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Abstract. The Protein Optimization Evolving Tool is a genetic pro-
gramming based peptide generation tool which has successfully created
novel peptides with improved performance for MRI imaging. However,
like all supervised machine learning techniques, it may overfit to its
library of training peptides and create peptides which do not improve
functionality. To overcome this problem we create symbolic regression
models to act as another predictor of peptide function. We create a set
of 76 features of physicochemical, theoretical and composite properties
for each peptide and evolve the models using Grammatical Evolution
on two datasets, one containing 74 peptides and the other 100 peptides.
Models trained using these 76 features can successfully predict peptide
functionality with a median MSE of 0.427 on the first dataset and 0.179
on the larger dataset, achieving state of the art results on both. We next
investigate if a reduced set of 8 real-world features, which could result
in more interpretable models, can accurately predict protein functional-
ity. The models created on this reduced set were outperformed by model
with used the full set on features on the first dataset but were statisti-
cally equivalent on the second dataset. Finally, we down sample the data
at 10%, 33% and 50% to evaluate the robustness of this approach. Our
results show that models trained on as little as 7 peptides can be used as
an additional measure of functionality within the Protein Optimization
Evolving Tool.

Keywords: Peptide Generation · Symbolic Regression · Grammatical
Evolution

1 Introduction

Protein design and discovery is the foundation of many medical advances, from
drug and MRI contrast design, to creating proteins for cellular reprogramming.
Recent advances in structural protein prediction have enabled rapid design of
proteins with desired structural properties. However, how to design proteins with
specific functional properties is not well-understood. This is critically important
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for smaller proteins, peptides, where there is little to no secondary/tertiary struc-
ture to predict.

A Genetic Programming (GP) approach for novel peptide discovery, the
Protein Optimization Evolving Tool (POET), allows for the rapid functional
improvement of peptides and proteins sequences [13,20]. POET differs from
transformer-based Protein Language Model (PLM) approaches as improved,
novel peptides can be discovered with very few training examples [5]. This is
crucially important because many useful peptides will be novel and it is likely
very few exist in the search space. Therefore, building a large library - necessary
to train a PLM - may not be feasible or prohibitively expensive. This means
POET can discover novel peptides that a PLM may be unable to produce while
also being faster and cheaper to run. Crucially, POET allows for explainability
of the peptides found, impossible when using PLMs.

The problem of overfitting in PLMs, when PLMs generate incorrect or non-
sensical content, is a well known and researched phenomena [21]. To date, how-
ever, there has been no research examining the problem of overfitting within
POET. Due to the small peptides which POET creates (often between 10 and
12 amino acids long), using powerful protein structure prediction tools, such
as AlphaFold, will not be insightful because processes such as folding will not
carry important influence in such small proteins. Therefore, we propose to use
a symbolic regression approach as a secondary prediction tool to screen gen-
erated peptides from POET and remove predictions which may be a result of
overfitting in the POET process. We use Structural Grammatical Evolution to
create symbolic regression models to predict protein function using as features
76 physicochemical, theoretical and composite properties of the generated pep-
tides. We also build models using a reduced set of real world features in order to
increase interpretability of the best models found. Finally, we randomly sample
the original dataset to create datasets that are 10%, 33% and 50% of the size of
the original. We train models using these datasets in order to gauge how effec-
tive and robust the proposed symbolic regression methods can be on screening
POET predictions on different domains when there may be very limited data.

Section 2 reviews the background to this research, including explaining pep-
tides, peptide creation using AI and POET and how overfit predictions using
POET can be identified. It also briefly discusses Grammatical Evolution and
Structured Grammatical Evolution, the technique used to create the models in
this study. Section 3 details the domain in which the peptides are being created,
describes the features used within our symbolic regression approach and the
experimental parameters used. Section 4 presents the main results of the experi-
ments described in Sect. 3. Finally, Sect. 5 summarizes the research and discusses
future work suitable for investigation.
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2 Background

2.1 Peptides

Peptides are molecules composed of amino acids (AA) joined by peptide bonds.
Peptides are short sequences and usually between 5 and 40 AA in length and
have a diverse range of applications and many advantages, including their ability
to be produced at a large scale. Peptides play an extremely important role in the
life cycle of organisms and perform many natural functions, including forming
muscle tissues, creating enzymes and are the building blocks of food. Combining
amino acids in different orders and lengths produces a unique molecular structure
and will result in a peptide with a unique biological function with differing levels
of toxicity, stability, digestibility and other properties. Identifying peptides which
can perform a particular application is therefore a difficult task as most of the
possible proteins are not even being used or even explored by nature [2].

Significant advancements in synthetic and recombination technologies have
been a driving force in bringing bio-active peptides back to center stage as thera-
peutic and diagnostic tools. The peptide global market is rapidly expanding with
its value estimated at $14.4 billion, accounting for 1.5% of the total worldwide
pharmaceutical market [1]. However, similar advances in artificial intelligence
(AI) and data analytics methods for peptides have lagged behind this innova-
tion. Recent advances in structural protein prediction have enabled rapid design
of proteins with desired structural properties. However, understanding how to
design proteins with specific functional properties is still challenging. This is
critically important for peptides as, being very small proteins, there is often
less secondary or tertiary structure to predict and the functionality has a great
dependence on extrinsically bound factors.

A major stumbling block is the lack of high quality data because peptide
datasets are generally much smaller than protein training datasets. This makes
it much harder to build relevant AI representations, especially for non-canonical
amino acids.

2.2 AI Peptide Design and POET

There are a total of 20 natural amino acids that can code for proteins, therefore
finding a peptide comprising of 12 amino acids means the search space has
2012 amino acid sequences. This makes designing new peptides, even very small
ones, an incredibly complex task due to the vastness of the search space. Indeed,
millions of years of natural evolution have only created a fraction of the potential
peptides possible.

Evolutionary algorithms are well suited for exploring such spaces and have
already been used to design novel peptides. The Protein Optimization Engineer-
ing Tool (POET)1 is a GP tool for predicting protein functionality to generate
candidate peptides [13]. In contrast to transformer based Large Protein Lan-
guage models it uses directed computational evolution to discover potentially
1 https://github.com/elemenohpi/POET.

https://github.com/elemenohpi/POET
https://github.com/elemenohpi/POET
https://github.com/elemenohpi/POET
https://github.com/elemenohpi/POET
https://github.com/elemenohpi/POET
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useful protein structures and substructures. It has been demonstrated previ-
ously to successfully create peptides with improved performance on magnetic
resonance imaging using chemical exchange saturation transfer (CEST). POET
has been shown it can produce peptides, using sparse data, with superior features
that have not been - and may not be - developed by deep learning techniques.

POET uses GP to learn valuable protein subsequences. These sequences can
either be represented as motifs, a collection of AAs, or as regular expressions [20].
For both approaches, POET assigns a weight to these sequences and assembles
sequences and weights into a model. That is to say, a POET model, or indi-
vidual, is a collection of sequences (either motifs or regular expressions) and an
associated weight for each sequence. During evaluation of an individual, POET
will check each peptide of the training set for the existence of the sequence in the
individual and update the predicted score of the model for that peptide accord-
ing to the weight of that sequence. The final score of a model is then compared
to the known value of CEST contrast for the peptide and the model error is
calculated for each peptide in the training set. The evolutionary process allows
for both the changing of the sequences and the weight values in the model. Once
enough generations of mutation and selection have been done, POET chooses
the proteins that are fittest in predicted function.

2.3 Grammatical Evolution

Grammatical Evolution (GE) is a popular evolutionary computation technique
which creates structures in any arbitrary language using a grammar [19], usually
a context-free grammar written in Backus Naur Form (BNF) [10]. The gram-
mar defines the possible structure of final programs or expressions and therefore
establishes the search space of the problem. Grammars have shown many ben-
efits, including allowing for domain knowledge to be easily encapsulated and
incorporated into the creation of individuals, among many others [15].

To create our symbolic regression models Structured Grammatical Evolution
(SGE) is used [12]. SGE is a variant of GE proposed to overcome some of the
perceived weaknesses of GE while retaining GE’s strengths. Namely, SGE aims
to reduce the many invalid (unmapped) solutions GE can create during a run
and the poor locality it exhibits when performing crossover and mutation. It has
shown it can outperform GE on most tasks and continues to grow in popularity.
In the context of creating a peptide regression model, SGE has shown that it
suffers from less disruption through crossover and mutation than traditional GE,
therefore creating solutions which tend to exhibit limited bloat. Having smaller
solutions with as little bloat as possible is crucial for model interpretability.

2.4 Peptide Screening

A unique characteristic of POET predictions for CEST contrast is that they
have been experimentally synthesized and validated under wet-lab laboratory
conditions for both POET approaches, using motifs and regular expressions. 10
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peptides were generated by each technique for each of two cycles, or epochs,
giving a total of 40 peptides.

Given the time and cost associated with these experiments, it is crucial that
POET produces high quality predictions and does not suffer from hallucinations.
This can easily happen when very short sequences (as low as 1 or 2 AAs) are
given particularly large weights, which will result in POET potentially overusing
small sequences to make predictions repeating the same AA continually. From an
expert’s point of view it can be difficult to distinguish if POET is being creative
or nonsensical.

There are some potential avenues which can provide context to POET gen-
erated peptides:

Structural Information: Protein structure prediction algorithms, such as the
revolutionary AlphaFold [8], have transformed protein modeling and have come
close to solving the protein folding question. However, POET usually creates pep-
tides as small as 10-12 AAs in length which do not exhibit these folding behav-
iors. Therefore, as no complex folding or other behavior will occur, AlphaFold
or any other system of this type will not generate many useful insights into the
predicted peptide.

Protein Language Model: Foundational PLMs have the ability to generate or
predict the fitness of a protein sequence. However as above, CEST contrast
peptides are often too small to be used. For example, ProGen2 [17], the state-of-
the-art suite of PLMs, specifies a minimum protein size of 50 AA for prediction.

Fine-tuned PLM: Creating a custom PLM, specializing on the particular task
at hand is another potential solution. However, as well as having to deal with
hallucinations in this model, the data required for fine-tuning is often orders of
magnitude larger that what is available from experiments. As well as the expense
of collecting and curating this vast amount of data, there is also the expense of
training and running the model.

Peptide Feature Regression Model: A final potential strategy to give a generated
POET peptide context could be to build a regression model based on the features
of the peptides in the training set, and assign the peptide a secondary score [11].
These features would be a mix of properties relating to the AA make up of the
peptide and would ensure that POET predictions share similar characteristics
(positive or negative charge, molecular weight, etc.) to those in the training set.
It is this approach we shall investigate in this paper.
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3 Experimental Setup

3.1 CEST Contrast Dataset

CEST is a magnetic resonance imaging (MRI) contrast approach in which pep-
tides with exchangeable protons or molecules are saturated and detected indi-
rectly through enhanced water signals after transfer [6]. Two datasets are used
for Epoch 1 and Epoch 2. Epoch 1’s training set consists of 74 peptides, all
of length 12, with known normalized CEST contrast scores, its test set has 20
peptides (10 predictions each from POET using motifs and regular expressions).
Epoch 2 has a training size of 100, made up of the original 74 peptides and the
20 predictions from Epoch 1 plus an additional 6 peptides. The test set of Epoch
2 is 20 further predictions from POET, again 10 from each POET variant.

3.2 Peptide Features

To build the peptide symbolic regression model we collected 76 peptide features
related to several physicochemical, theoretical and composite properties of the
12 amino acids constituting a sequence [18]. We use these features to build a
regression model to act as a secondary predictor for CEST contrast which can
be used to screen the predicted sequences from POET. A description of each of
the features used is shown in Table 3.2.

While helpful in prediction, many of these features are composite or con-
structed features and do not have real world significance for domain experts. In
order to increase the interpretability of final models, we also use a reduced set
of real world properties which can be given to a domain expert and should allow
them to apply their expertise and potentially aid POET during the evolutionary
search or in the optimisation step of generating new peptides.

The features included in the reduced set during experimentation were:

1. Charge
2. Polarity
3. Hydrophobicity
4. H-bonding

5. Molecular Weight
6. Mass over Charge
7. Isoelectric Point
8. Lipophilicity
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3.3 Experimental Parameters

The full experimental setup and all associated parameters are shown in Table 2.
The initial population was created using Local Optimised Probabilistic Tree
Creation 2 (LO-PTC2) [14]. We compare the results of the SGE models with 3
other machine learning methods; Random Forest [3], XGBoost [4] and LightGBM
[9]. The hyper-parameters for each of these methods underwent a simple grid-
search optimisation prior to execution. The grammar used is shown in Fig. 1.
There are four protected operators used: protected exponential (which returns 1
if a value error occurs), protected log (which returns 0 if a negative number or
0 is passed) and protected square root (which returns the absolute value of the
argument passed). Protect division was not used due to its negative impact on
generalisation performance [16].

Table 2. List of the main parameters used to run SGE

Parameter Value

Runs 50

Total Generations 500

Population 300

Elitism 1%

Selection Tournament (5)

Fitness Function r2

Crossover 0.9

Mutation 0.1

For LO-PTC2:

Minimum Expansions: 4

Maximum Expansions: 30

Maximum Initial Evaluations: 50

Fig. 1. Grammar used for the SGE symbolic regression experiments.

4 Results

4.1 Best Regression Method

A comparison of the regression approaches for each Epoch dataset is shown
in Table 3. SGE was seen to perform the best of all models on both epochs.



500 A. Murphy et al.

In Epoch 1 it attained a mean squared error score (MSE) of 0.104, followed
by LightGBM and Random Forest at 0.212 and 0.213, respectively. The worst
performing method was XGBoost at 0.266. This is perhaps unsurprising because
GP has been shown to be particularly effective in creating accurate symbolic
regression models on very few data points. On the larger dataset in Epoch 2,
SGE remains the best performing method, halving its MSE and achieving a
best test score of 0.051. It again outperforms LightBGM, 0.078, Random Forest,
0.086 and XGBoost, 0.129. These results show that SGE finds the state-of-the-
art results and, crucially, SGE will yield an interpretable model which allows
inspection by a domain expert.

Table 3. Experimental Test Results for the Best Model found for each method on
both Epoch 1 and Epoch 2 Test sets. The best result is shown in bold.

Epoch Method Best MSE

SGE 0.104

1 Random Forest 0.213

XGBoost 0.266

LightGBM 0.212

SGE 0.051

2 Random Forest 0.086

XGBoost 0.129

LightGBM 0.078

4.2 POET Screening

We next investigate if the performance of SGE is accurate enough to act as a
screening method for POET. As well as reporting the overall MSE, results were
split by POET type (motif and regular expression) to investigate if there was
any difference in the performance of predicting peptides generated by the two
approaches. The first approach, Full, uses all 76 features to build models while
the second approach, Reduced, uses the reduced set of 8 real-world features.
Both approaches were performed on both sets of data, Epoch 1 and Epoch 2.
The results from these experiments are seen in Table 4. We report the median
test performance of the best of run model across all 50 runs. The performance
of the models on each POET approach, using motif’s or regular expressions, is
shown (third and fourth columns) as well as the overall MSE on all peptides
predicted using POET (fifth column). The last column show’s the MSE of the
best model found from all 50 runs. Using Epoch 1 data, models performed bet-
ter predicting peptides produced from POET motif than POET with regular
expressions, regardless of using the full or reduced data. This was not the case
for Epoch 2, with both performing equally.
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Table 4. Experimental Test Results using both the full and reduced datasets. Each
setup was run 50 times. Underlined results denote that the setup performed significantly
better than the other according to Wilcoxon tests.

Epoch Dataset Median MSE Motif Median MSE Regex Median MSE Best MSE

1 Full 0.222 0.427 0.337 0.104

Reduced 0.184 0.688 0.469 0.205

2 Full 0.185 0.179 0.188 0.051

Reduced 0.231 0.253 0.257 0.031

It can be seen that using the full data in Epoch 1 leads to more accurate
symbolic regression models, column four in Table 4, with models trained with
all 76 features, Full, statistically significantly outperforming models trained on
the reduced dataset, Reduced. Full models attained a median MSE of 0.337
compared to a median MSE of 0.469 for models trained using on 8 features. The
best model found on the Epoch 1 dataset used the Full dataset, finding an MSE
of 0.104.

Using the larger Epoch 2 dataset both the Full and Reduced feature sets
were seen to find comparable results, with their performance difference not sta-
tistically significantly different. Indeed, the best model found throughout all
experimentation was created using the reduced dataset, attaining an MSE of
0.031, compared to the full dataset with found a best test error of 0.051

The plots of the best performing models for Epoch 1 and Epoch 2 can be seen
in Fig. 2 and Fig. 3, respectively. Each plot shows the predicted score from the
SGE symbolic regression model on the x-axis and actual wet-lab measurement
of the peptides which were predicted using POET on the y-axis. Each shape rep-
resents a different POET approach, circles are motif and triangles are regular
expression, with filled shapes designating predictions from the model where all
76 features were used while hollow shapes are those predictions from the model
which used the reduced set. It should be noted that each of these peptides was
predicted by POET to have scores ≥ 2.0. In a real world context, all peptides
which would fail to score 1.5 would not be synthesized and measured in the
wet lab due to the cost and their relative lack of improvement over the current
best peptide. For Epoch 1, it can be seen that both SGE symbolic regression
models using the full data (filled circles and triangles) and the reduced data
(hollow circles and triangles) can successfully identify five of the worst perform-
ing peptides, correctly predicting scores of ≤ 1.5 rendering them not desirable
for synthesis. These five are shown in the green shaded area and were from
POET Motif, which the models were better at modeling. The models were not
unerring, however, incorrectly missing two predictions which should have been
removed (bottom right red area) and the reduced feature models incorrectly rec-
ommend to remove up to four peptides which were in fact promising (top left
red area). Epoch 2 produced far better POET and symbolic regression models,
easily observed in Fig. 3. There was only one poor POET prediction from POET
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Fig. 2. Plot of the predicted scores from the symbolic regression model vs the actual
measured CEST contrast in the wet lab for the POET predicted peptides in Epoch 1.

Regex and this was identified by models using the full and reduced features. It
is notable too, that the symbolic regression models did not recommend to screen
peptides which are promising as none fall in the red regions.

4.3 Explainability

We next look at the actual expressions which are found using SGE. By investi-
gating the expressions themselves the domain expert may be able to understand
the logic of the model and can aid the search by, for example, augmenting the
grammar to bias certain features or encapsulate certain functionality to protect
it from destruction. The best of run models from each setup from Table 4 are
shown in Table 5. As highlighted earlier, the models using the full dataset make
use of many composite features, such as the structural topology scales, which
have no real world interpretation but are instead meta-features or components
from PCA analysis. This is seen in the first and second expressions, which use
stScale3, ProtFP4, stScale8 and stScale7. ST-scales were created by perform-
ing PCA on structural and topological variables of AAs. Likewise, the ProtFP
descriptors are found using PCA and are useful for analysis but both sets of
features inhibit interpretability. The models using only real world features do
not contain these composite features but are more verbose and contain many
non-linear functions making their interpretability equally challenging. While the
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Fig. 3. Plot of the predicted scores from the symbolic regression model vs the actual
measured CEST contrast in the wet lab for the POET predicted peptides in Epoch 2.

presence or absence of certain features may allow some insight to be gained into
what logic the model is using, the models in their current state cannot be said to
allow much explainability. Indeed, an initial consultation with a domain expert
in the field confirmed that, while the predictions were indeed very useful, the
models themselves in their current state are not.

Table 5. Best of run expressions found.

Epoch Dataset Expression

1 Full stScale3/(exp((exp((sin(ProtFP4) + exp(stScale8))))))

Reduced stScale3 ∗ (exp((stScale7 − (exp((exp(ProtFP4)))))))

Full (Polarity/(((exp(pI))/((Lipophilicity − (Polarity − ((sin((mw + mz)))

2 /(exp((cos(Hydrophobicity))))))) ∗ (sqrt(charge)))) − Hydrophobicity))

Reduced (cos(((Lipophilicity/(log(pI))) − (sin(((H − bonding ∗ Lipophilicity)

/(sqrt(H − bonding))))))))
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4.4 Robustness on Much Smaller Datasets

We finally examined the robustness of the SGE symbolic regression approach
by randomly sampling Epoch 1 data at 10%, 33% and 50% at the beginning
of each run and training models on this severely downsampled dataset. The
models were trained using all 76 features and the experimental parameters were
identical to those used in Sect. 4.2. The results can be seen in Table 6. As with
Table 4, we show the median test performance of the best of run model across
all 50 runs, split by POET approach and overall, and report the results of the
single best model found across all 50 runs. SGE showed surprisingly strong per-
formance across all sample sizes and there no statistically significant difference
was observed. A 10% random sample, yielding a dataset of just 7 or 8 peptides,
allowed SGE to generate models with a median MSE of 0.643, worse than 0.337
found using the full dataset, but the best model attained an impressive MSE of
0.118 which is only slightly worse than the best model found in experimenta-
tion which achieved an MSE of 0.104. These results highlight the robustness of
the proposed method and suggests it’s applicability alongside POET in a wide
variety of domains regardless of the size of training dataset.

Table 6. Experimental Test Results using the randomly sampled datasets using all
features. Each setup was run 50 times. The results were not significantly different from
each other, indicating that extreme down sampling still leads to robust models.

Epoch Sample Used Median MSE Motif Median MSE Regex Median MSE Best MSE

10% 0.402 0.895 0.643 0.118

1 33% 0.351 0.715 0.539 0.113

50% 0.316 0.696 0.535 0.116

5 Conclusions and Future Work

We successfully created symbolic regression models using Structured Grammat-
ical Evolution to identify overfit peptides produced using the Protein Optimiza-
tion Evolving Tool. Symbolic Regression models were built using 76 features
which consisted of physicochemical properties, theoretical properties and com-
posite properties of the peptide sequences. Structured Grammatical Evolution
found the state of the art models when compared to Random Forest, XGBoost
and LighGBM on two datasets which aim to predict chemical exchange satura-
tion transfer contrast, one consisting of 74 peptides and the other 100 peptides.

In order to increase the interpretability of the final models found, we con-
ducted experiments on a reduced dataset which only contains real world peptide
properties, such as charge and molecular weight. On the first test dataset the
full feature models outperformed the reduced feature models, however no sig-
nificant difference was observed on the second, larger test set. Both methods
were able to identify overfit predictions and can be used a secondary measure of
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peptide functional performance. The best expressions found were next examined
for their interpretability. Reducing the number of composite features was not
seen to greatly increase the insight into the models due to their size and use of
highly non-linear expressions.

Finally, we randomly down sampled the first training dataset and conducted
experiments with training sets containing as few a 7 peptides. Our results showed
that these heavily reduced datasets, while worse than models trained on the full
training data, could attain competitive performance and shows that symbolic
regression approaches using peptide features can be used in with paltry amounts
of peptide data allowing labs with limited resources to maximise the effectiveness
of the Protein Optimization Evolving Tool.

There are many avenues for future work. One is to increase interpretability
by making interpretability an explicit objective of the search. This may also be
aided by removing non-linear functions in the grammar and performing further
grammar simplifications. The approach could also be improved by using active
learning to select the most relevant peptides to use for training, which may allow
training sets with handfuls of peptides to achieve the same performance as those
with hundreds or thousands of peptides [7].
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