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ABSTRACT
The difficulty of learning optimal coefficients in regression models
using only genetic operators has long been a challenge in genetic
programming for symbolic regression. As a simple but effective
remedy it has been proposed to perform linear scaling of model
outputs prior to a fitness evaluation. Recently, the use of a correla-
tion coefficient-based fitness function with a post-processing linear
scaling step for model alignment has been shown to outperform
error-based fitness functions in generating symbolic regression
models. In this study, we compare the impact of four evaluation
strategies on relieving genetic programming (GP) from learning
coefficients in symbolic regression and focusing on learning the
more crucial model structure. The results from 12 datasets, includ-
ing ten real-world tasks and two synthetic datasets, confirm that all
these strategies assist GP to varying degrees in learning coefficients.
Among the them, correlation fitness with one-time linear scaling as
post-processing, due to be the most efficient while bringing notable
benefits to the performance, is the recommended strategy to relieve
GP from learning coefficients.
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1 INTRODUCTION
Genetic programming for symbolic regression (GPSR) is a power-
ful regression technique that aims to automatically learn both the
model structure(s) and model coefficients [15]. During an evolu-
tionary process, the model structure can be automatically learnt via
genetic operators. The model coefficients are created and optimised
using a special type of terminal, i.e. ephemeral random constant
(ERC) [15]. ERCs in GP individuals are random constants gener-
ated from a predefined range during the initialisation phase or in a
mutation step. Learning of coefficients happens by moving these
ERCs around from tree/model to tree/model using the crossover
operator. Due to its random nature, learning optimal coefficients is
difficult for GP, and is still one of the (most) significant open issues
in GP considered to be addressed by our community[19].

Coefficient learning in GPSR also creates some other issues. The
effort of GPSR spent on learning coefficients may prohibit it from
finding regression models with the desired structure/shape. Note
that the shape of a model refers to the overall pattern of the math-
ematical model’s graph or equation. It describes how the model
behaves and changes as its inputs or coefficients are varied. For
example, a linear model has a shape of a straight line, while an
exponential model has a shape that curves upward rapidly as the
input increases. In GPSR, various error measures, e.g. root/mean
squared errors (RMSE), relative squared errors (RSE), and mean
absolute errors (MAE), are normally used to determine the qual-
ity of GPSR models during the evolutionary process. Due to the
direct (local) comparison between predicted and target values in
these error measures, GPSR is forced to first get the range right.
Generally, the selection pressure on getting the right range is so
high that it causes GP to spend most effort in finding good coeffi-
cient values. Once these are found, the diversity of a population
drops, making it much more difficult to find the desired regression
model structure. Keijzer [13] has found a huge difference between
98% and 16% in the successes rate when using a standard GPSR on
two simple problems of 𝑋 2 and 𝑋 2 + 100, and a large difference in
search efficiency as well. Keijzer [13] also proposed to use linear
scaling on the GPSR model prior to calculating the error. This is a
simple but effective way to obtain constants that otherwise need
to be found during the evolutionary process of GP, and it enables
GP to concentrate on the more important problem of inducing a
regression model with the desired shape.
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Recently, Haut et al. [11] explored the use of correlation as the
fitness function in GPSR. During the evolutionary process, GPSR
tries to find models that maximise the Pearson Correlation between
the predictions and the target variable. With linear scaling as an
alignment step at the end of the evolutionary process in GPSR,
the use of correlation obtains notable gains over using RMSE as
fitness function, not only in prediction accuracy but also efficiency
in terms of the number of data points needed to train regression
models. They ascribe the advantage of the correlation based evalu-
ation to emphasis on the global features of a model, instead of the
point-to-point comparisons in the commonly used error measures.
However, the effect of a correlation based fitness function on re-
lieving GPSR from learning coefficients has not been thoroughly
investigated. Furthermore, there is another question when using
the correlation coefficient as a fitness value for GPSRmodels. Specif-
ically, in statistical analysis, the correlation coefficient measures
the degree of association between two variables, thus the question
here is whether the degree of association between the predictions
and the target outputs can be used as a measure of the degree of
coincidence since the best coincidence of two functions/regression
models means their best fitting. In [11], Haut et al. considered a
large number of synthetic benchmark symbolic regression tasks
with a varying number of data points and varying levels of noise.
However, the effect of the correlation based fitness function on
general real-world symbolic regression tasks is not clear yet.

This work aims to answer these questions and further explore
the benefits of correlation based fitness function and linear scaling
on relieving coefficients learning in GPSR. In addition, this work
will further investigate the importance of searching for models
with a good shape while utilising linear scaling for alignment on
improving the performance of a GPSR system. More specifically,
there are three objectives in this contribution:

(1) Investigate the effect of the Pearson correlation coefficient
on making GPSR more focused on searching for the desired
shape, thus relieving coefficients learning in GPSR;

(2) Investigate the effect of linear scaling either as a post process-
ing step or prior to each fitness evaluation of GP individuals
on enhancing the coefficient learning in GPSR;

(3) Investigate whether a correlation coefficient could be a gen-
eral evaluation strategy for GPSR that can improve its learn-
ing efficiency and generalisation ability over commonly used
error measures, without much additional or even less run-
ning overhead.

2 BACKGROUND AND RELATED WORKS
2.1 Correlation Coefficients
One of the most prevalent correlation coefficients is Pearson’s
product-moment correlation coefficient 𝑟 [24], also known as Pear-
son correlation coefficient, which measures the linear relationship
between two random variables. It refers to the ratio of the covari-
ance of the two variables to the product of their standard deviations,
with a value ranging between −1 and 1. The further away 𝑟 is from
0, the stronger the linear relationship between the two variables,
while the sign of 𝑟 corresponds to the direction of the relationship.

Another commonly used correlation coefficient is Spearman cor-
relation, which is the sample correlation coefficient of the ranks

based on continuous data [2]. Spearman correlation is used to mea-
sure the monotonic relationship between two variables, i.e. whether
one variable tends to take either a large/small value by increasing
the value of the other variable.

The R-square (𝑅2) is a concept related to the correlation coef-
ficients and also a commonly used measure for the goodness of
regression fits in statistics. Throughout the literature, there are
many different formulas to define 𝑅2 [16]. One definition of 𝑅2 is to
take the square of the Pearson correlation coefficient 𝑟 . 𝑅2 measures
the fraction of the variability in one variable that can be explained
by the variability in the other variable through their linear relation-
ship, or vice versa. Note that 𝑅2 is calculated only on the basis of
the Pearson correlation coefficient. Thus, it is not appropriate to
compute 𝑅2 on the basis of rank correlation coefficients such as the
Spearman. In this work, we will investigate the effect of 𝑅2 as the
fitness function taking its most commonly used form of

𝑅2 =
©«

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦) (𝑦𝑖 − 𝑦)√︃∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦)∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)

ª®®¬
2

(1)

where 𝑦𝑖 and 𝑦𝑖 are the prediction and the target values, and 𝑦 is
the average of target values. Typically, 𝑅2 is within the range of
[0, 1].

𝑅2 and its extended forms have been used in a number of regres-
sion tasks [7, 10, 29]. Fumo et al. [10] utilised 𝑅2 for measuring the
quality of simple and multivariate linear regression models for resi-
dent energy consumption prediction. Chicco et al. [7] compared the
property and effort of 𝑅2 and Symmetric mean absolute percentage
error (SMAPE) theoretically and empirically in their work. They
found that 𝑅2 is more truthful and informative than SMAPE. More
specifically, 𝑅2 generally generates a high score only if the regres-
sion model correctly predicts most of the ground truth elements
for each ground truth group, considering their distribution. The er-
ror measure, i.e., SMAPE, focuses on the relative distance between
each predicted value and its corresponding target value instead
without considering their distribution. Zhang et al. [29] extended
𝑅2 for generalized linear models by giving it a new definition. The
advantage of the new definition is that it only needs to know the
mean and variance functions instead of the complete specification
of the likelihood function. Many works in traditional regression
have realised the importance of 𝑅2 on measuring model quality, but
there is only a small number of works in GPSR [11] that has used
𝑅2 as a performance metric.

2.2 Coefficient Learning in GPSR
Using linear scaling for optimising coefficients in the GPSR model
is not new. Keijzer et al. [13] proposed to incorporate linear regres-
sion/scaling into GPSR to remove the search of coefficients from
GP runs. Later, Chen et al. [5] and Virgolin et al. [27] introduced
linear scaling into semantic GPSR to learn better coefficients thus
helping to achieve the desired semantics.

Ryan and Keijzer [23] investigated how coefficients/constants
could be effectively evolved during the evolutionary process in
GPSR. They found that without mutation on these coefficients,
only a small number of them can survive to the final stage of the
evolutionary process, which may force GPSR to synthesise the
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desired coefficients at a cost of performance. But uniform mutation
generally increases this number, and thus is more likely to lead to
better performance in GPSR. Chen et al. [3] extended the idea from
[26, 30] and applied gradient search for optimising the coefficients
in GPSR. Recently, Dick [8] examined the use of stochastic gradient
descent techniques for learning coefficients in GPSR with Z-score
standardisation, which is considered to be an important element to
apply stochastic gradient descent effectively. Kommenda et al. [14]
used nonlinear least squares to optimise the coefficient in GPSRwith
Levenberg-Marquardt where automatic differentiation is applied to
calculate gradients. They achieved a notable improvement in the
prediction performance of GP. Based on [14], Rockett [22] explored
the influence of coefficient optimisation on the performance of
GPSR with and without feature standardisation under the multi-
objective GP framework. Instead of Levenberg-Marquardt, they
employed Sequential Linear Quadratic Programming which can
minimise arbitrary functions but requires the existence of at least
the second derivatives of the fitness function. In Sobania et al.
[25], instead of ERC, constants that could be optimised were used
during the evolutionary process in GPSR with the Sequential Least
Squares Programmingmethod. In this way, GPSR evolves regression
models with better fitness but a smaller size. Haut et al. [11] utilised
Pearson correlation as the fitness function in GPSR. During the
evolutionary process, their GPSR method aims to find models that
maximise Pearson correlation between the predictions and the
target variable. The authors ascribe the advantage of the correlation
based evaluation to its emphasis on the global features of a model,
with the coefficients in a correlation measure being less important
than in the commonly used error measure.

3 LIBERATING GPSR FROM COEFFICIENT
LEARNING

This work explores the effect of a combination of fitness evaluation
strategy and linear scaling on coefficient learning in GPSR. In this
section, we will present the fitness function considered in this work
and the method to perform linear scaling.

3.1 Error Measures and Correlation Coefficients
The general method of determining the fitness of a GPSR model
is to measure how close the predicted outputs 𝑦 are to the target
outputs 𝑦 over the training data, using an error measure like root
mean squared Error (RMSE) as shown in Equation (2).

𝑅𝑀𝑆𝐸 =

√︄∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦𝑖 )2

𝑛
(2)

where𝑦𝑖 and𝑦𝑖 are the predicted and the target values, respectively.
𝑛 is the number of training instances. These error measures gen-
erally represent the average distance that the target values away
from the predictions of GPSR models. Thus, GPSR models with a
smaller error value are better since the smaller error value indicates
that they are closer to the target outputs.

During the evolutionary process, GPSR models are typically
evolved to obtain a smaller error value. The selection pressure
pushes the models to get the outputs to the right range close to the
target outputs first, rather than focusing on the more important
task of finding the right model structure. Moreover, models with

the desired structure might be overlooked due to the distance accu-
mulated over all prediction points. Keijzer et al. [13] proposed to
evaluate the error between the linear scaled outputs 𝑎𝑦 + 𝑏 and the
target values 𝑦:

𝑅𝑀𝑆𝐸𝑙𝑠 =

√︄∑𝑛
𝑖=1 (𝑎𝑦𝑖 + 𝑏 − 𝑦𝑖 )2

𝑛
(3)

In such a way GP is freed (or at least relieved) from searching for
the right range of outputs and GP can focus more on searching for
expressions with the right shape. However, a more straightforward
way to do this would be to apply a fitness measure which focuses on
measuring the shape of the function represented by models directly,
thus driving the search of GPSR for equations whose shape is most
similar to that of the target data.

Correlation as a measure of association between two variables
can be used in the fitness function to relieve GPSR from searching
for the right coefficients and focus more on the structure of the
model. For a regression task which typically has a continuous target
variable and predictions, we can consider the Pearson correlation
coefficient 𝑟 . 𝑟 measures a linear relationship between two variables
with a definition as given in Equation (4).

𝑟 =

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦) (𝑦𝑖 − 𝑦)√︃∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦)∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)

(4)

where 𝑦𝑖 and 𝑦𝑖 are the predicted and the target values/outputs,
respectively, 𝑦 is the average of predicted values while 𝑦 is the
averaged target values.

Comparing Equations (2) and (4), a key difference between them
is that the latter fitness function has an additional component of
the averaged predicted output 𝑦. It is considered in relation to the
corresponding target outputs. The correlation function looks at
the relative position of predicted data points, and compares that
with the relative position in the target model, thus incorporating
information about the shape of equations represented by GPSR
models into the fitness function.

Based on [11], in this work, we also examine the maximisation of
the𝑅2, which is the squared Pearson correlation coefficient between
the predictions of GPSR models and the target outputs driving the
evolutionary process. This is actually equal to minimising 1 − 𝑅2

which ranges at [0, 1]. Thus, the correlation based fitness function
in this work is as follows.

1 − 𝑅2 = 1 −
©«

∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦) (𝑦𝑖 − 𝑦)√︃∑𝑛

𝑖=1 (𝑦𝑖 − 𝑦)∑𝑛
𝑖=1 (𝑦𝑖 − 𝑦)

ª®®¬
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(5)

where 𝑦𝑖 and 𝑦𝑖 are the prediction and the target values, and 𝑦 is
the average of target values.

3.2 Linear Scaling with Correlation and Error
Measures

When using RMSE as fitness function for GPSR, the effect of using
linear scaled model outputs during the evolutionary process is to
change the view of the selection operator on the goodness of fit
of individuals. Even taking the simplest form of linear scaling, the
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outputs of the model with an optimal slope and intercept, GP will
focus its search on expressions that are close in shape to the target.

The case is different when using correlation. Here, due to the
scale and translation invariance of correlation, these are left to
a post-processing step of linear regression/scaling [11]. This lat-
ter operation will not change the correlation between predictions
and the target variables, and is therefore not necessary during the
evolutionary process.

To perform a linear scaling, in [13], a deterministic calculation

has been used where 𝑏 =

∑[ (𝑦𝑖−�̂�) (𝑦𝑖−𝑦) ]∑[ (𝑦−𝑦)2 ] , 𝑎 = 𝑦𝑖 − 𝑏𝑦. In this
work, to prevent the model from overfitting the training data, a
Ridge regression with an L2 penalty term for large coefficients is
performed to find an optimal slope 𝑎 and intercept 𝑏 where 𝑎 and 𝑏
are found by minimising Equation (6):

𝑛∑︁
𝑖=0

(𝑦𝑖 − (𝑎𝑦𝑖 + 𝑏))2 + 𝜆(𝑎2 + 𝑏2) (6)

where the penalty term 𝜆 = 1 is chose empirically in this work.

4 EXPERIMENTAL SETTINGS
To compare the effect of RMSE and correlation coefficient combined
with linear scaling on relieving GPSR from learning coefficients
and evolving SR models with a desire shape, a set of experiments
has been conducted. We will introduce the key components and
settings of these experiments in this section.

4.1 Benchmark Datasets
Twelve widely used benchmark symbolic regression tasks are used
in this work. They are taken from the UCI machine learning repos-
itory [17], and recent research on symbolic regression [1, 8]. The
numbers of features and instances in the datasets are summarised
in Table 1. While the first ten datasets are real-world tasks, the last
two datasets are synthetic datasets.

Among the ten real-world datasets, Tower and DowChem are
symbolic regression benchmarks recommended in [28], and the
other eight real-world datasets are all available in “scikit-learn"
[20]. The training set and the test set are provided in Tower. For the
other datasets, following previous research on machine learning
for regression [12] and GPSR [4], a random split is performed with
80% of the data for training and the rest 20% for testing.

The two synthetic datasets, Keijzer5 and Korns8 are benchmark
tasks recommended in [28] and have also been studied in previous
work on using correlation as the fitness function [11]. Thus, we
also use them in this work. Functions and sampling strategies for
generating the datasets are shown in Table 2.

4.2 Benchmark Methods
The following five GP methods are considered and compared with
each other in this work:

(1) GP : a standard GP method with RMSE using Equation (2) as
the fitness function without any scaling in the models. It is
used as a baseline for the comparisons.

(2) GPLLS: GP with linear scaling as the final post-processing
step. It basically still uses RMSE in Equation (2) as the fitness
function, but linear scaling with Ridge regression will be

Table 1: Benchmark Datasets.

Datasets # Feature #Instances #Training #Test
Tower 25 4999 3999 1000
Bodyfat 14 251 200 51
CalHouse 8 20640 16512 4128
BstHouse 13 506 404 102
Concrete 8 1030 824 206
Dowchem 57 1065 852 213
Parkinsons 18 5874 4699 1175
Yacht 6 307 245 62
Energy 8 767 613 154
WineRed 11 1598 1278 320
Keijzer5 3 11000 1000 10000
Korns8 5 20000 10000 100000

Table 2: The Synthetic Functions.

Function Traning/Test Sets
Keijzer5 30𝑥𝑧/(𝑥 − 10)𝑣 Training: 𝑥, 𝑧 = 𝑈 [−1, 1], 𝑣 = 𝑈 [1, 2]

Test: 𝑥, 𝑧 = 𝑈 [−1, 1],𝑣 = 𝑈 [1, 2]
Korns8 6.87(11 ∗

√
7.23 ∗ 𝑥0𝑥3𝑥4 ) Training/Test: 𝑥1 − 𝑥5 = 𝑈 [−50, 50]

applied to the best-of-run models. To make a fair and clear
comparison, in this work, GPLLS is run independently in-
stead of taking the best individuals directly from GP before
post processing.

(3) GPCorLLS: a GP method maximising correlation coefficient
(minimising 1 − 𝑅2 in Equation (5)) with linear scaling as
the final post-processing step. Similar to GPLLS, linear scal-
ing with Ridge regression will be applied to the best-of-run
models.

(4) GPLS: GP with a scaled error measure. This method uses
scaled RMSE as fitness function. Linear scaling with Ridge
regression will be applied to each GPSR model before calcu-
lating RMSE using Equation (2).

(5) GPCorLS: a GP method maximising correlation coefficient
with linear scaling. Similar to GPLS, linear scaling with Ridge
regression will be applied to each GPSR model before evalua-
tion. As mentioned earlier, linear scaling will not change the
correlation between two variables, i.e. the fitness value of
GPSR models. However, to confirm this point and also inves-
tigate how RMSE will change when using linear scaling in
this case, we will perform a linear scaling prior to obtaining
1 − 𝑅2 using Equation (5) for each GP individual.

Note that this work does not attempt to compare with a state-of-the-
art ERC learning method, e.g., learning coefficients with gradient
descent [3] or using nonlinear least squares [14, 22], since the main
aim of this work is to investigate whether and how the change of
the fitness function from the error based to the correlation based
can liberate coefficient learning in GPSR.

The parameter settings are summarised in Table 3 where most of
them are typical settings for GPSR. The analytic quotient operator
(𝐴𝑄) in GPSR has shown to be a better choice than ‘protected
division’ in generating models with good generalisation abilities [6,
18], thus 𝐴𝑄 is employed to replace the commonly used protected
division in the function set in this work. All the GP methods are
implemented under the DEAP package [9].
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Table 3: Parameter Settings for GP Runs

Parameter Value
Population Size 1024
Maximal #Generations 100
Initial Crossover & Mutation Rates 0.7 & 0.3
Elitism 10
Initial and Maximum Tree Depth 2-6&10
Initialisation Ramped half-and-half
Tournament size 7
Basic Function Set +, −, ∗,𝐴𝑄 = 𝑥/

√︁
(1 + 𝑦)2

number of runs 50

Figure 1: Boxplots on the Training 𝑅𝑀𝑆𝐸s

5 RESULTS AND ANALYSIS
This section presents a comparison of the five GP methods with dif-
ferent evaluation strategies. RMSE and 𝑅2 of the best-of-run GPSR
models on training and test sets are reported. A non-parametric
statistical significance test, i.e. the Friedman test with post-hoc
Nemenyi test [21] at a significance level of 0.05 is conducted to
compare training and test RMSEs among the five GP methods. The
evolutionary plots of 𝑅2 are also presented for a detailed exami-
nation of the learning process and corresponding generalisation
performance of GP with the five different evaluation strategies. Fur-
ther analysis on the size of the learnt models and the computational
time is also presented.

5.1 Comparison on the Learning Performance
The distribution of training RMSEs of the best-of-run models of the
five GP methods is shown in Figure 1. Statistical significance results
are shown in heat maps with 𝑝 values of the post-hoc Nemenyi
test on each pair of methods in Figure 2, where 1-5 stands for GP,
GPLLS, GPCorLLS, GPLS, and GPCorLS, respectively.

5.1.1 Comparing standard GP with the four GP methods with coef-
ficient learning. As shown in Figure 1, the four GP methods with

1-5 stands for GP, GPLLS, GPCorLLS, GPLS, and GPCorLS, respectively.

Figure 2: Statistical Significance Test Results on the Training
sets with 𝑃 values.

Figure 3: Boxplots on the Training 𝑅2

coefficient learning generally outperform GP on most of the 12
training sets. GPLLS slightly outperforms GP but not significantly
on any of the training sets. The other three GP methods, GPCorLLS,
GPLS, and GPCorLS all have much lower learning RMSEs than
standard GP on 11 of the 12 datasets except for Korns8. On Korns8,
the final three GP methods have a smaller best RMSE, but a larger
variance than GP, and there is not any significant difference be-
tween the two groups of methods. The comparison results indicate
that utilising linear scaling with RMSE or correlation can relieve
GPSR from searching for coefficients thus improving its learning
performance to some different degrees.

5.1.2 GPLS vs GPLLS and GPCorLS vs GPCorLLS. When comparing
the learning performance of GPLS and GPLLS, as shown in Figure
1, GPLS has a much smaller training RMSE than GPLLS on 11 of the
12 training sets, except for Korns8. The comparison confirms that
when evaluating models with their RMSEs, utilising linear scaling
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prior to every evaluation brings more benefits. It encourages GP
to focus on searching models with the desire structure, and allows
models with a good structure but bad coefficients to survive.

Comparing the learning performance between GPCorLLS and
GPCorLS, which are the two GP methods maximising correlations
(minimising 1 − 𝑅2) between the model predictions and the target
variable, there is not much difference between the two methods.
This is consistent with the assumption that performing linear scal-
ing prior to the evaluation of each GPSR model is not necessary if
the correlation-based measures are used as fitness function. The
small difference between the two methods is due probably to the
randomness brought by linear scaling.

The two sets of comparisons confirm that linear scaling is needed
prior to every evaluation when utilising RMSE as the fitness func-
tion, and this should apply to other error-based fitness evaluations
while performing one-step post-hoc linear scaling on the best-of-
run model at the end of the evolutionary process is sufficient when
utilising the correlation-based fitness function.

5.1.3 Comparison between GP with RMSE and GP with correlation-
based fitness functions. Comparing GPCorLS with GPLS, on all the
12 datasets, GPCorLS has a similar training RMSE to that of GPLS.
There is not any significant difference between the learning perfor-
mance of the two methods. A similar pattern can be found when
comparing the learning performance of GPCorLLS and GPLS. How-
ever, regarding the other set of comparison between GPCorLLS
and GPLLS, on 11 of the 12 training sets except for Korns8, GPCor-
LLS obtains significantly smaller RMSEs than GPLLS, which are all
significant. On Korns8, the two methods have similar performance.

The similar learning performance of GPCorLS/GPCorLLS vs.
GPLS, and the notably better learning performance of GPCorLLS
over GPLLS indicate that utilising correlation coefficient as the
fitness function will be less demanding for linear scaling than the
commonly used RMSE, without sacrificing the learning perfor-
mance.

5.1.4 Comparing the Training 𝑅2 Distributions. We also present
the distribution of 50 training 𝑅2s of evolved models in the five
GP methods in Figure 3. Note that a larger 𝑅2 indicates a larger
correlation between the outputs of a model and the target variable,
while the level of 𝑅2 also can tell the difficulty of the problems.
Generally, a relatively smaller 𝑅2 of the examined algorithms in
one dataset indicates it is more difficult, e.g. among the ten datasets,
Parkinson and WineRed are generally the most difficult problems
for the five GP methods.

As shown in Figure 3, on the training sets, GP and GPLLS have
very much the same 𝑅2 distribution (note that the small difference
in the two boxplots on some training sets, e.g. Yacht and WineRed,
is due to the small difference in the boxplot outlier identification).
The 𝑅2s of GP and GPLLS are usually much smaller than those of
the other three GP methods on 11 of the 12 training sets except
for Korns8. This pattern is consistent with that on RMSEs. More
specifically, for a GP method that obtains the smallest RMSEs, e.g.
GPLS on Bodyfat and GPCorLLS on Korns8, it also obtains the
largest 𝑅2/correlation coefficient on the corresponding training set.
Correlation coefficients and RMSEs are consistent indicators of the
training performance. It also indicates that correlation which is the

Figure 4: Boxplots on the Test 𝑅𝑀𝑆𝐸

1-5 standards for GP, GPLLS, GPCorLLS, GPLS, and GPCorLS, respectively.

Figure 5: Statistical Significance Test Results on Test sets with
𝑃 values.

degree of association between the predictions and the target outputs
can be used as a measure of the degree of coincidence.

5.2 Comparisons on the Test Performance
The distribution of the test RMSEs of the best-of-run models in the
five GP methods is shown in Figure 4. The statistical significance
test results are shown in Figure 5. From these two figures, we can
easily see that the overall pattern on the test sets is similar to that
on the training sets. The four GP with coefficient learning methods
generally outperform GP on all the 12 test sets. GPLLS outperforms
GP slightly but not significantly on any of the test sets. The other
three GP methods, GPCorLLS, GPLS, and GPCorLS have much
lower test RMSEs than standard GP on 11 of the 12 datasets except
for Korns8. On Korns8, there is not any significant difference among
all the five GP methods.

The comparisons between the generalisation performance of the
two GP with RMSE methods, and the two GP with correlation coef-
ficient methods also show a similar pattern to that on the training
sets. As shown in Figure 4, GPLS generally achieves notably smaller
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Figure 6: Boxplots on the Test 𝑅2

RMSEs than GPLLS on all the test sets where on 11 of the 12 test
sets are significant but not on Korns8. GPCorLS and GPCorLLS
also achieve similar generalisation performance as what they have
shown on the training sets. The advantage of GPLS over GPLLS on
the test sets confirms that when using RMSE as the fitness func-
tion utilising linear scaling prior to every evaluation also produces
more benefits in enhancing the generalisation of GP than just using
linear scaling once at the end of the evolutionary process. But this
is not the case when using correlation coefficient as the fitness
function. In the latter case, performing a final step of linear scaling
is sufficient to bring notable improvement in the generalisation
performance of GP.

Regarding the comparison between the generalisation perfor-
mance of GP with RMSE and GP with correlation-based fitness
functions, Figure 4 clearly shows that the three methods GPLS,
GPCorLS and GPCorLLS obtain similar generalisation performance.
This confirms that to obtain the same level of generalisation bene-
fits, utilising correlation-based fitness function with one-step (post-
processing) linear scaling is more efficient than RMSE with linear
scaling for each individual.

5.2.1 The Test 𝑅2 Distributions. We also present the distribution
of test 𝑅2s of evolved models in the five GP methods in Figure 6.
Similar to the comparisons on RMSEs, GPLLS and GP have the same
level of 𝑅2, while GPCorLLS, GCorLS, and GPLS obtain similar 𝑅2s,
which are generally much higher than those of GPLLS and GP, i.e.
a much larger correlation value. Moreover, the GP method which
obtains a lower test RMSE also has a larger 𝑅2s on the test sets, e.g.
GPLS on BstHouse and GPCorLS on WineRed and Korns8, and this
pattern can be found on all the 12 test sets and also consistent with
what we have found on the training sets.

Comparing the 𝑅2s on the 12 test sets, the five GP methods
obtain relatively smaller 𝑅2s on DowChem, Parkinsons, WineRed,
and Keijzer5 than on the other eight test sets. This is particularly
the case on Keijzer5 where the five GP methods have a median 𝑅2

close to 0, which means a small correlation. Among these four test
sets, linear scaling helps to improve the correlation values most on
Dowchem from a median value of 0.5 in GP/GPLLS to around 0.9
in the other three GP methods. Linear scaling achieves the smallest
effort on Korns8. This is probably due to GP already obtaining a
relatively small 𝑅2, there is not much space for linear scaling to
improve it. This also explains why the four GP methods with linear
scaling cannot achieve much generalisation gain on Korns8.

5.3 Further Analysis of Evolutionary Training
and Test 𝑅2

To examine the learning and test performance in more detail, Fig-
ures 7 and 8 show the evolving plots of the best-of-generation
models on the training and test 𝑅2 respectively. Note that here in
the two figures, only the performance of models in four GPmethods
have been presented as standard GP and GPLLS share the same
evolutionary plots on 𝑅2.

As shown in Figure 7, the five GPmethods generally obtain stable
learning performance with a small variance among 50 different runs
during the evolutionary process on all the training sets. Compared
with GP/GPLLS, the other three GP methods including GPLS with
help of linear scaling and the two GP with correlation-based fitness
functions, have a much higher 𝑅2 at the very beginning of the
evolutionary process. Moreover, they also have a much higher
convergence rate on the learning performance than GP/GPLLS on
most test sets. This is particularly the case on Bodyfat and Yacht.

The evolutionary plots on the test sets have a similar pattern
to that on the training sets. The five GP methods generally obtain
stable generalisation performance among different runs on most of
the 12 test sets except for Bodyfat, BstHouse and Keijzer5. While
on Bodyfat GPCorLS and GPCorLLS have a higher 𝑅2 at the later
generations than the very first generations, on BstHouse, the test
𝑅2 plots of the two methods are relatively fluctuating. On Keijzer5,
the three GP methods, GPCorLS, GPCorLLS and GPLS, have a large
variance on the test 𝑅2 among different runs, which indicates the
less stable generalisation errors.

As shown in Figures 7 and 8, for the learning and test evolution-
ary plots of the two synthetic datasets, i.e. Keijzer5 and Korns8,
linear scaling plays a different role. On Keijzer5, the four GP meth-
ods have a similar training/test 𝑅2, and the difference between
GP/GPLS and the other three GP methods becomes larger along
the evolutionary process, which means linear scaling works at the
later stage of the evolutionary process. While on Korns8, the case
is completely different. The effort of linear scaling can be found
in the first several generations of the evolutionary process. The
three GP with linear scaling methods have a much larger 𝑅2 than
GP/GPLLS, but the difference becomes much smaller after a few
generations and not much difference can be found at the later stage
of the evolutionary process.

5.4 Comparisons on the Model Size and the
Computational Cost

The model size of the learnt/best-of-run GPSR models and com-
putational cost of the learning process in the five GP methods are
summarised in Table 4. Note that, since GPLLS performs linear scal-
ing as a single post-processing step, it does not change the learnt
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Figure 7: The Training 𝑅2

Figure 8: The Test 𝑅2

model thus it shares the same model size with GP. In addition, the
difference in their computational cost is generally small and can be
almost ignored. So here, we present their results together.

We can see from Table 4, on most datasets except for Bodyfat
and Yacht, the other three GP methods have a slightly larger model
size than that of GP/GPLLS. As aforementioned, on Bodyfat and
Yacht, the three GP with linear scaling methods converge early.
This also explains why their learnt models on these two datasets
are generally smaller than that in GP/GPLLS.

Comparing the computational time of the five GP methods, as
shown in Table 4, GP/GPLLS generally spends a shorter computa-
tion time than the other three methods. This is not unexpected. For
the other three GP methods, GPCorLLS spends additional effort on
obtaining the correlation coefficient and performing linear scaling

Table 4: Model Size (#Node) and Computational Time (in
Second)

Method Model Size Time Model Size Time
GP/GPLLS Tower 112.59±26.59 44.53±25.61 DowChem 89.08±17.92 5.95±6.5
GPCorLLS 118.59±32.21 39.34±26.03 114.18±30.8 7.37±11.76
GPLS 121.2±32.58 45.78±30.79 117.98±27.92 14.0±19.56
GPCorLS 118.55±32.64 47.1±26.72 113.16±21.63 17.48±23.17
GP/GPLLS Bodyfat 111.2±34.45 6.17±6.2 Parkinsons 168.55±56.24 44.17±28.29
GPCorLLS 109.29±28.14 9.3±17.41 207.57±44.41 44.17±27.4
GPLS 104.96±22.96 15.52±16.39 212.88±48.31 44.33±30.42
GPCorLS 111.94±30.07 6.31±7.37 213.12±47.0 49.83±29.07
GP/GPLLS CalHouse 106.67±21.12 129.09±158.77 Yacht 172.47±45.44 15.6±20.04
GPCorLLS 131.0±40.63 131.25±154.7 111.94±23.68 6.76±5.94
GPLS 133.12±32.18 199.01±204.39 110.88±22.38 15.55±18.62
GPCorLS 142.55±45.86 193.53±199.48 110.35±22.95 13.98±17.83
GP/GPLLS BstHouse 116.63±23.44 7.96±10.81 Energy 129.33±33.3 13.56±20.04
GPCorLLS 129.98±31.91 9.51±12.42 152.31±35.75 18.16±20.66
GPLS 124.47±26.96 22.16±22.0 151.73±39.87 23.59±25.55
GPCorLS 133.57±32.67 10.8±17.37 149.82±39.73 20.55±24.08
GP/GPLLS Concrete 114.31±25.05 9.53±11.38 WineRed 112.27±27.63 12.47±16.15
GPCorLLS 141.24±33.98 15.04±18.56 133.82±30.6 20.09±23.92
GPLS 141.16±34.87 29.62±27.96 138.39±31.07 31.21±29.74
GPCorLS 133.08±31.24 11.3±13.45 138.02±34.51 25.66±23.84
GP/GPLLS Keijzer5 337.53±60.8 46.31±25.72 Korns8 140.51±31.59 53.37±30.62
GPCorLLS 330.67±90.44 50.72±22.93 165.69±48.9 54.48±28.35
GPLS 328.31±90.08 53.01±30.3 182.67±72.35 45.52±33.14
GPCorLS 328.92±95.88 50.18±28.2 175.82±62.83 46.08±25.46

for the evolved models while the other two GP methods perform
linear scaling for each model during the evolutionary process which
is generally more time-consuming. Among the three GP methods
which notably enhance the performance of GP, GPCorLLS is the
most efficient. It has a shorter computational time than GPCorLS
and GPLS on nine of the 12 datasets. On Bodyfat, Concrete and
Korns8, GPCorLS has a smaller computational cost than GPCorLLS.
This could be due to the (slightly) smaller models in GPCorLS which
save the evaluation time. The large difference in the evaluation time
for small and large models also explains why the standard deviation
of the computation time on some datasets with a large number of
instances, e.g. CalHouse, is so large. In general, the slightly higher
computational time in GP than GP is worth considering the signifi-
cant improvement in the learning and generalisation performance
of GP.

Comparing GPCorLLS with GPLS which are the two GPmethods
we recommend when considering linear scaling for learning coeffi-
cient for GP, on 11 of the 12 datasets except for Korns8, GPCorLLS
is more efficient than GPLS.

6 CONCLUSIONS AND FUTUREWORKS
This work investigated and compared two sets of evaluation strate-
gies combined with linear scaling for GPSR to relieve it from learn-
ing coefficients using genetic operators and focused more on search-
ing symbolic regression models with the desired structure. The
investigations in this work confirm that both, an error measure
with linear scaling prior to each evaluation and the Pearson corre-
lation coefficient based measure to search for models with a similar
structure to the desired models, can achieve the goal of relieving
GP from learning coefficients with enhanced learning and gener-
alisation ability. A comparison on model size and computational
costs confirms that freeing/relieving GPSR from learning coefficient
leaves more space for searching different model structures. This
way GP learns models with a slightly higher complexity but better
quality. Compared to RMSE which needs to perform linear scaling
prior to every evaluation, the correlation-based fitness function
only needs to perform a one-step linear scaling of evolved models,
which saves linear scaling effort and is more efficient.
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