
Chapter 14
It’s Time to Revisit the Use of FPGAs for
Genetic Programming

Christopher Crary, Greg Stitt, Bogdan Burlacu, and Wolfgang Banzhaf

Abstract In the past, field-programmable gate arrays (FPGAs) have had some
notable successes when employed for Boolean and fixed-point genetic program-
ming (GP) systems, but themore commonfloating-point representationswere largely
off limits, due to a general lack of efficient device support. However, recent work
suggests that for both the training and inference phases of floating-point-based
GP, contemporary FPGA technologies may enable significant performance and
energy improvements—potentially multiple orders of magnitude—when compared
to general-purpose CPU/GPU devices. In this chapter, we highlight the potential
advantages and challenges of using FPGAs for GP systems, and we showcase how
novel algorithmic considerations likely need to be made in order to extract the most
benefits from specialized hardware. Primarily, we consider tree-based GP, although
we include suggestions for other program representations. Overall, we conclude that
the GP community should earnestly revisit the use of FPGA devices, especially the
tailoring of state-of-the-art algorithms to FPGAs, since valuable enhancements may
be realized. Most notably, FPGAs may allow for faster and/or less costly GP runs,
in which case it may also be possible for better solutions to be found when allowing
an FPGA to consume the same amount of runtime/energy as another platform.

C. Crary (B) · G. Stitt
Department of Electrical and Computer Engineering, University of Florida, Gainesville, FL, USA
e-mail: ccrary@ufl.edu

G. Stitt
e-mail: gstitt@ufl.edu

B. Burlacu
Heuristic and Evolutionary Algorithms Laboratory, University of Applied Sciences Upper Austria,
Hagenberg, Upper Austria, Austria
e-mail: bogdan.burlacu@fh-ooe.at

W. Banzhaf
Department of Computer Science and Engineering, Michigan State University, East Lansing, MI,
USA
e-mail: banzhafw@msu.edu

© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025
S. M. Winkler et al. (eds.), Genetic Programming Theory and Practice XXI, Genetic and
Evolutionary Computation, https://doi.org/10.1007/978-981-96-0077-9_14

275

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-96-0077-9_14&domain=pdf
mailto:ccrary@ufl.edu
mailto:gstitt@ufl.edu
mailto:bogdan.burlacu@fh-ooe.at
mailto:banzhafw@msu.edu
https://doi.org/10.1007/978-981-96-0077-9_14

276 C. Crary et al.

14.1 Introduction

Recent trends in machine learning highlight the need for energy-efficient computa-
tion, during both training and inference [25, 69]. For example, despite widespread
success, neural networks often consume prohibitive amounts of power and energy
for many use cases [8, 69], in addition to posing considerable scaling challenges for
well-established use cases, such as data centers [1, 8, 69]. Such limitations can moti-
vate other learning systems, such as genetic programming (GP) [7, 41, 55], where it
has been widely shown that the pairing of evolutionary search with alternative model
structures (e.g., trees, assembly languages, tangled program graphs, etc.) can some-
times allow for more compact solutions and enhanced efficiency during inference
[39, 44, 55]. However, training often remains complex with current GP techniques,
which motivates improvements to training efficiency [11, 17, 55].

There are various ways to improve the training efficiency of GP, and they gen-
erally involve either increasing performance (i.e., throughput) or enhancing energy
efficiency, for which there are at least four key benefits: (1) with increased perfor-
mance, useful solutions can potentially be found in a shorter amount of time; (2) with
improved energy efficiency, there is the potential for lower operational costs, which
(3) can allow formore cost-effectivemulti-computer GP systems, in turn allowing for
higher performance; and (4) with either improved performance or improved energy
efficiency, better solutions can potentially be found when allowing the system to
consume a similar amount of runtime/energy as before.

In regard to its computational model, GP is in a remarkable yet challenging posi-
tion. Although the algorithms of GP are often embarrassingly parallel [55], which
can open the door to extremely high-performance and energy-efficient computation,
the most widely accessible computing platforms—CPUs and GPUs—are not quite
built for the multiple-program, multiple-data model of GP. For CPUs, the use of
multiple cores/threads is relatively straightforward, but it is often difficult or pro-
hibitively expensive (in terms of power and other costs) to continually scale up [30].
And for GPUs, which offer numerous simpler cores and have been highly successful
in accelerating other forms of machine learning, the need for conditional program
execution (e.g., to decide which function primitive to execute) and large cache sizes
generally limits acceleration capabilities [13, 17, 58].

Ideally, we would have a computing platform that more perfectly aligns with
the computational model of GP, in order to improve performance and energy effi-
ciency. In general, achieving such an alignment is the motivation for domain-specific
architectures, for which either an application-specific integrated circuit (ASIC) or a
reconfigurable computing platform such as a field-programmable gate array (FPGA)
can be leveraged [30]. Although designing specialized hardware via an ASIC allows
for the most flexibility in achieving desired performance and power/energy charac-
teristics [30], FPGAs allow for reconfigurability and lower development costs, which
we believe lowers the barrier to entry for any initial research efforts within the GP
community. Ultimately, successful FPGA designs can be repurposed for an ASIC,
with the goal of obtaining additional performance and energy benefits.

14 It’s Time to Revisit the Use of FPGAs for Genetic Programming 277

In this chapter, we establish various potential benefits and challenges of imple-
menting modern GP with modern FPGAs. We loosely base our work on the state-of-
the-art Operon tool [10, 11, 44], which is floating-point-based and tree-based, but we
also include considerations for other GP domains. In years past, the application of
FPGAs to floating-point-based GP was largely off limits, due to older technologies
that did not efficiently support floating-point [31]. Now, with the advent of floating-
point multiply-adders, along with the potential for numerous other resources and
higher clock frequencies, improvements of multiple orders of magnitude may be
accessible with FPGAs [16, 17]. Nevertheless, efficient mappings of GP to special-
ized hardware remain challenging, and we believe that various algorithmic consid-
erations should be made in order to maximize amenability, by which we generally
mean that unnecessary complexity should be stripped out.

For example, it is suggested in [17] that a key optimization needed for achieving
significant computational efficiency with an FPGA relies on the idea of executing GP
function primitives with a minimal amount of shared hardware resources. Unfortu-
nately, designing such a resource-sharing mechanism for standard implementations
of floating-point operators is challenging, due to high-performance requirements
of the relevant algorithms often leading to overly complex or obfuscated realiza-
tions. However, this begs an important question: does GP need standard operators?
For floating-point domains, could more efficient implementations that more roughly
approximate the corresponding continuous operators suffice for evolution? In [16],
we establish that the answer is yes, such operators can suffice.

As another example, we plan to integrate local search techniques [55], but we
foresee that more complex algorithms such as Levenberg-Marquardt may not be
appropriate for a hardware accelerator, due to a memory complexity that could likely
create a performance bottleneck [40]. A more appropriate choice for local search
may be a form of batched gradient descent, but additional studies are likely needed
to determine effects on solution quality, especially in conjunctionwith other algorith-
mic simplifications. Also, similar considerations should be made for multi-objective
evolutionary algorithms, such as NSGA-II [55].

Beyond efforts to accelerate the training procedures of GP with FPGAs, which
is the main focus of this chapter, we note that the use of FPGAs for deploying final
models is also of considerable interest. For instance, although a physical tree-based
architecture may not be the best solution for accelerating the evaluation of arbitrary
tree-based programs (Sect. 14.4), implementing a final tree-based model with such
an architecture could minimize the latency and runtime of individual predictions,
which is likely desirable. Ultimately, the reconfigurable nature of FPGAs readily
allows for separate specialized architectures during inference, which could enable
GP to provide even more competitive machine learning solutions [18].

The remainder of this chapter is as follows. In Sect. 14.2, we list some related
work. In Sect. 14.3, we provide some relevant background onmodern computing and
FPGA devices. In Sect. 14.4, we detail some instances of how FPGA-based hardware
architectures could be devised for GP. In Sect. 14.5, we establish various challenges
and motivate future work. In Sect. 14.6, we conclude our study.

278 C. Crary et al.

14.2 Related Work

Since prior work on FPGA-based GP is not frequently referenced, we provide a brief
listing of all such works of which we are aware. Similar to how comparing different
GP representations (e.g., tree-based GP and linear GP) can be tricky, comparing
specialized hardware architectures—especially across GP domains—is problematic.
In addition,withmost of the followingworks employing significantly outdatedFPGA
devices, the advantages/disadvantages of each system are not clear within the context
of modern technologies. Ultimately, due to these issues as well as space constraints,
we largely avoid establishing either comparisons or results.

For traditional tree-based GP [41, 55], we refer the reader to [17, 23, 42, 62]. For
Linear GP [9], see [12, 21, 32, 50]. For Cartesian GP [52], see [19, 61, 72, 73]. For
geometric semantic GP [53], see [27, 49]. For grammar-guided GP [51], stack-based
GP [65], tangled program graphs [39], and other well-known GP representations, we
are unaware of implementations leveraging FPGA devices. Separately, we note that
FPGAs have also been used for the application area of evolvable hardware [75, 76],
although this has been primarily for evolving circuit-based solutions, rather than for
improving the performance/energy characteristics of the GP procedure itself.

Of the aforementioned FPGA-based systems, it appears that the systems given
in [12, 17, 23, 24] utilized floating-point, where [17] was our work on an initial
tree-based accelerator, and where [23, 24] independently proposed an architecture
conceptually similar to ours, with ours providing several important contributions, as
described in [17]. The architecture presented in [12] was for linear GP, and it is a
significant departure from the other floating-point-based architectures listed.

14.3 Background

In this section, we provide some relevant background onmodern (digital) computing,
which should motivate the exploration of FPGA-based architectures for GP.

14.3.1 A Brief Overview of Modern Computing

For about twenty years now, the practical relevance ofMoore’s Law has beenwaning,
and Dennard scaling no longer applies [30]. In brief, Moore’s Law describes an
empirical regularity that the maximum number of transistors in an integrated circuit
chip doubles roughly every two years,1 and Dennard scaling refers to the idea that
as transistor circuit area scales down, power density roughly stays the same.

1 Recent work allows us to conclude that Moore’s Law is still alive [59].

14 It’s Time to Revisit the Use of FPGAs for Genetic Programming 279

Notably, from the mid-1980s to the early-2000s, a combination of Moore’s Law
and Dennard scaling allowed average CPU performance to roughly double (i.e.,
execution times to roughly halve) every twoyears [30]. Then, from the endofDennard
scaling in the early-2000s until the late-2010s, the use of multiple general-purpose
cores per chip kept Moore’s Law alive, but various theoretical and practical barriers
led to a significant slowing of performance enhancements. Primarily, performance
enhancements were constrained by consistent power budgets—which, in general,
are constrained by electromigration, mechanical, and thermal limits—as well as the
limits on parallelism as prescribed by Amdahl’s Law [6, 30]. With consistent power
budgets due to physical constraints, the number of general-purpose cores in a single
chip approached a practical upper limit [22, 30]. Thus entered the next big trend,
which is still relevant today: domain-specific architectures (DSAs). Importantly, with
DSAs, hardware specialized to a particular application domain can often accomplish
more with a similar, sometimes smaller, power budget [30, 54, 56, 67, 70].

In general, domain-specific architectures can offer equivalent, and sometimes
better, performance and energy benefits when compared to modern general-purpose
architectures, such as central processing units (CPUs) and graphics processing units
(GPUs) [30, 54, 56, 67, 70]. Although DSAs can sometimes serve as complete
solutions, the latest trend is to integrate both general-purpose and domain-specific
chiplets into a single circuit, so that the system can efficiently support a wide range of
applications while additionally being optimized for a particular subset [30]. Such a
composite system is often referred to as a system-on-chip (SoC). One recent, notable
example of an SoC is the Apple M1 Ultra chip, which consists of 114 billion transis-
tors primarily allocated to a 20-core CPU, 64-core GPU, 32-core “Neural Engine,”
and high-bandwidth memory. In terms of number of transistors, this chip represents
roughly a 50 million times increase from the Intel 4004 chip—the first commercially
produced microprocessor—which consisted of 2,300 transistors.

14.3.2 Domain-Specific Architectures

Many application domains can benefit from the use of a domain-specific architecture
(DSA) [30, 43]. In general, a DSA can be leveraged when either (1) large amounts
of algorithmic parallelism can be exploited or (2) some low-power, low-area, or spe-
cialized implementation is desired. However, practically speaking, additional factors
must often be considered, such as those involving nonrecurring engineering (NRE)
time, NRE cost, unit cost, sale volume, and sale price [30, 66].

Naturally, there are different mechanisms for designing a DSA, and each comes
with its own set of trade-offs. Generally speaking, an application-specific integrated
circuit (ASIC) provides the most flexibility in achieving desired performance and
power/energy characteristics, as well as low unit costs, but this route usually requires
years of NRE time and millions of dollars in NRE costs [30]. Unfortunately, accord-
ing to Rock’s Law [20], NRE costs often increase significantly with newer device
technologies, which continually makes ASIC engineering a technical and economic

280 C. Crary et al.

challenge.2 Thus, ASICs are usually most applicable for applications in which large
NRE times/costs are tolerable and high sale volumes/prices are expected, so that
NRE cost may be offset by a large amount of low-cost, high-profit sales.

Besides the fabrication of an ASIC, another alternative for designing a DSA is
to utilize a reconfigurable computing (RC) system [30, 71]. In essence, RC systems
are programmable computing systems in which specialized digital circuitry can be
synthesized from different levels of abstraction, without recourse to integrated circuit
development.3 Oftentimes, RC systems gain appeal by trading off higher unit costs
for both (1) lower NRE times/costs and (2) comparable performance/energy benefits.
In general, RC systems are useful for prototyping designs before ASIC development
or for developing standalone solutions in which either (1) NRE cost must be low or
(2) high unit cost can be amortized by high sale volume/price or the ability to recon-
figure the device over time.Additionally, with the ability to design high-performance,
energy-efficient solutions, and the ability to support different hardware designs over
multiple reconfigurations, RC platforms are used for various research [54, 56, 60,
67, 70]. The most popular type of RC system is a field-programmable gate array
(FPGA), which we detail in the next subsection.

14.3.3 Field-Programmable Gate Arrays

Unfortunately, the name field-programmable gate array fails to capture the main
mechanism by which FPGAs implement designs—there, in fact, does not exist any
array of (logic) gates [29]. Primarily, there exist many small memories, known as
lookup tables (LUTs), which can implement the truth table(s) corresponding to some
desired circuitry. For a simple example of such an implementation, see Fig 14.1. By
way of LUTs, FPGAs support combinational logic. To additionally support sequen-
tial logic, FPGAs also increasingly leverage flip-flopmemory components [29]. Ulti-
mately, combinations of LUT and flip-flop components can allow for highly flexible
circuit configurations, but implementing a system only with such components may
not be feasible, depending on design complexity. To address this fact, modern FPGA
systems also contain more coarse-grained resources, such as integer and floating-
point multiply-adders,4 high-bandwidth memories, general-purpose CPU cores, and
sometimes other specialized computing cores (e.g., “AI engines” [2]), so that com-
mon computing tasks can more readily be implemented [2, 34, 54, 66, 70]. In this
respect, modern FPGAs are, themselves, SoC devices. Overall, by integrating many
thousands or millions of components via a reconfigurable interconnect, FPGAs can

2 However, the manufacturing of older technologies generally becomes cheaper over time [30].
3 An RC system is itself an ASIC, yet an ASIC exposing some aspect(s) of reconfigurability.
4 These multiply-adders are often referred to as digital signal processing (DSP) blocks/engines, or
just DSPs for simplicity. For floating-point, newer devices can efficiently implement single/half
precision and “bfloat16” [4, 14, 26, 35], although double precision is still relatively complex.

14 It’s Time to Revisit the Use of FPGAs for Genetic Programming 281

Fig. 14.1 A LUT-based implementation of a full adder, with carry-in and carry-out. Importantly,
the depicted LUT memory could implement not only this circuit, but all 3-input, 2-output digital
circuits. Also, note that the schematic in the bottom-right is just for illustration; with a LUT-based
implementation, no logic gates are used. For a more thorough example, see [29, Example 5.5]

implement massively parallel designs, many of which provide significant perfor-
mance/energy benefits when compared to CPU/GPU systems [30, 60].

Importantly, the aforementioned characteristics suggest that modern FPGAs
may be an attractive implementation option for genetic programming (GP), where
algorithms are often embarrassingly parallel and often exhibit both data-level and
function-level parallelism. In the next section, we illustrate this concept further.

14.4 Applying FPGAs to Genetic Programming

In this section, we identify how modern FPGAs may provide valuable practical
enhancements to genetic programming (GP). Most notably, we show how the per-
formance (i.e., throughput) of floating-point-based GP may be improved by mul-
tiple orders of magnitude when compared to state-of-the-art CPU/GPU systems.
We make our case for a form of tree-based GP loosely inspired by Operon [11]—a
state-of-the-art tool in terms of both technology and solution quality [10, 44]—but
we also provide considerations for other GP representations. We establish perfor-
mance benefits within the context of program evaluation, since this is generally the
performance bottleneck of GP systems [11, 55], and we then consider how evolu-
tion could align with such enhancements. Ultimately, designing high-performance
hardware for evolution is a major next step for future work. We mainly consider
performance rather than power/energy, since the former is more well studied [16,
17], but we note that it has been widely demonstrated that FPGAs provide signif-
icant power/energy improvements for various applications [2, 30, 54, 56, 67, 70].

282 C. Crary et al.

Therefore, if we allow for the possibility of any of such benefits, we can estimate
that improvements in performance-per-watt measures may be even more significant.
Overall, our preliminary results motivate additional studies into FPGA-based GP.

14.4.1 Evaluation

First, we examine the architecture that we previously presented in [17]. As depicted
in Fig. 14.2, the architecture leverages a specialized full tree of generic computing
resources in order to compute any program relevant to a GP primitive set, as long
as the depth of the program is not larger than the depth of the tree, the latter of
which is defined by the user. The main motivation behind this architecture is that,
with tree-based GP, every program expression is a tree. Therefore, if the architecture
provides a physical tree of generic resources such that each resource is capable of
computing all function primitives, then the tree can compute entire programs in par-
allel. However, even more notably, if we additionally design the generic resources
(i.e., function units) to be pipelined, then the architecture can generate an output for
an entire program every clock cycle after some initial latency, as shown in Fig. 14.2.
Although pipelining the tree precludes the existence of arbitrary control structures,
such structures are usually unnecessary [10, 44], and pipelining enables data-level
and/or function-level parallelism. Lastly, to further increase throughput, our architec-
ture includes a compiler in hardware that translates compact prefix-based expressions
into machine codes for the tree while it is evaluating, so that the tree may switch

Fig. 14.2 Aportrayal of our initial tree-basedGPaccelerator presented in [17],which canparallelize
the evaluation of different data points and different solutions every clock cycle via a reconfigurable
tree pipeline. Each node of the pipeline can perform any function within the GP primitive set, as
well as a bypass, which allows for arbitrary program shapes

14 It’s Time to Revisit the Use of FPGAs for Genetic Programming 283

Fig. 14.3 High-level overview of the architecture presented in [17]. Programs (e.g., sin(v0)+ 1.0)
are stored in (a) program memory and dynamically compiled by the (b) program compiler into
machine codes for the (c) program evaluator. The program evaluator uses a reconfigurable function
tree pipeline to execute a compiled expression for a set of fitness cases, resulting in a set of estimated
outputs to which the (d) fitness evaluator compares a set of desired outputs

between programs within a single clock cycle. Importantly, generating outputs for
entire programs every clock cycle and changing programs within a single cycle are
forms of parallelism that have not been achieved with general-purpose CPU/GPU
architectures. For an overall flow of this initial architecture, see Fig. 14.3.

In [17], we compared the aforementioned architecture to several recent CPU/GPU
systems using the performance measure node evaluations per second, which is effec-
tively the conventional GP operations per second (GPops/s), but without a notion of
evolution [13]. Using three different floating-point primitive sets of varying complex-
ity, we showcased that our architecture implemented on a mid-range 14nm FPGA
achieved an average speedup of 43×when compared to a recent GPU solution, Ten-
sorGP, implemented on 8nm process-node technology, and an average speedup of
4,902× when compared to a popular GP software tool, DEAP, running parallelized
across all cores of a 2-socket, 28-core (56-thread), 14nm CPU server. Despite our
single-FPGA accelerator being 2.4× slower on average when compared to the state-
of-the-art Operon tool executing on the same 2-processor CPU system, our system
was the fastest in several instances, and we detailed five potential extensions that
could provide a 32–144× speedup over the initial design. Below, we summarize
these extensions, and we include two additional extensions that augment the pos-
sible speedup range to be 128–576×. But first, in order to effectively explain the
extensions, we highlight the three main challenges of our initial architecture:

1. Exponential Growth. For an m-ary tree with m > 1, where m is the maximum
function arity of the primitive set, the amount of function units needed to imple-
ment the tree grows exponentially with increasing tree depth.

284 C. Crary et al.

2. Function Unit Complexity. For the tree architecture to be able to support arbitrary
programs, every function unit must support all function primitives.

3. Low Resource Utilization. For |F | function primitives, the utilization of each
function unit in terms of these high-level primitives is at most 1

|F | , and likely
worse since programs are often not full trees. In addition, the utilization of low-
level device primitives (e.g., DSPs) can be significantly less.

Now, we summarize the potential extensions which, if all were achieved simulta-
neously, could allow for a 128–576× speedup over the initial design:

1. Use Compacted Trees. To be able to more effectively leverage device resources as
well as support larger program depths/sizes, we could employ “compacted tree”
architectures that allow for the use of all resources that are currently unused due
to exponential growth. See below for details. (Up to 2× speedup.)

2. Multiplex Function Unit Resources. Function unit primitives experience poor
utilization due to the fact that they are implemented with independent IP blocks.
This issue could be improved upon by implementing a function unit via a single IP
block that multiplexes a minimal amount of some device resource(s), e.g., DSPs.
Such an “overlay” could free up a significant amount of resources, allowing for
further parallelization of program evaluation. (Between 2–6× speedup.)

3. Design for Higher Clock Frequencies. For our accelerator, performance (i.e.,
throughput) is directly proportional to clock frequency. With modern FPGAs,
it is not uncommon for designs to achieve clock frequencies in the range 400–
850MHz after optimizing for timing [54, 67, 70].We estimate thatwe can achieve
up to a 2–3× higher average clock frequency once we optimize for timing and
potentially move to a newer device [17]. (Between 2–3× speedup.)

4. Use a Higher-End FPGA Device.With a more modern, higher-end FPGA imple-
mented on a newer process-node technology (e.g., [34]), we should be able to sup-
port at least 1.4×more ALM resources, 2×more DSP resources, and 1.5×more
embedded memory resources, all in addition to higher clock frequencies [14].
Separately, such newer devices allow for an additional 2× more DSP resources
when using half-precision floating-point or the recent bfloat16 precision [14],
which may be useful for GP [11]. (Up to 4× speedup.)

5. Use Multiple FPGAs. The CPU results presented in [17] rely on a dual-socket
server populated with two CPU packages, whereas we currently only utilize a
single FPGA for our accelerator. Therefore, out of fairness, we could parallelize
our design across two FPGAs. (Up to 2× speedup.)

6. Double-buffer GP Runs. When our accelerator enters the context of a full GP
system, including evolution, we aim to execute two GP runs simultaneously, by
evolving one population while evaluating another. (Up to 2× speedup.)

In regard to “compacted trees,” we note that we previously suggested two alter-
native architectures in [17]. Of these two architectures, we are currently most inter-
ested in the specialized “linear” processor that would directly execute prefix/postfix
representations. Essentially, when compared to our initial architecture, we could
potentially achieve better throughput and support larger program sizes/depths by

14 It’s Time to Revisit the Use of FPGAs for Genetic Programming 285

instantiating many specialized single-unit processing cores in parallel. The execu-
tion model of this architecture would be loosely similar to a standard CPU system,
but we expect that the number of cores within our architecture could scale better,
and we expect that our cores could have higher throughput within the context of GP,
since we could execute entire function primitives every clock cycle [17].

In addition to higher throughput and larger program sizes/depths, some other
potential benefits of a “specializedCPU”architecture are (1) input bandwidth require-
ments could be reduced, since multiple cores could share the same inputs and since
the evaluation of a single program would take longer—whereas the evaluation of
an entire population may take less time when accounting for multiple cores—which
may allow datasets to more easily be stored off-chip; (2) the need for program compi-
lation could be removed, since native prefix/postfix representations could be directly
interpreted, which would eliminate a possible performance/area bottleneck; and (3)
arbitrary control flow could potentially be supported, since every core would effec-
tively only execute one program node at a time. On the other hand, some poten-
tial challenges introduced by the specialized CPU architecture are (1) pipelining a
sequential execution model could require state memory (e.g., a temporary stack) to
be duplicated multiple times, which could limit throughput and program sizes/depths
if device resources are exhausted too quickly; and (2) any additional logic that is to
be included for evaluation (e.g., fitness calculations, local search, etc.) may have to
be included within each core in order to maximize performance, which may create a
hardware area bottleneck depending on the complexity of the relevant logic. In any
event, further investigations of this architecture are warranted.

For GP representations other than trees, it seems that specialized CPUs may also
be attractive. For example, when compared to tree-based GP, it seems plausible that
we could similarly pipeline the execution model of linear GP by duplicating register
files. Separately, strategies for stack-based GP would likely be similar to tree-based
GP, but the existence of stacks for different data typesmay be challenging formemory
consumption. Ultimately, other architecturesmay bemore appropriate for a givenGP
domain, e.g., spatially parallel architectures may be more appropriate for Cartesian
GP [72], but it is still worth considering the use of sequential execution models.
Notably, the major semiconductor company AMD has recently embraced similar
execution models for neural networks and other domains by embedding specialized
CPU cores—“AI engines”—within some of their Versal FPGAs [2].

Besides the architectural extensions already mentioned, we note that other per-
formance enhancements can potentially be extracted from FPGAs, depending on
the remaining aspects of the relevant GP system. For example, suppose that local
search is to be supported and that a weight and bias term are to be allocated to each
program node, similar to Operon [11]. In this context, there effectively can be up
to 5× as many nodes in each program once accounting for the extra multiplication
and addition operations, and we could potentially compute these extra multiply-
adds in parallel to standard node computations by allocating just one additional DSP
resource to each computation core, which would allow for up to another 5× speedup.
In addition, when considering more complex evaluation routines, e.g., automatic dif-
ferentiation and batched gradient descent, other “downstream” computations such

286 C. Crary et al.

as weight/bias updates could potentially be parallelized as well, which may provide
even more flexibility in achieving considerable performance enhancements.

Overall, within the context of tree-based GP, we note that modern FPGAs pro-
vide the potential for performance improvements of multiple orders of magnitude
when compared to state-of-the-art tree-based CPU/GPU systems, like Operon [11].
In addition, based on various previous studies involving FPGA devices, such perfor-
mance benefits may enable similarly significant energy improvements [2, 30, 54, 56,
67, 70]. Although it is not yet clear what modern FPGAs may achieve in other GP
domains, we note that similar enhancements seem plausible, given that the program
interpreter of Operon could be used as a baseline for a generic multiple-program,
multiple-data system [11], and given that the hardware resources of an FPGA can
be configured in most any manner. At the very least, our current results motivate
additional studies into how FPGAs could be applied to various forms of GP.

14.4.2 Evolution

In general, we expect the performance of an overall GP system to largely be governed
by how efficient evaluation is implemented, since the runtime of evaluation generally
grows with the size of the training dataset, whereas the runtime of evolution often
does not [11, 55]. Although Amdahl’s Law suggests that evolution could eventually
become a bottleneck [30]—since continually optimizing a fixed workload would
have diminishing returns—we estimate that the hardware complexity of evolution
will often be considerably less than that of evaluation, especially when considering
the potential for more complex evaluation routines, like those for gradient-based
local search [40]. In addition, if we intend to double-buffer two independent GP
runs in order to maximize throughput across GP runs (Sect. 14.4.1), then we could
reasonably allow the runtime of evolution to be equal to that of evaluation—since
for each generation we could prevent dead cycles for evaluation just by having the
evolutionary routines of one GP run be completed by the end of the evaluation
routines for the other GP run—which could enable reduced hardware complexity for
evolution. Lastly, following Gustafson’s Law [28], we may be able to meaningfully
augment the GP procedure such that the workload of evaluation is significantly
increased without increasing the workload of evolution by the same amount, which
may further ease hardware requirements for evolution.

For tree-based GP, we briefly consider possible strategies for tournament selec-
tion, subtree crossover, and one-point mutation [55], which are normally employed
by the state-of-the-art Operon tool [10, 11, 44].5 For tournament selection, hard-
ware should be relatively simple, since we can likely just infer a tree of pipelined
comparators in order to find a program that has the minimum/maximum fitness
value within some tournament. With a pipelined implementation, tournaments can
potentially be decided every clock cycle, which may ultimately mean that only one

5 Other operators are often included as well, which we leave for future work (Sect. 14.5.2).

14 It’s Time to Revisit the Use of FPGAs for Genetic Programming 287

“selection engine” is needed to align with the performance of evaluation. For subtree
crossover and one-point mutation, pipelined implementations are likely more chal-
lenging, since tree-based programs often need to be parsed in order to determine any
viable crossover/mutation point(s) and in order to copy program data. Thus, mul-
tiple “variation engines” may be needed in parallel in order to align with potential
evaluation speedups, but each engine should be relatively simple, containing mostly
just a state machine and some shift registers. For all of these routines, we can likely
allocate just a few small buffers for storing random numbers, and then have some
independent circuit(s) continually keep the buffers full. For pseudo-random number
generation, the taus88 algorithm seems like a viable candidate, as it is robust and
efficient for hardware [48]. Future work can consider other options, if necessary.

For GP representations other than trees, hardware implementations of evolution
may be even less complex. For example, some representations readily allow for
uniformly random crossover and mutation points, which can reduce or eliminate the
need to parse programs during variation, and which in turn may enable the ability
to use significantly less hardware when aligning with potential evaluation speedups.
This fact motivates additional considerations into how tree-based algorithms could
potentially be altered in order to maximize amenability to specialized hardware, and
it also motivates continued explorations into which GP representation may be the
most appropriate for a given application. Of course, many factors must be considered
for the latter. For instance, if gradient-based local search is desired, techniques like
automatic differentiation may be fairly straightforward to implement for tree-based
expressions, since trees directly encode a “forward” and “reverse” pass, whereas
implementations for other representations might be considerably more complex,
since a graph structure may first need to be constructed.

Ultimately, it seems plausible that hardware for evolution could align well with
the potential performance enhancements laid out for evaluation (Sect. 14.4.1). There-
fore, we estimate that modern FPGAsmay provide considerable performance/energy
improvements to entire GP systems. However, there are still various challenges and
unknowns, which we discuss further in the next section.

14.5 Challenges and Future Work

In this section, we discuss some challenges confronting the GP community in regard
to the use of FPGA devices, and we then propose various avenues for future work.

14.5.1 Challenges

Although there is considerable potential for performance and power/energy enhance-
ments when employing FPGA devices (Sects. 14.3 and 14.4), current technologies
present at least three general challenges [66]:

288 C. Crary et al.

1. Productivity. When compared to standard software development, it is generally
regarded that FPGAs have low design productivity. There are multiple reasons
for this, but the two main issues are that (1) designing meaningful circuits gener-
ally demands considerable digital design expertise and (2) device compilation can
take hours or even days [66]. To reduce required efforts, many developments have
taken place throughout the past few decades, such as the creation of numerous
specialized programming languages [37], the extension of pre-existing program-
ming languages (e.g., C++ and Python) [45, 57], the simplification of design
tools and their compilation algorithms [63, 74], the creation of overlay circuit
technologies [15, 64], and the integration of software-programmable computing
cores within FPGA chips [2]. Overall, significant improvements have been made,
especially in regard to high-level synthesis (HLS) [46], but classical techniques
are still often necessary in order to implement a circuit with the desired perfor-
mance/energy characteristics.6 Ultimately, of the various challenges facing the
GP community in regard to a wider adoption of FPGA devices, we believe that
reduced productivity will likely be the most significant. However, for most of the
community, understanding digital design is not required in order to contribute to
efforts involving FPGA devices. For example, any work to reduce algorithmic
complexities would likely be useful (Sect. 14.5.2).

2. Amenability. In general, not all algorithms are directly amenable to FPGA devices
[66]. One key reason for this is that various high-level constructs do not have stan-
dard mappings to FPGAs, often because such mappings would not be widely use-
ful and/or intuitive [66]. For instance, pointers and recursions do not immediately
make sense for most LUT-based circuits (Sect. 14.3.3), and even though support
may be possible through additional hardware complexity, alternative constructs
are likely more suitable if performance/energy characteristics are important. Sep-
arately, even if an algorithm can be directly mapped, it is not guaranteed that
an inferred circuit will effectively utilize low-level device resources, and poor
mappings often lead to lower computational efficiency. Fortunately, such issues
have become less pronounced over timewith heterogeneous computing platforms
and newer FPGA technologies that support additional and more versatile com-
ponents [2, 34], but the mapping of certain functionality can still be challenging,
and algorithmic tweaks are often necessary. Besides such challenges, another
amenability issue is that the complex interconnect within FPGA devices usually
necessitates a clock frequency that is significantly lower than modern CPU/GPU
devices [66]. For instance, even with high-end technologies, clock frequencies
for programmable logic must almost always be set to less than 1 GHz, and gener-
ally much lower than that, often being at least a factor of five less than similarly
recent CPU/GPU technologies [54, 56, 60, 66, 67, 70]. Thus, when the goal of
using an FPGA is to achieve higher performance than CPU/GPU technologies,
a massive amount of parallelism is often needed, which is frequently achieved
through pipelining and/or pipeline duplication. However, when the goal of using

6 For some useful introductions to digital design, see [29, 68].

14 It’s Time to Revisit the Use of FPGAs for Genetic Programming 289

an FPGA is to leverage enhanced energy efficiency, the lower clock frequencies
can often be a plus.

3. Cost. Due in part to the aforementioned challenges regarding amenability, there
has yet to be a “killer app” for FPGA acceleration [66].7 Whereas the develop-
ment of GPUs was clearly motivated by graphics applications and, now, scientific
computing, FPGAs evolved from a considerably smaller market targeting the
development of “glue logic” and prototyping for ASIC devices [30, 71]. In gen-
eral, the larger demand for GPUs has continually led to a significant discrepancy
in subsidies for research/development, supply, and device costs. Until recently,
it was not uncommon for the latest GPUs to cost a few hundred dollars while
the latest FPGAs were listed for at least $10,000 [66]. Fortunately, this price gap
has narrowed and even sometimes inverted, with recent high-end GPU systems
costing anywhere from $1,000–$40,000 [47], but FPGAdevices are still typically
pricey or unavailable due to low supply. However, some free or cheap cloud-based
platforms with FPGAs now exist; for example, see [3, 5].

14.5.2 Future Work

In the following, we establish several important avenues for future work, and we
estimate difficulty with the high-level classifications easy, medium, and hard:

1. Further explore “specialized CPU” architectures. (Medium to hard.) As dis-
cussed in Sect. 14.4.1, we estimate that simpler architectures specialized to
sequential executionmodelsmay be generally useful for GP, and especially useful
for tree-based GP, as long as both data-level and function-level parallelism can be
exploited. In work not yet publicized, we have implemented such an architecture
for standard tree-based GP, as well as for a form of tree-based gradient descent,
but we have not yet proven scalability. Thus, future work should explore scaling
up the number of cores with such an architecture, especially in conjunction with
additional complexity, such as high clock frequencies, high-bandwidth memory,
and more advanced local search techniques.

2. Improve amenability of evolutionary algorithms. (Medium to hard.) In many
instances, research ideas that are better aligned with available hardware and soft-
ware resources have had a greater chance of success [33]. As such, when consid-
ering specialized hardware, there ismotivation to reconsider whether state-of-the-
art evolutionary algorithms are suitable for hardware, and whether any changes
should bemade. Of course, various trade-offs will inevitably surface if we attempt
to redesign algorithms, but there may exist variants of algorithms that allow for
better performance/energy characteristics while allowing for comparable (or bet-
ter) solution quality. Although such work would likely best be accomplished by
considering the design of hardware and algorithms in tandem, this need not be

7 And if there is a killer app, an ASIC can likely extract additional benefits [36]. Regardless, there
are still various notable applications for FPGAs, e.g., SmartNIC designs for data centers [56].

290 C. Crary et al.

necessary. Primarily, we should strip out unnecessary algorithmic complexity
and enable as much parallelism as possible. Most commonly, this may manifest
as either removing control flow or reducing runtime/memory complexity. One
example of this pertains to how real-valued function primitives are implemented,
as we mentioned at the end of Sect. 14.1. Future work should explore how forms
of evaluation, selection, variation, local search, and multi-objective optimization
may be simplified, and how any combination of such changes may affect solution
quality.

3. Explore the use of FPGAs for GP inference. (Easy to medium.) As mentioned
in Sect. 14.1, FPGA devices may be separately useful for implementing final
GP models, where a hardware architecture employed during this stage could be
completely different from any architecture used for training. Besides the example
given for tree-based GP in Sect. 14.1, we highlight that employing FPGAs for
tangled program graphs (TPGs) may be especially interesting, given that such a
GP representation can already allow for models that are thousands of times more
efficient than state-of-the-art neural networks [18, 38, 39].

4. Make FPGAs more accessible to GP researchers. (Medium.) As mentioned in
Sect. 14.5.1, although many high-level tools for utilizing FPGA technologies
now exist, effectively implementing hardware still often requires considerable
digital design expertise. As such, most GP researchers would likely incur a sig-
nificant learning curve if attempting to design specialized hardware. Future work
should explore additional technologies, techniques, and tutorials for aiding the
GP community in this regard. For an initial starting point, see [29, 68].

5. Establish new performance/energy measures. (Easy.) The traditional measure for
GP systemperformance,GPoperations per second (GPops/s), is often insufficient
in that it does not reflect time taken for more complex operations (e.g., local
search) nor differences in solution quality. To alleviate such issues, future work
should explore additional comparison measures, such as those given in [16]. Note
that a single measure need not encompass all of performance, energy, and fitness,
although it is possible [16].

6. Reconsider Boolean and fixed-point domains. (Medium.) Performance/energy
enhancements with modern FPGAs for Boolean and fixed-point domains will
likely be even more pronounced. Future work should reconsider these domains.

14.6 Conclusion

Rather than just play the “hardware lottery” [33], the GP community has the potential
to forge its own destiny by designing specialized hardware through FPGA devices.
The computational model of GP is exceptional in that it is often embarrassingly
parallel, although additional algorithmic considerations are likely needed in order to
fully exploit the possible benefits of specialized architectures. This chapter explored
such concepts and laid the groundwork for future efforts involving FPGA devices.
Overall, FPGAsmay allow for faster and/or less costly GP runs, in which case it may

14 It’s Time to Revisit the Use of FPGAs for Genetic Programming 291

also be possible for better solutions to be found when allowing an FPGA to consume
the same amount of runtime/energy as another computing platform.

References

1. Acun, B., Lee, B., Kazhamiaka, F., Maeng, K., Gupta, U., Chakkaravarthy,M., Brooks, D.,Wu,
C.J.: Carbon explorer: a holistic framework for designing carbon aware datacenters. In: Pro-
ceedings of the 28th ACM International Conference onArchitectural Support for Programming
Languages and Operating Systems, vol. 2, pp. 118–132 (2023)

2. Alok, G.: Architecture apocalypse dream architecture for deep learning inference and compute
- Versal AI core. Embedded World (2020)

3. Amazon: EC2 F1. https://aws.amazon.com/ec2/instance-types/f1/ (2024)
4. AMD: Versal ACAP DSP Engine Architecture Manual (AM004). https://docs.amd.com/r/en-

US/am004-versal-dsp-engine/DSP58-Architecture (2018)
5. AMD:HeterogeneousAcceleratedComputeCluster (HACC) Program. https://www.amd.com/

en/corporate/university-program/aup-hacc.html (2024)
6. Amdahl, G.M.: Validity of the single processor approach to achieving large scale computing

capabilities. In: Proceedings of the April 18–20, 1967, Spring Joint Computer Conference,
AFIPS ’67 (Spring), pp. 483–485. Association for Computing Machinery, New York (1967).
https://doi.org/10.1145/1465482.1465560

7. Banzhaf, W., Nordin, P., Keller, R., Francone, F.: Genetic Programming - An Introduction.
Morgan Kaufmann, San Francisco (1998)

8. Bashir, N., Guo, T., Hajiesmaili, M., Irwin, D., Shenoy, P., Sitaraman, R., Souza, A., Wierman,
A.: Enabling sustainable clouds: the case for virtualizing the energy system. In: Proceedings
of the ACM Symposium on Cloud Computing, SoCC ’21, pp. 350–358. Association for Com-
puting Machinery, New York (2021). https://doi.org/10.1145/3472883.3487009

9. Brameier, M., Banzhaf, W., Banzhaf, W.: Linear Genetic Programming. Springer, New York
(2007)

10. Burlacu, B.: GECCO’2022 symbolic regression competition: post-analysis of the Operon
framework. In: Proceedings of the Companion Conference on Genetic and Evolutionary Com-
putation, GECCO ’23 Companion, pp. 2412–2419. Association for Computing Machinery,
New York (2023). https://doi.org/10.1145/3583133.3596390

11. Burlacu, B., Kronberger, G., Kommenda, M.: Operon C++: an efficient genetic programming
framework for symbolic regression. In: Proceedings of the 2020 Genetic and Evolutionary
Computation Conference Companion, GECCO ’20, pp. 1562–1570. Association for Comput-
ing Machinery, New York (2020). https://doi.org/10.1145/3377929.3398099

12. Cheang, S.M., Leung, K.S., Lee, K.H.: Genetic parallel programming: design and implemen-
tation. Evol. Comput. 14(2), 129–156 (2006). https://doi.org/10.1162/evco.2006.14.2.129

13. Chitty, D.M.: Faster GPU-based genetic programming using a two-dimensional stack. Soft.
Comput. 21(14), 3859–3878 (2017). https://doi.org/10.1007/s00500-016-2034-0

14. Chromczak, J.,Wheeler,M., Chiasson, C., How, D., Langhammer,M., Vanderhoek, T., Zgheib,
G.,Ganusov, I.: Architectural enhancements in IntelAgilex FPGAs. In: Proceedings of the 2020
ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ’20, pp.
140–149. Association for Computing Machinery, New York (2020). https://doi.org/10.1145/
3373087.3375308

15. Coole, J., Stitt, G.: Adjustable-cost overlays for runtime compilation. In: 2015 IEEE 23rd
Annual International Symposium on Field-Programmable Custom Computing Machines, pp.
21–24 (2015). https://doi.org/10.1109/FCCM.2015.49

16. Crary, C., Burlacu, B., Banzhaf, W.: Enhancing the computational efficiency of genetic pro-
gramming through alternative floating-point primitives. In: Parallel Problem Solving from
Nature. Springer (2024). https://doi.org/10.1007/978-3-031-70055-2_20

https://aws.amazon.com/ec2/instance-types/f1/
https://docs.amd.com/r/en-US/am004-versal-dsp-engine/DSP58-Architecture
https://docs.amd.com/r/en-US/am004-versal-dsp-engine/DSP58-Architecture
https://www.amd.com/en/corporate/university-program/aup-hacc.html
https://www.amd.com/en/corporate/university-program/aup-hacc.html
https://doi.org/10.1145/1465482.1465560
https://doi.org/10.1145/3472883.3487009
https://doi.org/10.1145/3583133.3596390
https://doi.org/10.1145/3377929.3398099
https://doi.org/10.1162/evco.2006.14.2.129
https://doi.org/10.1007/s00500-016-2034-0
https://doi.org/10.1145/3373087.3375308
https://doi.org/10.1145/3373087.3375308
https://doi.org/10.1109/FCCM.2015.49
https://doi.org/10.1007/978-3-031-70055-2_20

292 C. Crary et al.

17. Crary, C., Piard, W., Stitt, G., Bean, C., Hicks, B.: Using FPGA devices to accelerate tree-
based genetic programming: a preliminary exploration with recent technologies. In: European
Conference on Genetic Programming (Part of EvoStar), pp. 182–197. Springer (2023). https://
doi.org/10.1007/978-3-031-29573-7_12

18. Desnos, K., Bourgoin, T., Dardaillon, M., Sourbier, N., Gesny, O., Pelcat, M.: Ultra-fast
machine learning inference through C code generation for tangled program graphs. In: 2022
IEEEWorkshop on Signal Processing Systems (SiPS), pp. 1–6 (2022). https://doi.org/10.1109/
SiPS55645.2022.9919237

19. Dobai, R., Sekanina, L.: Low-level flexible architecture with hybrid reconfiguration for evolv-
able hardware. ACM Trans. Reconfigurable Technol. Syst. (TRETS) 8(3), 1–24 (2015)

20. Dréan,G.: The chips industry:Moore andRock’s laws. In: TheDigital Era 2: Political Economy
Revisited, pp. 125–135. Wiley Online Library (2019)

21. Eklund, S.: Time series forecasting using massively parallel genetic programming. In: Pro-
ceedings International Parallel and Distributed Processing Symposium (2003). https://doi.org/
10.1109/IPDPS.2003.1213272

22. Esmaeilzadeh, H., Blem, E., St. Amant, R., Sankaralingam, K., Burger, D.: Dark silicon and
the end of multicore scaling. In: Proceedings of the 38th Annual International Symposium on
Computer Architecture, ISCA ’11, pp. 365–376. Association for Computing Machinery, New
York (2011). https://doi.org/10.1145/2000064.2000108

23. Funie, A.I., Grigoras, P., Burovskiy, P., Luk, W., Salmon, M.: Run-time reconfigurable acceler-
ation for genetic programming fitness evaluation in trading strategies. J. Signal Process. Syst.
90(1), 39–52 (2018). https://doi.org/10.1007/s11265-017-1244-8

24. Funie,A.I., Salmon,M.,Luk,W.:Ahybrid genetic-programming swarm-optimisation approach
for examining the nature and stability of high frequency trading strategies. In: 2014 13th
International Conference on Machine Learning and Applications, pp. 29–34 (2014). https://
doi.org/10.1109/ICMLA.2014.11

25. García-Martín, E., Rodrigues, C.F., Riley, G., Grahn, H.: Estimation of energy consumption in
machine learning. J. Parallel Distrib. Comput. 134, 75–88 (2019)

26. Goldberg, D.: What every computer scientist should know about floating-point arithmetic.
ACM Comput. Surv. (CSUR) 23(1), 5–48 (1991)

27. Goribar-Jimenez, C., Maldonado, Y., Trujillo, L., Castelli, M., Gonçalves, I., Vanneschi, L.:
Towards the development of a completeGP system on an FPGAusing geometric semantic oper-
ators. In: 2017 IEEE Congress on Evolutionary Computation (CEC), pp. 1932–1939 (2017).
https://doi.org/10.1109/CEC.2017.7969537

28. Gustafson, J.L.: Reevaluating Amdahl’s law. Commun. ACM 31(5), 532–533 (1988). https://
doi.org/10.1145/42411.42415

29. Harris, S.L., Harris, D.: Digital Design and Computer Architecture. Morgan Kaufmann (2015)
30. Hennessy, J.L., Patterson, D.A.: Computer Architecture, Sixth Edition: A Quantitative

Approach, 6th edn. Morgan Kaufmann Publishers Inc., San Francisco (2017)
31. Hettiarachchi, D.L.N., Davuluru, V.S.P., Balster, E.J.: Integer vs. floating-point processing on

modern FPGA technology. In: 2020 10th Annual Computing and Communication Workshop
and Conference (CCWC), pp. 0606–0612 (2020). https://doi.org/10.1109/CCWC47524.2020.
9031118

32. Heywood, M.I., Zincir-Heywood, A.N.: Register based genetic programming on FPGA com-
puting platforms. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C.
(eds.) Genetic Programming, pp. 44–59. Springer, Berlin (2000)

33. Hooker, S.: The hardware lottery. Commun. ACM 64(12), 58–65 (2021). https://doi.org/10.
1145/3467017

34. Intel: Intel Agilex™ M-Series FPGA and SoC FPGA Product Table (2015). https://cdrdv2.
intel.com/v1/dl/getContent/721636

35. Intel: BFLOAT16 – Hardware Numerics Definition White Paper (2018). https://www.intel.
com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-
white-paper.pdf

https://doi.org/10.1007/978-3-031-29573-7_12
https://doi.org/10.1007/978-3-031-29573-7_12
https://doi.org/10.1109/SiPS55645.2022.9919237
https://doi.org/10.1109/SiPS55645.2022.9919237
https://doi.org/10.1109/IPDPS.2003.1213272
https://doi.org/10.1109/IPDPS.2003.1213272
https://doi.org/10.1145/2000064.2000108
https://doi.org/10.1007/s11265-017-1244-8
https://doi.org/10.1109/ICMLA.2014.11
https://doi.org/10.1109/ICMLA.2014.11
https://doi.org/10.1109/CEC.2017.7969537
https://doi.org/10.1145/42411.42415
https://doi.org/10.1145/42411.42415
https://doi.org/10.1109/CCWC47524.2020.9031118
https://doi.org/10.1109/CCWC47524.2020.9031118
https://doi.org/10.1145/3467017
https://doi.org/10.1145/3467017
https://cdrdv2.intel.com/v1/dl/getContent/721636
https://cdrdv2.intel.com/v1/dl/getContent/721636
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf
https://www.intel.com/content/dam/develop/external/us/en/documents/bf16-hardware-numerics-definition-white-paper.pdf

14 It’s Time to Revisit the Use of FPGAs for Genetic Programming 293

36. Jouppi, N., Young, C., Patil, N., Patterson, D.: Motivation for and evaluation of the first
tensor processing unit. IEEE Micro 38(3), 10–19 (2018). https://doi.org/10.1109/MM.2018.
032271057

37. Kapre, N., Bayliss, S.: Survey of domain-specific languages for FPGA computing. In: 2016
26th International Conference on Field Programmable Logic and Applications (FPL), pp. 1–12
(2016). https://doi.org/10.1109/FPL.2016.7577380

38. Kelly, S., Heywood, M.I.: Emergent solutions to high-dimensional multitask reinforcement
learning. Evol. Comput. 26(3), 347–380 (2018)

39. Kelly, S., Smith, R.J., Heywood, M.I.: Emergent Policy Discovery for Visual Reinforcement
Learning Through Tangled Program Graphs: A Tutorial, pp. 37–57. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-04735-1_3

40. Kommenda, M., Burlacu, B., Kronberger, G., Affenzeller, M.: Parameter identification for
symbolic regression using nonlinear least squares. Genet. Program Evolvable Mach. 21(3),
471–501 (2020)

41. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means of Natural
Selection. MIT Press, Cambridge (1992)

42. Koza, J.R., Bennett, F.H., Hutchings, J.L., Bade, S.L., Keane, M.A., Andre, D.: Evolving com-
puter programs using rapidly reconfigurable field-programmable gate arrays and genetic pro-
gramming. In: Proceedings of the 1998 ACM/SIGDA Sixth International Symposium on Field
Programmable Gate Arrays, FPGA ’98, pp. 209–219. Association for Computing Machinery,
New York (1998). https://doi.org/10.1145/275107.275141

43. Krishnakumar, A., Ogras, U., Marculescu, R., Kishinevsky, M., Mudge, T.: Domain-specific
architectures: research problems and promising approaches. ACM Trans. Embed. Comput.
Syst. 22(2) (2023). https://doi.org/10.1145/3563946

44. La Cava,W., et al.: Contemporary symbolic regressionmethods and their relative performance.
In: Vanschoren, J., Yeung, S., (eds.) Proceedings of the Neural Information Processing Systems
Track on Datasets and Benchmarks, vol. 1 (2021)

45. Lahti, S., Rintala,M., Hämäläinen, T.D.: Leveragingmodern C++ in high-level synthesis. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 42(4), 1123–1132 (2023). https://doi.org/10.
1109/TCAD.2022.3193646

46. Lahti, S., Sjövall, P., Vanne, J., Hämäläinen, T.D.: Are we there yet? a study on the state of
high-level synthesis. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 38(5), 898–911
(2019). https://doi.org/10.1109/TCAD.2018.2834439

47. Leswing, Kif: Nvidia’s latest AI chip will cost more than $30,000, CEO says
(2024). https://www.cnbc.com/2024/03/19/nvidias-blackwell-ai-chip-will-cost-more-than-
30000-ceo-says.html

48. L’Ecuyer, P.: Maximally equidistributed combined tausworthe generators. Math. Comput.
65(213), 203–213 (1996)

49. Maldonado, Y., Salas, R., Quevedo, J.A., Valdez, R., Trujillo, L.: GSGP-hardware: Instan-
taneous symbolic regression with an FPGA implementation of geometric semantic genetic
programming. Genet. Program. Evolvable Mach. 25(2), 18 (2024). https://doi.org/10.1007/
s10710-024-09491-5

50. Martin, P.: A hardware implementation of a genetic programming system using FPGAs and
Handel-C. Genet. Program Evolvable Mach. 2(4), 317–343 (2001). https://doi.org/10.1023/A:
1012942304464

51. McKay, R.I., Hoai, N.X., Whigham, P.A., Shan, Y., O’Neill, M.: Grammar-based genetic pro-
gramming: a survey. Genet. Program Evolvable Mach. 11(3), 365–396 (2010). https://doi.org/
10.1007/s10710-010-9109-y

52. Miller, J.F.: Cartesian genetic programming: its status and future. Genet. Program Evolvable
Mach. 21(1), 129–168 (2020). https://doi.org/10.1007/s10710-019-09360-6

53. Moraglio, A., Krawiec, K., Johnson, C.G.: Geometric semantic genetic programming. In:
Coello, C.A.C., Cutello, V., Deb, K., Forrest, S., Nicosia, G., Pavone,M. (eds.) Parallel Problem
Solving from Nature - PPSN XII, pp. 21–31. Springer, Berlin (2012)

https://doi.org/10.1109/MM.2018.032271057
https://doi.org/10.1109/MM.2018.032271057
https://doi.org/10.1109/FPL.2016.7577380
https://doi.org/10.1007/978-3-030-04735-1_3
https://doi.org/10.1145/275107.275141
https://doi.org/10.1145/3563946
https://doi.org/10.1109/TCAD.2022.3193646
https://doi.org/10.1109/TCAD.2022.3193646
https://doi.org/10.1109/TCAD.2018.2834439
https://www.cnbc.com/2024/03/19/nvidias-blackwell-ai-chip-will-cost-more-than-30000-ceo-says.html
https://www.cnbc.com/2024/03/19/nvidias-blackwell-ai-chip-will-cost-more-than-30000-ceo-says.html
https://doi.org/10.1007/s10710-024-09491-5
https://doi.org/10.1007/s10710-024-09491-5
https://doi.org/10.1023/A:1012942304464
https://doi.org/10.1023/A:1012942304464
https://doi.org/10.1007/s10710-010-9109-y
https://doi.org/10.1007/s10710-010-9109-y
https://doi.org/10.1007/s10710-019-09360-6

294 C. Crary et al.

54. Nurvitadhi, E., et al.: Can FPGAs beat GPUs in accelerating next-generation deep neural
networks? In: Proceedings of the 2017 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’17, pp. 5–14. Association for Computing Machinery,
New York (2017). https://doi.org/10.1145/3020078.3021740

55. Poli, R., Langdon, W.B., McPhee, N.F.: A Field Guide to Genetic Programming. Lulu Enter-
prises, UK Ltd (2008)

56. Putnam, A., et al.: A reconfigurable fabric for accelerating large-scale datacenter services.
IEEE Micro 35(3), 10–22 (2015). https://doi.org/10.1109/MM.2015.42

57. Quenon, A., Ramos Gomes Da Silva, V.: Towards higher-level synthesis and co-design with
Python. In: Proceedings of theWorkshop on Languages, Tools, and Techniques for Accelerator
Design (LATTE’21). ACM New York (2021)

58. Robilliard, D., Marion-Poty, V., Fonlupt, C.: Genetic programming on graphics process-
ing units. Genet. Program Evolvable Mach. 10(4), 447–471 (2009). https://doi.org/10.1007/
s10710-009-9092-3

59. Roser, M., Ritchie, H., Mathieu, E.: What is Moore’s Law? Our World in Data (2023). https://
ourworldindata.org/moores-law

60. Ruiz-Rosero, J., Ramirez-Gonzalez, G., Khanna, R.: Field programmable gate array
applications–a scientometric review. Computation 7(4) (2019). https://doi.org/10.3390/
computation7040063

61. Salvador, R., Otero, A., Mora, J., de la Torre, E., Riesgo, T., Sekanina, L.: Self-reconfigurable
evolvable hardware system for adaptive image processing. IEEE Trans. Comput. 62(8), 1481–
1493 (2013)

62. Sidhu, R.P.S.,Mei, A., Prasanna,V.K.:Genetic programming using self-reconfigurable FPGAs.
In: Lysaght, P., Irvine, J., Hartenstein, R., (eds.) Field Programmable Logic and Applications,
pp. 301–312. Springer, Berlin (1999). https://doi.org/10.1007/978-3-540-48302-1_31

63. Skalicky, S., Monson, J., Schmidt, A., French, M.: Hot & Spicy: improving productivity with
Python and HLS for FPGAs. In: 2018 IEEE 26th Annual International Symposium on Field-
Programmable Custom Computing Machines (FCCM), pp. 85–92 (2018). https://doi.org/10.
1109/FCCM.2018.00022

64. So, H.K.H., Liu, C.: FPGA Overlays, pp. 285–305. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-26408-0_16

65. Spector, L., Robinson, A.: Genetic programming and autoconstructive evolution with the Push
programming language. Genet. Program Evolvable Mach. 3(1), 7–40 (2002). https://doi.org/
10.1023/A:1014538503543

66. Stitt, G.: Are field-programmable gate arrays ready for the mainstream? IEEE Micro 31(6),
58–63 (2011). https://doi.org/10.1109/MM.2011.99

67. Stitt, G., Gupta, A., Emas, M.N., Wilson, D., Baylis, A.: Scalable window generation for
the Intel Broadwell+Arria 10 and high-bandwidth FPGA systems. In: Proceedings of the
2018 ACM/SIGDA International Symposium on Field-Programmable Gate Arrays, FPGA ’18,
pp. 173–182. Association for ComputingMachinery (2018). https://doi.org/10.1145/3174243.
3174262

68. Stitt, G.: VHDL and SystemVerilog Tutorials. https://stitt-hub.com/vhdl-and-systemverilog-
tutorials/ (2024)

69. Strubell, E., Ganesh, A., McCallum, A.: Energy and policy considerations for modern deep
learning research. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34,
pp. 13,693–13,696 (2020)

70. Tan, T., Nurvitadhi, E., Shih, D., Chiou, D.: Evaluating the highly-pipelined Intel Stratix 10
FPGA architecture using open-source benchmarks. In: 2018 International Conference on Field-
Programmable Technology (FPT), pp. 206–213 (2018). https://doi.org/10.1109/FPT.2018.
00038

71. Tessier, R., Pocek, K., DeHon, A.: Reconfigurable computing architectures. Proc. IEEE 103(3),
332–354 (2015). https://doi.org/10.1109/JPROC.2014.2386883

72. Vašíček,Z., Sekanina,L.:Hardware accelerators for cartesian genetic programming. In:Genetic
Programming: 11th European Conference, EuroGP 2008, Naples, Italy, March 26–28, 2008.
Proceedings 11, pp. 230–241. Springer (2008)

https://doi.org/10.1145/3020078.3021740
https://doi.org/10.1109/MM.2015.42
https://doi.org/10.1007/s10710-009-9092-3
https://doi.org/10.1007/s10710-009-9092-3
https://ourworldindata.org/moores-law
https://ourworldindata.org/moores-law
https://doi.org/10.3390/computation7040063
https://doi.org/10.3390/computation7040063
https://doi.org/10.1007/978-3-540-48302-1_31
https://doi.org/10.1109/FCCM.2018.00022
https://doi.org/10.1109/FCCM.2018.00022
https://doi.org/10.1007/978-3-319-26408-0_16
https://doi.org/10.1007/978-3-319-26408-0_16
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1023/A:1014538503543
https://doi.org/10.1109/MM.2011.99
https://doi.org/10.1145/3174243.3174262
https://doi.org/10.1145/3174243.3174262
https://stitt-hub.com/vhdl-and-systemverilog-tutorials/
https://stitt-hub.com/vhdl-and-systemverilog-tutorials/
https://doi.org/10.1109/FPT.2018.00038
https://doi.org/10.1109/FPT.2018.00038
https://doi.org/10.1109/JPROC.2014.2386883

14 It’s Time to Revisit the Use of FPGAs for Genetic Programming 295

73. Vašíček, Z., Sekanina, L.:Hardware accelerator of cartesian genetic programmingwithmultiple
fitness units. Comput. Inf. 29(6+), 1359–1371 (2010)

74. Vipin, K., Fahmy, S.A.: FPGA dynamic and partial reconfiguration: A survey of architectures,
methods, and applications.ACMComput. Surv. 51(4) (2018). https://doi.org/10.1145/3193827

75. Yao, X.: Following the path of evolvable hardware. Commun. ACM 42(4), 46–49 (1999).
https://doi.org/10.1145/299157.299169

76. Yao, X., Higuchi, T.: Promises and challenges of evolvable hardware. IEEE Trans. Syst., Man,
Cybern., Part C (Appl. Rev.) 29(1), 87–97 (1999). https://doi.org/10.1109/5326.740672

https://doi.org/10.1145/3193827
https://doi.org/10.1145/299157.299169
https://doi.org/10.1109/5326.740672

	14 It's Time to Revisit the Use of FPGAs for Genetic Programming
	14.1 Introduction
	14.2 Related Work
	14.3 Background
	14.3.1 A Brief Overview of Modern Computing
	14.3.2 Domain-Specific Architectures
	14.3.3 Field-Programmable Gate Arrays

	14.4 Applying FPGAs to Genetic Programming
	14.4.1 Evaluation
	14.4.2 Evolution

	14.5 Challenges and Future Work
	14.5.1 Challenges
	14.5.2 Future Work

	14.6 Conclusion
	References

