such as low oral bioavailability, limited 
membrane permeability, low solubility, and the expensive 
and time-consuming nature of their synthesis [83]. Due 
to the challenges associated with generating new peptides 
through traditional experimental methods, several com-
putational approaches have emerged to aid in peptide dis-
covery. Among these, ML and DL algorithms, including 
large language models (LLM) [84], have recently gained 
prominence and show significant potential in various 
fields, such as synthetic biology and protein engineering 
[85]. Indeed, numerous studies have explored the potential 
of these algorithms to design bioactive peptides and pro-
teins. For example, Imai et al. [86] developed an approach 
based on three machine learning algorithms (Support Vec-
tor Machine, Random Forest, and Logistic Regression) 
to construct a predictive model and screen for bile acid-
binding peptides. Repecka et al. [87] and Tucs et al. [88] 
trained generative adversarial networks to extract intrinsic 
relationships from natural proteins. Zhang et al. [89] used 
an LSTM model that generates peptides and combined it 
with a protein-peptide binding prediction model to screen 
a significant number of potentially active peptides. Dean 
et al. [90] developed a variational autoencoder to generate 

Table 4  Experimental 
results obtained in wet lab 
of the peptides predicted by 
 POETRegex.

Peptide depicted in bold has highest value of MTR\_asym.

Peptides # of cycles POETRegex score MTR_asym (%)

KKKKKKKKKKKK N.A N.A 10.51
QSCKLKKLQSLK 1000 94.39 6.51
QSLKQSIKKLKK 1000 92.52 5.72
QSLKSWIEKLKK 1000 92.49 7.20
ICKLDKRIKKLK 100 80.52 8.96
QSVQDKLKKRII 100 77.18 4.36
QDGSKKSLKSCK 100 74.55 17.59
LFHDIEKQLKHA 10 43.79 7.01
TQHEVQSEKRGW 10 41.87 9.86
SEVEKPFWEQDK 10 39.91 6.14
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antimicrobial peptides. More recently, LLMs like prot-
BERT [91] have been used for protein design and engi-
neering. In this case, the pre-trained BERT model was 
fine-tuned to generate antihypertensive peptides. Another 
example is ProGen [92], a language models used to gen-
erate sequences of artificial proteins. However, the use 
of these algorithms presents challenges such as the com-
plexity of models, difficulty interpreting results since DL 
models are often considered black boxes [93], and the 
high cost of training on GPU cards. Additionally, these 
models require large amounts of data. For instance, Pro-
Gen [92] used a training dataset consisting of 280 million 
proteins. In the realm of synthetic biology, the scarcity of 
experimental and curated data often remains a problem, 
as the available datasets are generally too small to make it 
practical to employ DL methods [94]. To overcome these 
limitations, alternative computational approaches, such 
as evolutionary algorithms, can be employed to identify 
candidate peptides more efficiently.

GP approach for peptide discovery

The discovery of new peptides with potential for therapeu-
tic or diagnostic purposes is a complex task that involves 
exploring a large search space. Unfortunately, exhaustive 
exploration of this space is not feasible with current meth-
ods. Indeed, this challenge is a NP-hard optimization prob-
lem, and the ratio between functional and non-functional 
proteins is heavily skewed toward non-functional ones. We 
have employed a heuristic approach based on Genetic Pro-
gramming, which has proven effective in navigating complex 
search spaces where other methods may not perform as well. 
Inspired by evolutionary mechanisms, the GP algorithm is 
capable of finding satisfactory solutions to a given prob-
lem without prior knowledge, making it suitable for situ-
ations where solutions are not easily defined. GP allows to 
manipulate structures that perform actions (like programs), 
as opposed to other (evolutionary) optimization methods, 
which try to optimize a target function directly. The outcome 
of GP actions is what is optimized, but what is evolved is 
the structure which can change its complexity based on the 
demands of the problem. This decouples the structure from 
the behavior, a very important aspect of genetic program-
ming [70, 95]. Here, we used REs as the structures to be 
evolved to identify motifs in peptide sequences. While REs 
are robust tools, the manual tuning of REs can be a time-
consuming, tedious, and error-prone process [96]. Therefore, 
developing a method that can automatically generate REs 
and adapt their complexity for a given problem is a chal-
lenge but has the potential to significantly facilitate peptide 
discovery and protein engineering. In principle, GP can be 
further enhanced by using a multi-objective approach with 

a Pareto front of conflicting optimization goals, but we have 
chosen not complicate matters for this contribution.

POETRegex applied to the CEST problem

In this study, we introduce  POETRegex, a new tool designed 
to evolve a protein-function model and discover new pep-
tides for a given problem. To illustrate the feasibility of 
our method, we used  POETRegex to predict peptides with 
increased sensitivity detected by CEST.  POETRegex utilized 
GP to optimize protein-function models, represented by a 
list of REs. While the initial version of POET relied on a list 
of motifs of contiguous AAs, restricting peptide discovery, 
this new version incorporates two significant enhancements. 
First, it leverages the flexibility of RE to identify specific 
motifs, enabling a more expansive exploration of the search 
space. Second, the training step takes advantage of high-
quality data generated in the laboratory to adjust RE weights, 
moving away from the random assignment approach. This 
step enhances the identification of motifs crucial to the spe-
cific problem. In addition,  POETRegex exhibits the ability to 
train on small datasets, distinguishing it from DL models. 
Previous studies have demonstrated the potential of combin-
ing algorithms with limited datasets to achieve interesting 
results [97, 98]. Finally, the use of RE ensures the complete 
transparency of the model. Indeed, while DL models are 
often regarded as black boxes that are challenging to inter-
pret, our model, despite relying on initially complex RE, is 
fully explainable. This ensures comprehension during pre-
diction, detection of biases, user confidence, and continu-
ous model improvement, contributing to a more ethical and 
effective utilization of AI.

The key points of  POETRegex

By combining GP with REs, we achieved a 20% improve-
ment in performance compared to the previous version of 
POET. While this combination proves to be an interesting 
and efficient solution, it’s important to acknowledge that 
motif search can be limited by the complexity of the motifs. 
Our approach relies on constructing a MDB that consists of 
a set of motifs found in the training dataset. Some motifs 
may be more complex and less prevalent, which can impact 
model training and subsequent predictions. Therefore, the 
construction of the MDB from the data is a key point of our 
study, and it’s likely that increasing the amount of data could 
improve the performance of our strategy.

Moreover, the ability of an RE to extract motifs is related 
to its length, which corresponds to the depth of the binary 
tree. To generate suitable REs, we adopted the ramped half-
and-half method, which allows for the creation of a het-
erogeneous population of trees with varying depths. This 
approach strikes a balance between the complexity of RE 
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and its ability to generalize to new data. However, using 
shallow trees can result in small RE that may lead to over-
fitting. These small REs can only extract specific motifs, 
limiting flexibility and hindering the ability of the model 
to generalize. Conversely, excessively deep trees produce 
long REs that may lead to underfitting. Long REs have the 
potential to extract a wide range of motifs, losing specificity, 
especially if there are numerous alternative choice operators 
(|). Additionally, large REs may contain regions that are not 
utilized during the training step but could play a significant 
role during the prediction step. These instances of "false 
positives" can introduce bias into the predictions.

Hence, it is crucial to select an appropriate RE size and 
number of REs to avoid overfitting, underfitting, and the 
propagation of non-exploited regions. Another key to the 
success of the model is its ability to generalize data, requir-
ing that REs be heterogeneous, i.e., they do not extract the 
same motifs. It is worth noting that the best  POETRegex 
model (Additional file 2) primarily consists of variable-sized 
REs but also incorporates fixed-size motifs. These results, 
combined with the high correlation coefficient obtained dur-
ing the training step, indicate that our algorithm can extract 
(from the data) essential and specific motifs to address the 
problem at hand while introducing the flexibility needed to 
generate innovative solutions.

Finally, it is important to note that  POETRegex can be 
trained multiple times to obtain better performance. By 
incorporating new experimental peptide data into the data-
set and refining the hyperparameters of the model, we can 
enhance the performances of  POETRegex, similar to the 
improvements observed in the initial POET version [53], 
where 8 epochs were realized.

Peptide prediction with  POETRegex

After the evolutionary process, we utilized the best  POETRegex 
model to generate new peptides with higher sensitivity of detec-
tion by CEST using a DE method, which is a powerful tool 
for protein engineering [30]. Traditional DE involves gener-
ating a population of individuals with similar characteristics 
to the desired outcome, but this approach often gets stuck in 
local optima due to the similarity of starting points. Addition-
ally, it relies on performing mutations and wet lab evaluations 
(screening step), which can be time-consuming and expen-
sive. By employing a model like  POETRegex, we replace the 
screening step. The model can extract motifs of interest (or the 
inverse if the score is negative) to select the most promising 
peptides for the next generation. This broader coverage of the 
search space increases the likelihood of escaping from local 
optima. Furthermore, the extrapolation capacity of our model 
enables it to generate original peptide sequences. Indeed, the 
peptides designed by  POETRegex were found to be rich in lysine, 
serine, glutamine, leucine, and isoleucine, whereas the input 

data contained a high number of lysine, serine, threonine, and 
arginine and few glutamine, leucine, and isoleucine. This indi-
cates that the model favored motifs with a higher frequency of 
amino acids lysine and leucine while avoiding motifs contain-
ing arginine and threonine. The significant presence of lysine 
is consistent due to its amine group and positive charge, but the 
inclusion of leucine is original as it is a hydrophobic AA. Pre-
dictions of the 3D structure of leucine-rich peptides suggest that 
this residue plays an important role in the three-dimensional 
conformation of the peptide. The generation of secondary struc-
tures contributes to the improved thermal stability of proteins 
[99]. In the future, by combining peptides obtained through 
the evolutionary algorithm with proteins, it may be possible 
to achieve a stable structure without compromising the poten-
tial for enhanced detection through CEST contrast. A similar 
approach has been successfully employed in the generation of 
de novo biosensors for CEST MRI by coupling proteins with 
peptides exhibiting high CEST potential [28]. Finally, nine pep-
tides generated by  POETRegex were carefully selected, synthe-
sized, and their  MTRasym values were calculated. Six of them 
(those with 10 and 1000 cycles) have enabled us to highlight 
the DE boundaries, while among the peptides with 100 cycles 
we have identified a potential candidate (QDGSKKSLKSCK) 
displaying a remarkable increase of over 58% compared to the 
gold standard K12. Although there was no apparent correlation 
between  POETRegex prediction scores and experimental out-
comes (probably due to the limited number of peptides syn-
thesized), this discrepancy might be attributed to the impact of 
either excessive or insufficient cycles during the DE. Neverthe-
less, we successfully identified and synthesized a promising 
candidate peptide that exhibited interesting characteristics when 
compared to genetically encoded reporters. These results dem-
onstrate that our method is capable of evolving protein-function 
models to extract motifs that align with a given problem even in 
the presence of initial constraints. Moreover, it has the capacity 
to reduce the search space and leverage a more comprehensive 
range of amino acids. It is essential to emphasize that these 
results were obtained from a single epoch, implying that we can 
further improve the performance of the model and enhance the 
sensitivity of generated peptides by improving the dataset with 
additional experimental data.

Conclusions

The development of the  POETRegex tool represents a sig-
nificant advance in the field of protein engineering. This 
study highlights the effectiveness of combining genetic 
programming with regular expressions to efficiently 
explore a vast search space and generate new peptides, 
which could lead to the development of new therapeutic 
targets and biomarkers. Although our study focused on the 
use of  POETRegex to improve the sensitivity of CEST-based 
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imaging, the program could also be applied to other areas 
of protein engineering. The flexibility of REs provides a 
precise, explainable, and targeted approach for identifying 
specific motifs, making  POETRegex applicable beyond the 
scope of our study. Considering the increasing prominence 
of personalized medicine and the expanding utilization of 
peptides in the pharmaceutical market, we firmly believe 
that in silico approaches like  POETRegex can play a crucial 
role in accelerating the discovery of new peptide targets. 
In this manuscript, our focus was on comparing  POETRegex 
with an initial version of the POET system. In both cases, 
a notable feature of POET has been its ability to be applied 
to small datasets. An ongoing effort in this research is to 
expand our comparison to include state-of-the-art algo-
rithms. Our preliminary results indicate that the majority 
of such algorithms struggle to generate generalized models 
with small datasets. While using a linear sequence of AA 
alphabets has been a common and conventional method 
for representing protein sequences, other approaches such 
as Prot2Vec [100] have been proving fruitful for feature 
extraction from biological sequences. It is intriguing to 
observe how using a more sophisticated non-linear protein 
representation could enhance a system like POET.
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