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Abstract. In this study, we visualise the search trajectories of a genetic
programming system as graph-based models, where nodes are geno-
types/phenotypes and edges represent their mutational transitions. We
also quantitatively measure the characteristics of phenotypes including
their genotypic abundance (the requirement for neutrality) and Kol-
mogorov complexity. We connect these quantified metrics with search
trajectory visualisations, and find that more complex phenotypes are
under-represented by fewer genotypes and are harder for evolution to dis-
cover. Less complex phenotypes, on the other hand, are over-represented
by genotypes, are easier to find, and frequently serve as stepping-stones
for evolution.
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1 Introduction

Neutral networks have been found to play an important role in natural and arti-
ficial evolution [2,17]. The notion of neutral networks derives from the idea that
a search space can be explored by neutral moves that do not change fitness, as
well as by moves improving fitness. Nodes of such a network are the genotypes
being visited and edges between them are the variation steps taken by a searcher
on that network. Each node, being a genotype also carries a fitness which can be
used to determine whether a move from one node to another node is allowed or
not. Some researchers have claimed that neutral moves are extremely important
to allow evolutionary progress to proceed [13,19], and our long-standing inter-
est and understanding of the role of neutrality in genetic programming (GP)
systems [1] is deepened by the examination we report here.
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Fig. 1. Sketch of a network of neutral networks. Each level depicts one neutral network,
with a discrete fitness value corresponding to its level. Nodes depict genotypes (genetic
programs) which are connected within a level, reachable by neutral moves, with few
nodes allowing jumps to a lower level (better fitness). The fitness of a node is measured
by executing it and comparing the function it stands for with a target relation. The
neutral networks are connected through what are called portal nodes to other neutral
networks at a lower (better) fitness level.

Figure1 shows a sketch of how to conceptualize the search space of a GP
algorithm: As a network of (neutral) networks [9]. A single searcher in such a
search process likely starts at a less-fit neutral network level (fitness level 2),
and moves through the network by hopping from node to node via mutations
or other variation operations that are mostly neutral. Occasionally, however, a
portal node is found this way, which allows the searcher to enter another neutral
network on a better fitness level. At that point, search again moves through the
neutral network until it finds another portal.

Studying such search trajectories and connecting them with quantified met-
rics of genotypes and phenotypes allows to better understand the genotype-to-
phenotype maps (G-P maps) and the search behaviour of evolutionary algo-
rithms. In this research, we adapt a recent graph-based model, search trajectory
networks (STNs) [15,16] to analyse and visualise search trajectories of a simple
linear GP system used to evolve Boolean functions. Search trajectory networks
are a data-driven, graph-based model of search dynamics where nodes repre-
sent a given state of the search process and edges represent search progression
between consecutive states. We connect this visualisation with an examination
of the statistical behavior of those searchers navigating the corresponding geno-
type space. Following more recently formulated ideas about stiff G-P maps, we
can tie the complexity of phenotypes to their potential for serving as stepping
stones to a solution of the problem.

We define stiff G-P maps as those maps that have a strong correlation
between the complexity of the genotype and the complexity of the corresponding
phenotype. In nature, such maps can be found in the molecular world, and in
computing they are found in the conventional maps of GP. However, there also
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exist other kinds of maps that allow the correlation between genotype complexity
and phenotype complexity to relax. Typically, they are found in developmental
systems allowing the complexity of the phenotype to grow over time under the
influence of a genotype. The results reported here might not apply to such kind
of maps, though they are certainly realizable in GP.

This research provides novel insights into how G-P maps result in the het-
erogeneity of phenotypes being represented by genotypes. Namely, it has been
observed that some phenotypes are over-represented by a large number of geno-
types (high redundancy) whereas others are under-represented by few (low
redundancy). We measure the correlation between the redundancy of a phe-
notype and its complexity and demonstrate its influence on search trajectories
toward a goal defined by fitness.

2 The LGP System

2.1 Boolean LGP Algorithm

The GP algorithm used in our research is a linear genetic programming (LGP)
system where a sequential representation of computer programs is employed to
encode an evolutionary individual [4]. Such a linear genetic program often con-
sists of a set of imperative instructions to be executed sequentially. Registers
are used to either read input variables (input registers) or to enable computa-
tional capacity (calculation register). One or more registers can be designated
as the output register(s) such that the final stored value(s) after the program is
executed will be the program’s output.

In this study, we use an LGP algorithm for a three-input, one-output Boolean
function search application, similar to our previously examined LGP system [10—
12]. Each instruction has one return, two operands and one Boolean operator.
The operator set has four Boolean functions {AND, OR, NAND, NOR}, any of which
can be selected as the operator for an instruction. Three registers Ry, Ry, and
R3 receive the three Boolean inputs, and are write-protected in a linear genetic
program. That is, they can only be used as an operand in an instruction. Regis-
ters Rg and R4 are calculation registers, and can be used as either a return or an
operand. Register Ry is also the designated output register, and the Boolean value
stored in Ry after a linear genetic program’s execution will be the final output of
the program. All calculation registers are initialized to FALSE before execution of
a program. An example linear genetic program with three instructions is given
as follows:

Il : R.4 = RQ AND R.3
IQZRQZR]_ OR R.4
I3 : Ro = R3 AND Ro
A linear genetic program can have any number of instructions, however, for

the ease of sampling in this study, we use linear genetic programs that have a
fixed length of six instructions.
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2.2 Genotype, Phenotype, and Fitness

The genotype in our GP algorithm is a unique linear genetic program. Since
we have a finite set of registers and operators, as well as a fixed length for all
programs, the genotype space is finite and we can calculate its size. For each
instruction, two registers can be chosen as return registers and any of the five
registers can be used as one of two operands. Finally, an operator can be picked
from the set of four possible Boolean functions. Thus, there are 2 x 5 x 5 x 4 =
200 unique instructions. Given the fixed length of six instructions for all linear
genetic programs, we have a total number of 2006 = 6.4 x 10'3 possible different
programs.

The phenotype in our GP algorithm is a Boolean relationship that maps three
inputs to one output, represented by a linear genetic program, i.e., f : B3 —
B, where B = {TRUE, FALSE}. There are thus a total of 22° = 256 possible
Boolean relationships. Having 6.4 x 103 genotypes to encode 256 phenotypes,
our LGP algorithm must have a highly redundant genotype-phenotype mapping.
We define the redundancy of a phenotype as the total number of genotypes that
map to it.

We choose the fitness of a linear genetic program as the deviation of the
phenotype’s behavior from a target Boolean function and want to minimize that
deviation in the search process. Given three inputs, there are 23 = 8 combina-
tions of Boolean inputs. The Boolean relationship encoded by a linear genetic
program can be seen as an 8-bit string representing the outputs that correspond
to all 8 possible combinations of inputs. Formally, we define fitness as the Ham-
ming distance of this 8-bit output and the target output. For instance, if the
target relationship is f(Rs,Ra,R3) = Ry AND Ry, AND Rg, represented by the 8-bit
output string of 00000001, the fitness of a program encoding the FALSE rela-
tionship, i.e., 00000000, is 1. Fitness is to be minimized and falls into the range
between 0 and 8, where 0 is the perfect fitness and 8 is the worst.

3 Kolmogorov Complexity

Dingle et al. [5] report a very general result on complexity limited discrete input-
output maps. Based on algorithmic information theory they state that the prob-
ability of finding certain outputs depends on their Kolmogorov complexity. In
particular, the probability to find an output € O can be bounded by a quantity
that depends exponentially on its Kolmogorov complexity:

P(z) < o~ (K(zlf,n)+0OM) (1)

where K (x|f,n) is the shortest program that produces x, given f and n, where
f is the computable input-output map f : I — O and n characterizes the size of
the input space. For binary inputs their number would be 2. While this gives
only an upper bound, it is (negatively) exponentially dependent on complexity,
and if one compares two outputs, this fact can be used to predict the prevalence
of one output over the other. Even more astonishing, this estimate becomes
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independent of the particulars of the map, in the above mentioned asymptotic
case of a limited complexity map where K(f) + K(n) << K(z) + O(1):

K(z|f,n) = K(z) + O(1). (2)

Later, Dingle et al. [7] apply these findings to a variety of systems, among them
the RNA G-P map (from linear sequence to 2D structure) and to others.

Here we shall use these ideas to explain and predict the phenotypic trajecto-
ries of adaptive walkers in the fitness landscape of Boolean functions. In the con-
text of our LGP algorithm, we define the Kolmogorov complexity (K-complexity)
of a phenotype (Boolean relationship) as the minimal effective length of its under-
lying linear genetic programs. The effective length of a linear genetic program is
the number of its effective instructions. An instruction of a program is effective
when its execution influences the final result of the output, here the content of
register Rop. We can then conceptualize the search process as an adaptive walk
in the network of solutions (phenotypes), and, by repeating the process with a
number of runs, we can visualise the prevalence of certain transitions (hops of
searchers in the network).

4 Sampling and Metrics Estimation

Although finite, the genotype space of our LGP algorithm is enormous with a
size of 6.4 x 103 and can be challenging for exhaustive enumeration. Therefore,
we randomly sample one billion linear genetic programs (= 0.00156% of the total
possible programs) to approximate the genotype space.

These one billion programs are then mapped to the Boolean relationships
(phenotypes) they represent, allowing us to estimate the redundancy of each
phenotype as the total number of sampled genotypes that map to each pheno-
type. 239 out of the 256 phenotypes are represented by our sampled genotypes,
among which phenotype FALSE has the greatest redundancy of almost 109 mil-
lion genotypes, i.e., > 1% of the total number of sampled genotypes.

We first investigate the phenotypic effects of point mutations in our LGP sys-
tem by sampling one million genotypes and their one-step mutants. Given the
high redundancy in the G-P map, we observe that about 73.8% of the sampled
point mutations are neutral. For the 26.2% non-neutral mutations, we com-
pute the phenotypes of the genotype pairs for each mutation and measure the
Hamming distance of these phenotypes. Figure 2A shows the distribution of such
pairwise phenotypic distances. We can see that the majority of non-neutral point
mutations results in small phenotypic changes but also that there is a substantial
number of mutations with larger step sizes (4 or even 8 bits).

Next, we would like to examine the relation between redundancy of a phe-
notype and its complexity. Recall that the K-complexity of a phenotype is the
minimal effective length of its underlying programs. Thus, the goal is to search
for the shortest effective program that can encode a given Boolean function
(phenotype). Again we randomly sample one billion linear genetic programs
with varying lengths drawn from the range between 5 and 20. We then perform
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Fig. 2. Estimated metrics and characteristics. (A) Distribution of phenotypic dis-
tance of one-step genotype neighbours. Neutral mutations (73.8% of all mutations)
are excluded from the graph. Spikes at even distances are caused by the fitness func-
tion. (B) Correlation of redundancy and K-complexity in log-linear scale. Phenotypes
are represented as circles. Note the log scale; the straight line is the best fit to an
exponential decay, and the shadow depicts the 95% confidence interval of the linear
regression. Spearman’s rank correlation coefficient R and p-value are also provided.

the structural intron removal algorithm [4] to identify the effective length of
each program. We record for each phenotype the minimal effective length of its
sampled underlying programs, and use it to estimate the K-complexity of that
phenotype. Figure 2B shows the correlation of redundancy and K-complexity for
all the phenotypes we sampled and measured. A strong and significant nega-
tive correlation is observed, which means that more complex phenotypes are
represented by fewer genotypes, as suggested by [5].

To study the search trajectories for our LGP system, we perform adaptive
walks where only neutral or improving point mutations are accepted. For a
comparison, we set three target phenotypes with increasing difficulties, i.e., an
easy target of phenotype 240 (redundancy 46 million, K-complexity 1), a medium
target 20 (redundancy 3130, K-complexity 4), and a hard target 30 (redundancy
772, K-complexity 4). Two search scenarios are implemented, where first we
always start with a randomly generated genotype of the most distant phenotype
from the target, i.e., fitness of 8, and second we randomly generate a genotype
without any consideration on its fitness. We call the first scenario fized start
search and the second random start search. We collect 100 runs for each scenario
with each target phenotype, where in each run we initialize a linear genetic
program and let it walk in the genotypic space for 2,000 steps. These results are
used for the visualisation of the search trajectories.

5 Search Trajectory Networks

Search trajectory networks (STNs) [15,16] are a graph-based tool to visualise and
analyse the dynamics of any type of meta-heuristic: evolutionary, swarm-based or
single-point, on both continuous and discrete search spaces. Originally, the model
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tracks the trajectories of search algorithms in genotypic space, where nodes
represent visited genotypes. However, for very large search spaces, techniques
have been proposed to cluster sets of genotypes into locations [16] which can
even group genotypes with the same phenotype or behavior [18], in order to
have coarser models that can be visualised and interpreted.

In order to define a graph-based model, we need to specify its nodes and
edges. We start by giving these general definitions before describing three STN
models we propose here to visualise GP search spaces.

5.1 General Definitions

Representative solution. A solution (genotype) to the optimization problem at a
given time step that represents the status of the search algorithm (e.g. best
in the population in a given iteration, incumbent solution for single point
meta-heuristics).

Location. A non-empty subset of solutions that results from a predefined coars-
ening of the search space.

Trajectory. Given a sequence of representative solutions in the order in which
they are encountered during the search process, a search trajectory is defined
as a sequence of locations formed by replacing each solution with its corre-
sponding location.

Nodes (N). The set of locations in a search trajectory of the search process being
modeled.

Edges (E). Directed, connecting two consecutive nodes in the search trajectory.
Edges are weighted with the number of times a transition between two given
nodes occurred during the process of sampling and constructing the STN.

STN. Directed graph STN = (N, E), with nodes N and edges E as defined
above.

5.2 The Proposed STN Models

We propose three models with increasing coarsening, that is, with nodes grouping
an increasing number of candidate solutions, in order to visualise the large and
extremely neutral LGP search space under study.

1. Genotype STN. The locations (nodes) are unique genotypes in the search
space, and edges represent transitions between genotypes.

2. Genotype-Phenotype STN. The locations (nodes) are phenotypes group-
ing connected components in the Genotype STN that share the same pheno-
type. Edges represent transitions between (compressed) nodes.

3. Phenotype STN. The locations (nodes) are unique phenotypes in the search
space, and edges represent consecutive transitions between phenotypes.
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Fig. 3. Visualisation of the Genotype and Genotype-Phenotype STN models for target
20, using a force-directed graph layout. (Color figure online)

For constructing the STN models, multiple runs of adaptive walks (described
in Sect.4) are performed, and the visited locations and their transitions are
aggregated into a single graph model. Notice that some locations and transitions
may appear multiple times during the sampling process. However, the graph
model retains as nodes each unique location, and as edges each unique transition
between visited locations. Counters are maintained as attributes of the graph,
indicating the frequency of occurrence of each (unique) node and edge.

5.3 Network Visualisation

Visualisation is a powerful and aesthetically inspiring way of appreciating net-
work structure, which can offer insights not easily captured by network metrics
alone. Node-edge diagrams are the most familiar form of network visualisation,
where nodes are assigned to points in the two-dimensional Euclidean space and
edges connect adjacent nodes by lines or curves. Nodes and edges can be deco-
rated with visual properties such as size, color and shape to highlight relevant
characteristics.

To illustrate our proposed STN models, we conduct a preliminary experiment
using phenotype target 20 (medium difficulty), with three runs and 50 steps
for the adaptive walks. Each run starts from a randomly generated genotype
that has phenotype 235. Figures3 and 4 illustrate the STN models. Our STN
visualisations use node colors to identify four types of nodes: (1) neutral nodes,
whose adjacent outgoing node has the same fitness, (2) portals, which link to a
node with improved fitness, (3) target nodes, which have the required phenotype,
and (4) (for the phenotype STNs only), we differentiate portal nodes with a direct
link to the target. The shape of nodes identifies three positions in the search
trajectories: (1) begin of trajectories, (2) end of trajectories, (3) intermediate
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Fig. 4. Visualisation of the Phenotype STN model for target 20, using a force-directed
graph layout (left) and a grid layout with fitness in the y coordinate. (Color figure
online)

locations in the trajectories. Node labels indicate phenotype, while node sizes
and edge darkness are proportional to their sampling frequency.

On the genotype STN (left plot) in Fig. 3 we can observe the three trajecto-
ries corresponding to the three adaptive walks conducted. The trajectories are
long (remember walks have 50 steps in this experiment) and do not overlap,
that is, they all visit different genotypes. Two of the trajectories reach the tar-
get (phenotype 20) while one of them ends in a different phenotype. To avoid
a cluttered image, the genotype STN plot shows the node labels for portal and
target nodes only. Notice the long chains of neutral nodes (dark gray) before
finding a portal (blue nodes) to improving fitness, also several different geno-
types in red correspond to the target phenotype. The genotype-phenotype STN
(right plot) shows shorter trajectories as expected as nodes now represent sub-
networks joining connected genotypes with the same phenotype. Still, the three
trajectories do not have overlapping nodes, indicating that the three walks visit
different regions of the search space. Interestingly, there are still long chains of
neutral moves (dark gray nodes), especially visible in the middle trajectory; we
can see how the trajectory enters in and out of phenotypes 0 and 80, before
finding a portal to phenotype 84.

A key aspect of network visualisation is the graph-layout, which accounts
for the positions of nodes in the 2D Euclidean space. Graphs are mathematical
objects, they do not have a unique visual representation. Many graph-layout
algorithms have been proposed. Force-directed layout algorithms [8], are based
on physical analogies defining attracting and repelling forces among nodes. They
strive to satisfy generally accepted aesthetic criteria such as an even distribution
of nodes on the plane, minimizing edge crossings, and keeping a similar edge
lengths. We use force-directed layouts for visualizing the STNs models in Figs. 3
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and 4 (left plot). For the phenotype STNs, we also introduce a layout that takes
advantage of the fitness values. The idea is to use the fitness values as the nodes’
y coordinates, while the x coordinates are placed as a simple grid (Figs.4 and
5), where nodes are centered according to the number of nodes per fitness level.
These plots allow us to appreciate the progression of the search trajectories
towards lower (better) fitness values, as well as the amount of neutrality present
in the search space.

Our graph visualisations were produced using the igraph and ggraph packages
of the R programming language. The phenotype STN model seen in Fig.4 is
more compact, having fewer nodes and edges as compared the the genotype and
genotype-phenotype STN models. Most importantly, the phenotype STN model
shows search overlaps across the different trajectories. That is, there are nodes
that have more than one incoming edge, they are hubs, indicating locations that
attract the search process. For the remainder of our analyses, we decided to
use the phenotype STN model with the fitness-based graph layout. We argue
that this combination has a greater potential to reveal interesting aspects of the
search dynamic, as it allows the observation of locations of the search space where
the process converges. The other models are however interesting to appreciate
additional details.

5.4 Comparing Three Targets with Increasing Difficulty

As described in Sect. 4, for adaptive walks we set three targets with increasing
difficulties (240: easy; 20: medium; 30: hard) and two search scenarios (fixed start
and random start). Figure 5 shows the phenotype STNs for the six configurations.
The nodes and edges are as defined in Sect. 5, the fitness-based graph layout is
used, and the arrow heads as well as the node labels are omitted to keep the
images less cluttered. Notice that the edges are either descending to lower fitness
levels or neutral at the same fitness levels. The neutral edges are visualised as
curves where the edges above point to the left and the edges below point to the
right.

Search proceeds through hops, indicated by links of different darkness sym-
bolizing how often they were traversed during the sampling process. The target
node (red triangle at the bottom of each graph) is reached via different search
pathways. The size of nodes is proportional to how many times it was visited
during the adaptive walks, so large nodes represent locations that attract the
search process. For the medium and hard targets (phenotypes 20 and 30), many
search trajectories do not reach the target, they end at phenotypes with Ham-
ming distance 1, i.e. close to the target (visualised by large pink triangles at
fitness level 1).

It is interesting to observe that the varying size of nodes is more pronounced
for more difficult targets, signalling that transitions have become more heteroge-
neous at those levels. Clearly, the landscape becomes more difficult to navigate
closer to a difficult target and the number of one-step mutant neighbors to a
target is smaller than for an easy target.
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Fig. 5. Phenotype STNs when searching for target phenotypes of different difficulty
(240: easy; 20: medium; 30: hard). The plots aggregate 100 trajectories, which start
from either a fixed phenotype (left plots) or a random phenotype (right plots). The
target node (red triangle at the bottom of each graph) is reached via different search
pathways. The size of nodes and the darkness of edges indicate their sampling frequency.
Arrow heads and node labels are omitted to simplify the images. (Color figure online)

We can see that most phenotypes are portals (blue nodes) offering the possi-
bility of jumping to a lower level fitness, but clearly, many neutral moves happen
on the way to the target, at each fitness level.

The graph layout reflects the structure of the search space - most phenotypes
are located at around half Hamming distance to the target, that is at fitness levels
3, 4 and 5. The square node at the top of the left plots reflects the fact that
these trajectories start with a fixed phenotype, while the bottom triangle in all
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Fig. 6. Fitness changes for target 30 fixed start runs, with phenotype redundancy (A)
and Kolmogorov complexity (B) marked by color. Only non-neutral mutations that
improve fitness are shown as edges. Nodes are labeled with numbers representing their
phenotypes. Shapes stand for different positions in a search. Size of a node indicates
frequency of visit.

plots reflects that the target was found. Notice that the size of the red triangle
is the largest for the easy target 240, and then gradually decreases in size for
targets 20 and 30. This makes sense as the harder the target the less frequently
it is reached by the search process within 2,000 steps.

6 Discussion

We now want to connect the observations from these visualisations with the com-
plexity considerations mentioned in Sect.3. We focus first on target 30, shown
in the last row of Fig. 5.

We are interested in more details of the search, especially given the hetero-
geneity at the end of the search, close to the target. Table 1 shows the phenotypes
closest to the target (one-bit mutants) found by the searchers. In Fig. 6, we look
at the frequency of fitness-changing jumps from phenotype to phenotype in fixed
start runs. We label each node with the phenotype it stands for, with a side by
side comparison of nodes color-marked by redundancy (A) and complexity (B).
In this figure we have removed the neutral edges to declutter the images.

We can see that their size strongly correlates with both their redundancy
(positively) and with their complexity (negatively). Recall that larger node size
indicates more frequent visits by searchers in the process of looking for the target.
The exponential relationship indicated by Eq.1 seems to bear out: Searchers
are much more likely to pass through low complexity/high redundancy nodes
— in this case phenotypes 14 and 31 — than through the other one-bit mutant
neighbors found, 26, 28, 62 or 94.

We can extend this analysis to the mutants of the target with two-bit phe-
notypic distances as Fig.6 shows all fitness changing moves of searchers for
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Table 1. Mutant phenotypes with one-bit distance from target phenotype 30. We char-
acterize the size based on Fig. 5, last row and list their redundancy and K-complexity.

Phenotype Node Size Node Size Redundancy | Kolmogorov
Number (fixed start) (random start) Complexity
14 Large Large 1.3 x 10° 2
22 N/A Small 0 8
26 Small Small 1.2 x 10° 4
28 Small Small 1.2 x 10° 4
31 Large Large 1.4 x 10° 2
62 Small Small 2.9 x 10° 4
94 Small Small 2.9 x 10° 4

Table 2. Selected two-bit mutants of phenotype 30: One-bit mutants to the most
frequent 1-bit neighbors 14 and 31 of the target node 30.

Phenotype | Redundancy | Kolmogorov | Phenotype | Redundancy | Kolmogorov

(to 14) Complexity | (to 31) Complexity
6 3.0 x 10® 4 15 4.7 x 107 1
10 7.1 x 10° 2 23 5.5 x 10® 4
12 7.1 x 10° 2 27 1.2 x 10* 4
15 4.7 x 107 1 29 1.2 x 10* 4
46 4.6 x 10* 3 63 2.9 x 10® 1
78 4.6 x 10* 3 95 2.9 x 108 1
142 2.0 x 103 4 159 3.1 x 10® 4

target 30. If we focus on two-bit mutants (fitness 2), we can see that most
transitions happen from the highly redundant phenotypes, first 15, followed by
transitions from 63 and 95. Most of them transition to the highly redundant phe-
notypes 14 and 31 on fitness level 1. We can examine in more detail the redun-
dancy/complexity of two-bit mutants. Due to the quick combinatorial explosion,
we have done that in Table 2 only for the two most representative nodes of fit-
ness distance 1, phenotypes 14 and 31. Nodes 15, 63 and 95 stand out as the
most redundant nodes. They thus provide most avenues to better fitness, with
phenotypes 10 and 12 doing the same to a somewhat lesser extent.

Thus we can explain the dynamics of the search process post-facto by looking
at the redundancy/complexity of phenotypes in the neighborhood of the target.
We do not need to know many details of the search, except what constitutes the
neighborhood of a node, to figure out where most searchers will come from.

Both, redundancy and complexity, require — of course — measurements to
allow this explanation. While they are different (redundancy can be measured
for all nodes in parallel), it might be argued that one has to have a clear picture
of the fitness landscape for this analysis. This is correct for a measurement of
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Fig. 7. Fitness changes for target 20 with fixed starting phenotype 221 (the square).
Fitness-improving search trajectories for 100 runs with 2,000 steps, all going through
low-complexity phenotypes to the target from the starting point. Phenotype complexity
is marked by color.

redundancy, but the relationship with complexity is not based on anything other
than the structure of the phenotypes themselves. Thus, in principle, it can be
performed completely separate from the search. Evolution is doing here nothing
else than seeking out the most probable pathways to the target. In other words,
we can not only explain the search dynamics post-facto, but we can try to predict,
at least approximately, a search dynamic before it happens. This is in line with
what other research groups have found in their respective systems [3,6,14].
Suppose we start at phenotype 221 to reach target 20 (see Fig. 7). The one-
bit neighbors of 221 are the set: {93,157,205,213,217,220,223,253}. Some of
those nodes are mutants pointing in the wrong direction of fitness, and can be
removed from this list because selection would not allow them. That leaves us
with {93,157,213,217,220}. However, a brief inspection of the redundancies of
these phenotypes tells us that they are considerably less redundant (1.3 x 108
maximum for 213) than the phenotypes of the neutral network, which has nodes
of redundancies of up to 4.7 x 107. As a result, the nodes {15,51, 204,240} are
the most likely nodes to be accessed from 221 on the neutral level and more
likely than the one-bit mutations. In fact, we can see that only phenotype 220
of the one-bit mutants appears to be accessed. There is one interesting twist
here: Phenotype 0, being the most likely phenotype in the whole network, is a
two-bit mutation from 221 in the right direction. We can see that it is accessed
more frequently than other nodes, both directly and indirectly from 221. Also,
phenotype 48, with an redundancy of 7.1 x 10° is accessed, again a two-bit
mutation from 221. The figure shows that both nodes have lower complexity
than 221 which we know is correlated with their redundancy. If we recall Fig. 2A,
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statistics shows that two-bit mutations are actually more frequent than one-bit
mutations in this system, followed by four-bit mutations. It seems that the step
size is less of a concern for the searchers than the redundancy of phenotypes!

We note in passing that there are many more pathways to a better fitness
solution when not only the rearrangement of instructions is possible (as would be
the case in a transition from a program with six effective instructions) but when
also an increase in the number of effective instructions were possible (as would
be the case in a transition from a program with a smaller number of effective
instructions).

Why is there such a strong correlation between phenotypic redundancy and
K-complexity? This is an important question since - as we have seen - redun-
dancy has such an influence on the trajectories taken by adaptive searchers in
this fitness landscape. The answer has to do with the hard length limit in our
system, which allows a maximum length of programs of six instructions. Suppose
a phenotype has a K-complexity of 2, thus is not using the other 4 instructions
theoretically available, they are rendered non-effective. A brief combinatorial
consideration allows us to estimate that there are maximally 200* = 1.6 x 10°
programs with four neutral instructions, assuming all calculation registers are
used as a destination. This will be an upper limit, of course, as many of those
might well not be neutral, either by virtue of their order or because of their inter-
nal composition. Nevertheless, it is a huge number of neutral variations of the
same program. Compare that to an individual with five out of the six instructions
being effective. There only is one instruction left that can be neutral, leaving a
maximum of 200 neutral variations for this program.!

In summary, the reason why K-complexity is negatively correlated with
redundancy of programs and thus phenotypes is the combinatorics in the neu-
tral space! While this presupposes a hard limit on the total length of programs
(effective plus non-effective code), a soft limit can allow similar effects to play
out, like in RNA. It will probably not be as clearly visible, but should still be
expected to emerge in such systems. These considerations are not restricted to
the particular system examined here: The combinatorics of neutral spaces deter-
mines the redundancy of phenotypes and thus to a substantial degree the search
trajectories in length-changing evolutionary systems in general.
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