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Abstract. An essential characteristic of brains in intelligent organisms
is their spatial organization, in which different parts of the brain are
responsible for solving different classes of problems. Inspired by this con-
cept, we introduce Spatial Genetic Programming (SGP) - a new GP
paradigm in which Linear Genetic Programming (LGP) programs, rep-
resented as graph nodes, are spread in a 2D space. Each individual model
is represented as a graph and the execution order of these programs is
determined by the network of interactions between them. SGP considers
space as a first-order effect to optimize which aids with determining the
suitable order of execution of LGP programs to solve given problems and
causes spatial dynamics to appear in the system. RetCons are internal
SGP operators which enhance the evolution of conditional pathways in
SGP model structures. To demonstrate the effectiveness of SGP, we have
compared its performance and internal dynamics with LGP and TreeGP
for a diverse range of problems, most of which require decision making.
Our results indicate that SGP, due to its unique spatial organization,
outperforms the other methods and solves a wide range of problems. We
also carry out an analysis of the spatial properties of SGP individuals.

Keywords: Genetic Programming · Spatial Computing · Evolutionary
Computation

1 Introduction

Even though evolutionary algorithms have proven to be applicable for solving a
wide range of computationally represented problems, they often are abstractions
of their natural counterparts and do not account for the impactful dimensions
of time and space in nature. Spatial Computing [7] is a relatively new field
in computer science that states the distribution of computational elements in
space can enhance the performance and the feasibility of computation. It further
argues that it is more important to include space in our computational models as
our understanding of natural computing systems and coupling of computational
c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
G. Pappa et al. (Eds.): EuroGP 2023, LNCS 13986, pp. 260–275, 2023.
https://doi.org/10.1007/978-3-031-29573-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-29573-7_17&domain=pdf
https://doi.org/10.1007/978-3-031-29573-7_17


Spatial Genetic Programming 261

models and physical elements increases. Additionally, Spatial Computing offers
a more natural approach to parallel computation. Parallelism is an essential
part of natural systems where elements, be it particles in physics, molecules in
chemistry, or individual agents in biology, are all bound by space and perform
their functions in time simultaneously. The spatial properties of these elements
play a critical role in the performance of these systems.

The primary contribution of this paper is introducing Spatial Genetic Pro-
gramming (SGP), a Genetic Programming (GP) system controlled by a 2D space
that evolves Linear Genetic Programming (LGP) [4] programs. An SGP model
consists of one or more LGP programs which are represented as graph nodes
located in a 2D space. In SGP, space plays an integral role in determining the
order of execution of LGP programs. In each individual, these nodes form a
network of interactions, responsible for regulating the order of execution of the
LGP programs based on their spatial properties and the internal dynamics of
the system. If necessary, the flexible representation of SGP allows for controlling
the evolution of iterative behavior to develop more compact models. To show
the effectiveness of the proposed system, we utilize SGP to solve different classes
of problems and compare it to two common GP paradigms.

2 Related Literature

The evolution of the SGP models consists of two main parts: evolving the struc-
tural properties of the system (i.e., the graphs representing the network of inter-
actions between LGP program nodes) and the instructions of the LGP programs.

Various works in the literature focus on evolving graphs capable of repre-
senting solutions to computational problems. Tree GP (TGP) [15] uses graph
representation of tree data structures. As the most common type of GP, TGP
has been previously used for various types of applications such as transportation
[24], symbolic regression [1,3], image processing [22], classification [2] and oth-
ers. Although the tree data structure is simple for understanding and evolving
solutions, traversing these structures is not a computationally trivial task and
often causes bloat problems.

Cartesian Genetic Programming (CGP) [16] is another mainstream graph-
evolving GP that has shown good performance for solving computational prob-
lems. CGP uses integer values as genes representing nodes in a graph, their
functions, links between the nodes, and how inputs and outputs are connected
to these nodes. Compared to TGP, CGP is computationally less expensive, and
therefore its evaluation time is faster and is less prone to bloat [17]. An interest-
ing feature of CGP is its ability to encode and control computational systems
similar to Artificial Neural Networks [14,23]. CGP also has various applications
in agent control [10], image processing [9] and circuit design [12]. Similar to
CGP, in SGP, the computational cost of creating network graphs are reduced
by a mechanism that controls the system with a 2D grid.

It is possible to evolve GP models that do not rely directly on graph rep-
resentations. LGP is among these types of GP. This paradigm is represented
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as a series of instructions, usually in the form of imperative programming lan-
guage or machine language that execute sequentially. LGP supports branching
operators, which allow the execution pointer to jump between instructions. One
particular weakness of LGP is correctly determining the number of internal reg-
isters, which, if chosen wrong, will drastically undermine the performance of the
solutions [19]. On the other hand, LGP programs are quite fast because they can
be designed to run on the processor directly. This strength was the reason for
choosing LGP programs to be a part of the SGP system. Another common GP
variant that does not use graphs as their representation is Stack-based Genetic
Programming. In such GP, fundamentally similar stack-based programming lan-
guages are responsible for obtaining operands for the program operators from a
data stack and pushing the results of the operations to these stacks. Depending
on the designed rules, multiple data stacks for different data types might exist.
Generally, Stack-based Genetic Programming models are faster than tree struc-
tures, and it is possible to create bloat-free mutations and crossover mechanisms.
Push GP [21] is one of the most famous stack-based systems and has been pre-
viously used for various applications such as automatic code simplification [11]
and Python code synthesis [20].

Tangled Programming Graphs (TPG)s [13] are among the systems that
evolve both computer programs and the relationship between them in the form of
a graph. This system has been previously used for solving Visual Reinforcement
Learning problems such as Atari games and has produced comparable results
to deep learning algorithms. TPGs are one of the closest works in the literature
to the idea of SGP since it is constructed based on mechanisms that control
the execution flow of programs until a terminal state is reached; however, there
are some key differences between the two systems. In SGP, the execution order
is determined by minimizing a traverse cost value between the source program
and every other program in the system. Furthermore, SGP supports iterative
behaviors by allowing programs to execute more than once. In contrast, TPGs
use a bidding system among teams of programs to determine the pathways taken
to execute programs. SGP is controlled by a 2D space which makes the spatial
properties of the nodes important for selecting the following programs to exe-
cute. Finally, unlike TPGs, and much like more conventional GP systems, in
SGP a population of mutually exclusive individuals is used. In the next section,
we’ll be exploring the implementation of the SGP system in more detail.

3 Spatial Genetic Programming

SGP models are program nodes spread in a 2D coordinate system. The aim of the
SGP interpreter is to choose the order of program executions until a termination
condition is met while minimizing the traversing cost between programs. A cost
function is used to calculate the cost of trajecting from the source coordinate
(starting from (0, 0) as null program) to every other program node. In other
words, in each step, a weighted network of interactions between all the program
nodes is made in which the weights are the cost of traversing from a source
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Fig. 1. Model representation and interpretation steps for an SGP model with 4 pro-
grams. a) Different contributions to the cost function. b) Step 1: P1 is selected since it
has the lowest traverse cost from the starting point. Red values indicate cost c) Step
2: P1 is the source point and P0 with the lowest traverse cost is selected. d) Step 3: P0
is the starting point and P2 is selected.

coordinate to a destination program node. These weights alter as the source
coordinate and the internal state of the system change.

The program with the lowest traverse cost is then selected to execute prior
to the others. If termination conditions are not met, the same process repeats.
The position of the most recently executed program is then set to be the source
coordinate to determine the next program to be executed. In Fig. 1a, an overview
of an SGP model is illustrated in its initial conditions. Each node represents a
program and is labeled with the program name. Each program contains instruc-
tions that manipulate internal memory registers shared between all programs
and outputs a single value corresponding to an internal register, an input, or
a constant value. In step 1 (Fig. 1b), the cost of traversing from (0, 0) to every
other node is calculated (details of which can be found in the next section). Since
P1 has the lowest cost, it is selected for execution. In the next step (Fig. 1c), P1
is the source point for calculating the costs to every other node, and therefore P0
is chosen for execution. The same principle continues until a termination condi-
tion is reached. Algorithm 1 (see supplementary material [18]) shares the details
of how SGP selects the next program in line for execution. All of the individual
programs are stored in a list. A loop on the program list is performed to calculate
the cost of traveling to each program. Safeguards for protecting against infinite
cost values and revisiting a node in case of loop-free configuration are in place
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to prevent invalid selections. The program with the lowest traverse cost is stored
in the next program variable and is the final program’s output.

3.1 The Cost Function

The cost function considers the spatial and internal states of the system to
calculate the cost of traversing to a given program node based on a source
coordinate. SGP operates in two main modes: Spatial and Programmatical, which
will be described in turn.

In Spatial mode, the distance between the source coordinate and the target
node and the target program’s length are calculated and normalized. Program
length is defined as the number of instructions in that program, meaning that
programs with a higher number of instructions have a slightly lower chance of
being selected. The cost in this mode is calculated using the following equation:

cost =
Ltarget

Lmax
+

distance(source, target)
Dmax

In which L denotes program length, D() is an internal function that returns
the Euclidean distance between two coordinates, and Dmax denotes the maxi-
mum distance between two nodes of SGP. For an evolved SGP model in Spatial
mode, normalized length and distance between every two nodes are constant,
meaning that the order of execution of the programs does not change, forming
a static solution graph that is not affected by input values.

In the Programmatical mode, other than the metrics considered in the Spatial
mode, the output variable of the target program is also taken into account.
Therefore, calculating the cost in this mode follows the following equation:

cost =
Ltarget

Lmax
+

D(source, target)
Dmax

+ R

In which R denotes the current value of the parameter set to be the output
of the target LGP program. Each LGP program terminates with a return state-
ment that outputs a numerical value for R. The rest of the variables are the same
as the ones in the Spatial mode. The current value of R cannot be pre-computed
and at every step highly depends on the previously executed programs and how
the internal registers have been manipulated prior to the cost calculation step.
The impact of program length and the distance between nodes are normalized;
however, the value of R is not bounded to any range and depends on the prob-
lem inputs. This design decision might increase the impact of R on selecting the
next program significantly; however, the cost function is configurable and can
be modified to normalize the scale of R. It is prevalent for models evolved in
this mode to take different execution routes with different sets of given inputs,
forming dynamic solution graphs. This feature enables the opportunity to evolve
localization in the system so that different sections of an SGP model respond to
different sets of stimuli, a known characteristic of the brain in natural organisms.
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3.2 Outputs, Termination Conditions and Model Execution

An imperative SGP system has four means of producing outputs. First is the
numeric value returned by the last executed SGP program. Second, SGP also
outputs the system’s internal state, which is all the register values (initially
set to 0) manipulated during the run-time of a model. Third, SGP operators
are allowed to manipulate an external file, a computational object, or a third-
party environment. Finally, it is possible to associate terminal programs with
discrete actions or outputs. In other words, if a terminal program is reached, the
action associated with that program is performed in the problem environment
ending the individual execution. Depending on the model inputs, a different final
program might get selected and thus produce a different action.

Multiple conditions can end the execution of a model. Each model program
has a chance to become a terminal node and end the execution. Suppose a
model does not have any terminal program. In that case, a limit equal to the
total number of programs in that model is set, breaking the execution if the
count of executed programs exceeds that limit. Execution also ends if there are
no more candidate programs or if the execution time exceeds a time threshold.
Algorithm 2 (see supplementary material [18]) shows the details of executing an
individual model.

Fig. 2. Crossover between two SGP models. Suppose (x, y) is the randomly chosen
point within r

2
distance of the center (0, 0). Programs within r

2
distance of (x, y) form

Si of parent A (red circle) and parent B (green circle), and the rest of the programs
form So (blue circle for parent A and purple circle for parent B). Offspring A is a
combination of the programs in Si of parent A and So of parent B and Offspring B is
a combination of the programs in Si of parent B and So of parent A.
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3.3 Evolution of Models and the Genetic Operators

Initially, a population of random SGP individual models is generated, in which
the number of programs in each model, their length, and the initial coordina-
tion of the nodes within an allowed 2D space are randomly chosen. Next, an
object pool of operators and operands is created from which the operator and
operand(s) of each statement or instruction are randomly selected. If there is
no suitable operand for an operator, it will be removed from the selection pool.
Operator and operand objects are reusable and therefore do not add to the
computational cost of the system.

After evaluating models in each generation of the evolution, tournament
selection is applied to the population. The two best competitor models are
selected and have a chance to crossover to produce two offsprings or directly
make it to the next generation of models after mutation. If the crossover hap-
pens, a mutation with a chance is also applied to the two new offsprings.

The 2D space of the SGP models is bounded by a radius parameter r, meaning
that the program coordinates must be within r distance from (0, 0). A random
coordinate point within r

2 distance from (0, 0) is selected to be utilized while
performing crossover between two individual models. Let us denote the set of
programs within r

2 distance from the randomly chosen point of an individual with
Si and the set of programs outside that radius with So. Then, in the crossover
between parent A and B, every program in Si of parent A and So of parent
B form one offspring while the rest of the programs form the other offspring
(Fig. 2). There is no limit to the number of programs that are impacted by the
crossover operator.

After crossover, there is a chance for every program of each individual to
undergo mutation. SGP mutations can happen on a structural level, i.e., altering
a program location or switching a program type (input program to output or
vice versa), or on a statement level, i.e., altering the LGP programs. There are
three types of structural mutations. 1) A program’s coordination can change by
performing a random walk with a fixed random step size. 2) The program type
can alter from input to output or vice versa. 3) A program can be added or
removed from/to the system. These modifications, along with an LGP mutation
that targets the return value of the programs, are responsible for changing the
behavior of how the programs will be selected for execution. There are three types
of LGP mutations, which add statements to the program, delete a statement
from the program or modify an existing statement if possible. By default, these
mutations have an equal chance of occurring.

3.4 Conditional Return Statements

One of the abilities of SGP is to evolve rational pathways that change in response
to the problem inputs. Conditional operators such as the basic if statements can
help build a logic behind the return values of each program, forcing a different
order of execution when different input values are given to the system. By default,
however, SGP requires each program to have a final single return statement that



Spatial Genetic Programming 267

cannot be connected to any other operators, such as being tied to a conditional if
statement. Since allowing evolution to use a combination of conditional operators
and internal state values to evolve conditional pathways is not trivial, we come
up with the idea of replacing the normal return statements of the program with
a custom conditional operator called RetCon (stands for Return Conditions).
This operator forces a condition on the return statement in a way that if the
condition is true, an internal state value or a constant value will be returned.
Otherwise, another return value will be selected. The two return values could be
the same.

4 Experiments and Results

In this section, we apply SGP to a set of problems classified into two case studies
to analyze the behavior of the system by comparing different modes of otherwise
identical SGP setups with classical TGP and LGP. The TGP included in the
DEAP framework [8] and the same LGP system used for the SGP programs
were used to conduct the experiments. The use of RetCon in SGP facilitates the
evolution of conditional pathways, making SGP models well-suited for addressing
problems that require decision-making. The specific problem set for each case
study was selected due to the presence of a decision-making component.

4.1 Case Study: Classic Control Problems

OpenAI Gym [5] is a library of Reinforcement Learning problems in Python
which helps with the development and comparison of problem-solving algorithms
by providing a straightforward environment-to-algorithm API. In particular, we
tackled Cart Pole, Mountain Car, Pendulum and the Acrobat problems from the
Gym library; details of which can be found in [5].

Figure 3 shows the results for tackling the OpenAI Gym classic control prob-
lems. 50 replicate experiments with different random seed values were conducted
for each of the four problems. The median Fitness values over generations for
the best-evolved models of each replicate are illustrated. The shaded areas rep-
resent the 25 and the 75 quantiles, while the solid lines represent the median.
Three configurations of SGP are tested against these problems and are com-
pared with classical TGP and LGP. Prog refers to the Programmatical mode of
the system; Prog RetCon indicates the usage of conditional return statements in
the Programmatical mode, and Spatial refers to the Spatial mode. In the spa-
tial mode, the usage of RetCon operators does not make a difference since the
return statements of the programs do not change the execution order. All of the
experiments are run for 1000 generations; however, depending on the problem,
after a certain number of generations, the fitness values cease to change, and
therefore, a portion of the generations are selected to ease the analysis of the
results. Finally, even though all the classic control problems are deterministic,
the starting conditions are slightly randomized (e.g., the position of the car in
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the mountain car problem) to help the problem solvers find a generalized solu-
tion. For all of the experiments, if, assign, and basic math operators are used as
the function/operator set of LGP and SGP.

Fig. 3. The fitness over generations plot for solving the four classic control problems.
a) Fitness equals to the number of steps in which the pole is held in an upright position.
b) Fitness represents the car altitude at the end of each evaluation. c) Fitness equals to
the altitude of the free end of the Pendulum at the end of each evaluation. d) Fitness
indicates a -1 penalty for each step in which the free end has not passed the threshold
line.

To solve the Cart Pole problem, SGP is configured to use discrete outputs
in which each individual must consist of two terminal nodes, each associated
with an action of either accelerating the cart towards left or right. 3a shows the
results for solving the Cart Pole problem. SGP with RetCon and TGP solve this
problem in less than 20 generations. Programmatical settings without RetCon
also solve the problem. However, it takes more generations to solve, and the
shaded green area shows that it takes more time for all the individuals in all
the replicates to be able to solve this problem while all the individuals of the
replicates for the RetCon settings solve the problem in less than 30 generations.
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LGP also solves the problem but its performance is not as good as the rest of
the approaches The Spatial setting fails to solve the task over all generations
since, in this setting, the network inputs do not change the execution order of
the graph. In other words, the same discrete action is always taken; therefore,
constant fitness is achieved over generations.

Same as the Cart Pole problem, for the Mountain Car problem, SGP is con-
figured to use discrete outputs. As illustrated in Fig. 3b the RetCon outperforms
the other two configurations by solving the problem for all the replicates in
less than 50 generations. LGP performs slightly worse, solving the problem in
approximately 60 generations. The Programmatical setting without RetCon has
a cold start, but the replicates mostly solve the problem at around 450 gener-
ations. However, the difference between the fitness of the best models among
all the replicates varies greatly. The shaded orange area shows that there are
individuals in the TGP approach that solve the problem but the median results
are worse than the other approaches in 500 generations. Once again, the spatial
mode fails to solve the problem while producing a constant fitness.

The nature of the Pendulum problem is slightly different from the other
problems since it requires a continuous input indicating the amount of torque
applied. Unlike the other three problems, the Spatial configuration performs
comparably to the other approaches. TGP outperforms all other approaches;
however as shown in Fig. 3c fitness values of approximately 10−4 were achieved
by the best individuals of all the approaches showing almost an upright position
of the pendulum. The high fluctuation of the median line is due to the high
impact of the random starting position of the pendulum on the outcome of the
evaluation.

The final classic control problem tackled in this paper is the Acrobat problem.
As illustrated in Fig. 3d, SGP manages to solve the problem in both Program-
matical modes with or without RetCon in less than 5 generations and improves
its performance until 10 generations managing to reach the specified line in all
of the best models in about 60 steps. Like the other discrete output problems,
the Spatial mode drastically fails by only producing a constant output. TGP has
a slightly worse performance while LGP solves the problem in 40 generations.

4.2 Case Study: Custom Toy Problems

The custom Toy Problems is a custom library of three Reinforcement Learning
problems included with the SGP source code that can be briefly described as
the following (Fig. 4):

– The Adventure Problem: This problem is inspired by an Atari 2600 game
called Adventure [6]

– The Foraging Problem: This is a famous classic Artificial Life problem in
which an agent has to gather all the food spread in a 2D grid. The tiles are
often blocked by obstacles or walls (Fig. 4b).
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– The Obstacle Avoidance Problem: As illustrated in Fig. 4c a car agent
is driving on a road that is occasionally blocked by randomly appearing road-
blocks. The car agent has to avoid hitting the roadblocks for a specified
number of time steps.

Fig. 4. Three different toy problems. Icons used in the images are from: https://www.
flaticon.com/

Figure 5 depicts the results produced for solving the three Toy Problems for
50 replicates. The only non-deterministic problem is Obstacle Avoidance since
the roadblocks spawn randomly.

In the adventure problem, the observation consists of 6 integer inputs corre-
sponding to the agent’s vision cone and a single bit corresponding to whether the
agent has picked the treasure or not. The agent’s vision cone shows two three-tile
rows in front of the agent. The problem’s action space consists of three discrete
actions: moving one tile ahead, turning left, and turning right. All the entities in
the problem grid and the empty tiles are coded with unique integer values and
are visible to the agent. The agent can move to the treasure tile to automatically
pick up the treasure. A small reward of 0.01 is given to the agents that move.
The computational models are responsible for giving an agent instructions to
solve the task through actions, and the individual’s fitness equals the score the
controlled agent achieves. A significant score of 10 is given to the agents that
manage to grab the treasure, and a very significant score of 20 is given to the
agents that reach the final destination while carrying the treasure. The simula-
tion ends after 100 time steps or when the agent reaches the final destination or
falls into a trap. The score is returned to the SGP evolver module as the control-
ling model’s fitness value. Figure 5a depicts the results produced for solving the
Adventure problem over 500 generations. As expected, the Spatial configuration
fails to solve a task with discrete output. The programmatical settings manage
to evolve agents capable of picking up the treasure; however, they fail to reach
the final destination. The RetCon settings, however, solve the problem entirely
in less than 250 generations. TGP slightly outperforms the Prog settings since
in later generations, the best TGP individuals fully solve the problem. LGP on
the other hand, only manages to find the treasure in the later generations but
fails to completely solve the problem and the median line always stays low.

The Foraging problem has an observation space consisting of 6 inputs corre-
sponding to the agent’s vision cone. Like the adventure problem, the vision cone
includes the two three-tile rows in front of the agent. The action space of the

https://www.flaticon.com/
https://www.flaticon.com/
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Fig. 5. The fitness over generations plot for solving the three toy problems. a) Fitness
indicates the score of the agent at the end of evaluation. b) Fitness is equal to the
number of food gathered by the agent c) Fitness is the total number of time steps that
the agent has survived the environment

problem is the same as the Adventure problem consisting of three actions: mov-
ing, turning left, and right. A total of 20 food tiles are available for the agents to
take, which are often placed at the end of a maze-like pattern in which the agent
will have to return to the path taken to reach the food to get out (e.g., top left
food in Fig. 4b). The simulation is run for 200 time steps while no reward is con-
sidered for moving. Compared to other problems, this is a more challenging task
to solve since the maze-like patterns make it quite difficult to gather all the food
in the allowed time steps. Figure 5b shows the result for solving this problem.
Same as most cases, the Programmatical settings with RetCon outperforms the
other two modes while being able to gather as much as 14 food at best among all
the replicates. The changes in the median line seem to show evolution after 700
generations. Perhaps, running this task for a more extended period would help
the system completely solve the problem. The programmatical SGP needs quite
more time to evolve conditional logic to solve these types of problems only using
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a basic if statement, and the spatial mode fails to solve the task. The perfor-
mance of TGP on this scenario is slightly worse than the RetCon settings while
LGP only manages to perform better than the spatial mode after approximately
400 generations.

The observation space in the obstacle avoidance problem consists of 12 integer
values corresponding to the vision cone of the car agent. This vision cone includes
four three-tile rows in front of the agent. The action space of the problem is three
discrete actions: moving left and right and doing nothing. To achieve a perfect
score, the car agent must avoid all the roadblocks for 100 time steps. The number
of time steps before the car agent hits a roadblock is the fitness of the controlling
SGP model. Figure 5c shows the results produced for solving this task. Both SGP
Programmatical configurations with or without RetCon manage to avoid all the
obstacles in less than 20 generations. At the same time, it takes a bit longer
for all the replicates to completely solve the problem for the setting without
RetCon. The fluctuations in the case of Spatial mode are due to the randomness
of the roadblock patterns selected to appear in the far front of the car. TGP
and LGP do not achieve good fitness levels on this problem but outperform the
spatial mode.

4.3 Impact of a Spatial Crossover on the Evolution of Programs

To check whether the mechanisms in the system impact the spatial properties
of the SGP models, an experiment was conducted with a different crossover
algorithm called the Spatial Crossover. This crossover is quite similar to the
normal crossover used in SGP however, instead of choosing a random circular
area to form Si, programs that are located in the top right quadrant of the 2D
space (x-coord and y-coord greater than or equal to 0) are selected to form Si of
the parent individuals. In this approach, always the same spatial portion of the
individuals swap to form offspring. We tracked the position of all the individuals’
programs (not just the best) in all the 50 replicates. We summarized the results
in Table 1. SC stands for Spatial Crossover, NC stands for Normal Crossover and
P1 and P2 refer to two test arbitrary problems. The 2D space of each individual is
divided into four quadrants starting from the top right (Q1) and going clockwise
to the top left (Q4). Results show that in the case of using the Spatial Crossover,
programs tend to move out of the Q1 area in which the crossover is happening.
This behavior is reflected by the significantly lower percentage of appearance
of programs in Q1 compared to the case where the normal crossover is being
applied.
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Table 1. Position of the final programs of all individuals in the latest generation using
Normal Crossover (NC) and Spatial Crossover (SC) for two test problems.

Quadrant
RetCon P1

(NC)

RetCon P1

(SC)

RetCon P2

(NC)

RetCon P2

(SC)

Spatial P1

(NC)

Spatial P1

(SC)

Spatial P2

(NC)

Spatial P2

(SC)

Q1 25.69% 12.63% 26.23% 10.98% 27.51% 8.98% 34.17% 6.8%

Q2 22.09% 30.21% 22.84% 27.07% 21.68% 29.78% 26.48% 28.58%

Q3 27.87% 27.72% 23.79% 29.32% 21.66% 30.38% 17.68% 33.52%

Q4 24.34% 29.64% 27.14% 32.63% 29.14% 30.87% 21.67% 31.1%

Total 38310 40030 27.14% 38493 38566 41742 38059 41597

5 Conclusion

This paper introduced a new GP paradigm which accounts for the dimension
of space as a first-order effect to optimize. SGP works in two modes of Spatial
and Programmatical, which bring unique characteristics to the system, allow-
ing it to evolve static and dynamic graphs, respectively. The impact of these
two operation modes was tested against two classes of problems while introduc-
ing conditional return statements. SGP was tested against four classic Control
Problems of OpenAI Gym library. RetCon’s ability to quickly evolve conditional
statements to choose the right pathway of the graph by manipulating the weights
of the underlying regulatory network was shown during these experiments. For
all the cases except the Pendulum problem, RetCon quickly solved the control
tasks. The Pendulum problem required less decision-making and more accuracy
on the produced continuous outputs (amount of torque). The Programmatical
mode without RetCon was able to solve the control problems as well. However,
it takes more time for evolution to evolve the factual conditional statements in
the LGP programs to reflect the same decision-making structures. The Spatial
mode fails in producing discrete outputs while showing promise in the Pendulum
problem that requires continuous outputs. This is because of the ability of the
Spatial mode to refrain from using too many conditional statements and rely
more on the power of LGP to produce continuous outputs. SGP was compared
to two other approaches of TGP and LGP. Except for the Pendulum task which
had more of a continuous nature, SGP outperformed the other two approaches
in all cases.

Three custom Toy Problems were introduced in this paper, on which SGP was
tested. These problems had a larger observation space compared to the classic
control problems. Comparing the three tested configurations, SGP produced a
similar result to the Control Problems, with RetCon outperforming the two
other configurations. The more complex observation space did not significantly
impact the performance of SGP showing better performance than TGP and
LGP. The Foraging problem was not completely solved; however, improvements
in the fitness values showed the possibility of solving this problem if run for an
extended period.

A shortcoming of SGP is not having enough control to create a balance in
evolving structural elements and LGP programs simultaneously. Perhaps, the
utilization of parallel island models that decouple focusing on the evolution of



274 I. Miralavy and W. Banzhaf

the structural elements and the SGP programs from the main population while
interacting with it now and then could be helpful in this scenario to achieve bet-
ter results. Furthermore, a method for optimizing the system hyper-parameters
during evolution could also be among the future directions of this work. As of
now, the cost function used in the system adds the normalized distance and
length to the return value of the SGP programs. This reduces the impact of dis-
tance and length compared to the possible return values. Perhaps a different cost
function can result in more exciting results. Finally, to show the effectiveness of
SGP, it is necessary to apply it to more realistic and complex problems and to
compare it with state of the art problem solvers. Currently, we are working on
including more evaluations to the proposed work to prepare it for a future jour-
nal submission. We aim to perform systematic analysis on the spatial properties
of SGP and how the spatial properties are responsible for achieving the system’s
performance level and to compare it with TPGs and CGPs.

Code Availability and Supplemental Materials

SGP code in Python, description of main SGP algorithms, practical examples
and tutorials for applying SGP and replicating the results of this article can be
found in:

https://github.com/elemenohpi/EuroGP-SGP
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