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Spontaneous Group Formation in the Seceder Model
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The seceder model shows how the local tendency to be different gives rise to the formation of groups.
The model consists of a population of simple entities which reproduce and die. In a single reproduction
event three individuals are chosen randomly and the individual which possesses the largest distance to
their center is reproduced by creating a mutated offspring. The offspring replaces a randomly chosen
individual of the population. The paper demonstrates the complex group formation behavior and its
dependency on the population size.
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The question of how groups emerge spontaneously from
local interactions of individuals is investigated in many
different disciplines like biology, sociology, or computer
science. There has also been an increasing interest from
statistical physics to deal with simple evolutionary models
[1–3]. In evolutionary biology the question how evolu-
tionary branching and speciation take place is, for example,
approached by developing formal models which demon-
strate the formation of groups [2–6]. These models are
individual based in contrast to macroevolution models
which assume a species or group as a given elementary
unit [1,7,8]. The diffusion and separation of individuals
in genotype or trait space is achieved either by drift in a
neutral fitness landscape [4] or by introducing an explicit
fitness function [2,3,9] which causes disruptive selection.
Sometimes additional explicit functions are introduced to
model strength of competition between individuals and
ecological interactions [2]. Such functions are also needed
to model the benefit of communication among groups on
several levels [3].

The seceder model developed in this Letter is a micro-
scopic model of an evolving population where the fitness
landscape depends on the current population structure, like
in [2,4,10]. The proposed mechanism is simple compared
to other individual-based models [3,11,12] for the forma-
tion of species or hierarchical organizations. But despite
its simplicity it shows comparably complex behavior. The
seceder model does not require global energy functions
[2,3], spatially separated populations [5,13], or sexual re-
combination [2,4,9].

The question of how microlevel actions explain
macrolevel regularities is also a central question in
sociology [14–16]. Here, the seceder model may be a
contribution as a social mechanism [15] for explaining
how individual imitative behavior for the purpose of being
different counterintuitively can lead to the formation of
groups on the macrolevel. In this context, the seceder
model could be seen as reflecting a choice situation where
individuals collect a bounded amount of information by
observing other individual’s behavior and then choosing
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the most unique alternative. In this way, the model could
be used as a description for how groups with different
dress codes emerge in populations of individuals, as a
consequence of the individuals’ need to express their
individuality [17].

It should also be noted that the mechanism of the seceder
model can be used to build practical applications in com-
puter science. For example, it can be used as a diversity
maintenance method for evolutionary optimization algo-
rithms [18] where the reduction of diversity often causes a
premature convergence and thus a bad performance of the
optimization algorithm [19].

In the seceder model the formation of groups is an
emergent process based on the following simple local
third-order collision rule: Three individuals are chosen
randomly from the population, and the individual which
has the largest distance in a predefined metric to the other
two is reproduced by creating a mutated copy (offspring).
More formally, the seceder model is defined as follows:
Each individual is represented by a real number. The
population of size M is represented by an array (or
multiset) P � �p1, . . . , pM� of individuals pi [ R. The
population evolves over time according to the following
algorithm: (1) Three individuals s1, s2, s3 are chosen
randomly from the population without removing them.
(2) One individual m � fsel�s1, s2, s3� is selected as a
parent according to the selection function

fsel�s1, s2, s3� �

8<
:

s1 : F1 $ F2 ^ F1 $ F3 ,
s2 : F2 $ F1 ^ F2 $ F3 ,
s3 : otherwise ,

(1)

with Fi � jsi 2
1
3 �s1 1 s2 1 s3�j. (3) The offspring l �

m 1 N�0, 1� is created by adding a normally distributed
random number with mean 0 and variance s � 1 to the
parent m. (4) The offspring l replaces a randomly chosen
individual of the population.

M iterations are called a generation which is used to
measure time [12]. Distance between two individuals
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is measured by the Euclidean distance (see definition of
Fi). For our experiments the population is initialized with
copies of one genotype, pi � 0 at t � 0. The algorithm
implies that the population size is constant and that an in-
dividual may have an arbitrary number of offsprings in-
cluding no offspring.

To visualize how the population structure evolves over
time we plot individuals of an evolving population as dots
in a 2D plane (Figs. 1 and 4). An individual’s value pi

specifies the ordinate (vertical position) of the dot and the
time t the abscissa (horizontal position). We refer to the
individual’s value pi as its genotype. The diameter of a
population P is the largest distance between individuals
that can be found in P.

We also measure the number of groups. Here, a group
is defined as a subset of the population which is separated
from the rest of the population by at least a distance equal
to d, called gap size. The number of groups is then com-
puted by partitioning the population P so that (1) each
element in P is assigned to exactly one partition, (2) the
distance between two objects belonging to different parti-
tions is at least d, and (3) a partition or group cannot be
subdivided into two subgroups which are separated by at
least a gap size d.

We begin our discussion with the time evolution of the
population structure in the transient phase when the popu-
lation is initialized at t � 0 with copies of the same in-
dividual pi � 0. Figure 1 shows that at the outset the
population spreads out quickly and increases its diameter.
For population sizes M . 100 a complex group formation
pattern appears. New groups are formed by diversifica-
tion (splitting up) of existing groups. Existing groups may
also vanish (go extinct). For very small population sizes
(M , 10) group formation cannot be observed. For popu-

FIG. 1. Typical evolution of the population structure for popu-
lation size M � 20, 200, 2000, and 20 000 of the seceder model.
The population is initialized at t � 0 with pi � 0. At each time
(generation) every individual of the population is plotted as a
small dot with its genotype value specifying its ordinate value
(vertical position).
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lation sizes around 20 two groups are formed only tem-
porarily. The qualitative behavior of the time evolution
of the population diameter also depends on the popula-
tion size (Figs. 1 and 2). For small population sizes the
diameter increases first and then saturates. It fluctuates
heavily because groups at the population rim vanish. For
large population sizes the diameter seems to increase for-
ever with linear speed. Because of the existence of random
death the upper or the lower arm may die out with a very
low probability. In a large population the probability that
one main arm dies out is small enough to be neglected.

Figure 3 shows how the number of groups depends on
the population size. Average values of many runs are
shown for each population size and for three different gap
sizes d � 10s, 20s, and 30s (here, mutation strength
s � 1). The figure supports the impression gained from
single runs (like shown in Fig. 1) that there is a nontrivial
relationship between the population size and the qualitative
behavior of group formation. Two “steps” can be clearly
observed for all three gap sizes. The question whether for
M . 400 another step appears cannot be answered yet.

In order to illustrate the long-term behavior of the se-
ceder model Fig. 4 shows instances of four runs with
population size M � 20, 200, 2000, and 20 000. The
simulation time is 50 times longer than in Fig. 1. On this
scale groups cannot be distinguished when the population
is small (here, M � 20) because the groups are too close
and too short lived. The time evolution appears to be a
random walk through genotype space. For large popula-
tion sizes (here, M � 2000, and 20 000) stable main arms
form. The typical pattern is three main arms where the up-
per and lower arms disperse and the middle arm stays close
to the center of the population. The run with M � 200 il-
lustrates that a main arm may die out by chance and that
new arms can appear. Looking at Figs. 1 and 4 it seems
that the evolution pattern of the population structure is
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FIG. 2. Change in the average diameter over time for popu-
lation size M � 20, 200, 2000, and 20 000. The average is
taken over 1000, 200, 20, and 10 runs for each population size,
respectively.
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FIG. 3. Average number of groups measured at t � 2000 for
different population sizes and three different gap sizes d �
10s, 20s, and 30s. Average taken over 300 runs (for M ,
120) and 100 runs (for M . 120) for each population size M.
Population initialized with pi � 0 at t � 0. Error bars indi-
cating the standard error are plotted for a quarter of measured
points.

fractal. That can, for example, be seen, the cuspslike struc-
tures formed in Fig. 1 in the M � 20 000 population.

In the next paragraph an ordinary differential equation
(ODE) model is introduced for the special case of a popu-
lation with only a few very different genotypes. The ODE
model assumes that the offspring is equal to one of the
three individuals chosen in one step. The resulting ODE
model is similar to the hypercycle model [10], the catalytic
network equation [20], and the replicator equation [21].

Assume that the population represented by the multiset
P � �p1, p2, . . . , pM� consists of n different genotypes
given by the set G � �g1, g2, . . . , gn�, n ø M such

FIG. 4. Typical long-term evolution of the population structure
for population size M � 20, 300, 2000, and 20 000. For smaller
populations (e.g., M � 200), which are beyond the stage where
they can form stable groups, sometimes do not show the full
almost symmetric boundaries as the larger populations (M �
2000, M � 20 000) do. Sidearms die out and therefore the
population diameter shrinks drastically.
that ; p [ P : p [ G. We further assume that the
distance between two genotypes gi , gj [ G, i fi j is
large, that the mutation rate s is small (e.g., s ! 0),
and that the population size M is large (e.g., M ! `).
Then the state of the population can be represented by
a point x � �x1, x2, . . . , xn� in the concentration simplex
Sn � ��x1, x2, . . . , xn� j

Pn
i�1 xi � 1, xi $ 0� where xi is

the concentration of genotype gi in P. The dynamics of
the model is given by the following ODE:

�xl �
nX

i,j,k�1

a
l
i,j,kxixjxk 2 xl for l [ �1, 2, . . . , n 2 1� ,

(2)

xn � 1 2

n21X
i�1

xi . (3)

The rate constants a
l
i,j,k are defined by

a
l
i,j,k �

Ω
1 : gl � fsel�gi , gj , gk� ,
0 : otherwise .

(4)

Note that for the seceder model the dilution flux F�x� �Pn
i,j,k,l�1 a

l
i,j,kxixjxk � 1 because at each step exactly

one individual is removed from the population. The ODE
system has been derived by interpreting the seceder model
as a chemical reaction system where three molecules
gi , gj , gk collide in order to catalyze the formation of a
fourth molecule gl . The reaction is of third order and

can be written as gi 1 gj 1 gk
a

l
ijk
! gi 1 gj 1 gk 1 gl .

Usual mass action kinetics and consideration of the dilu-
tion flux leads to Eq. (2). Because gl is equal to gi , gj , or
gk , the reaction is a replication [10,21].

To demonstrate the ODE model we consider
the following example where the population con-
sists of only n � 3 “symmetric” genotypes: G �
�g1, g2, g3� � �g1, 0, 2g1� � �105, 0, 2105�. A similar
situation is shown in Fig. 4 for M � 2000 (bottom, left).
The ODE system �x � � �x1, �x2� � F�x� is defined by

F�x� �

√
x3

1 1 3x1x2
2 1 3x1x2

3 1 3x1x2x3 2x1

x3
2 1 3x2x2

1 1 3x2x2
3 2x2

!

(5)

and x3 � 1 2 x1 2 x2. For a fixed point analysis

we set F�x� !
� 0 and obtain the following fixed points x [

��1, 0�, �0, 1�, �0, 0�, �0.5, 0.5�, �0.5, 0�, �0, 0.5�, �0.4, 0.2��.
For a stability analysis we derive the Jacobian of F and
calculate for every fixed point x the eigenvalues of
the Jacobian: EV �J�F� �x�� � ��2, 2�, �2, 2�, �2, 2�,
�1.25, 21�, �21, 0.5�, �1.25, 21�, �20.88, 20.4��. So,
only the ratio �0.4, 0.2, 0.4� is an asymptotic stable
fixed point. Figure 5 shows that this fixed point also
describes the concentration relation in the seceder model
adequately. For the other fixed points the ODE model
predicts correctly the concentration relation of the
3207
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FIG. 5. Comparison of the seceder model (dotted lines) with its
ODE model (solid lines) for population size M � 2000. In the
seceder model the population is initialized with 600, 1000, and
400 copies of the genotypes g1 � 105, g2 � 0, and g3 � 2105,
respectively. Thus the initial condition for the ODE model is set
to x�t � 0� � �0.3, 0.5, 0.2�. The figure shows that the seceder
model and the ODE converge to the ratio of the asymptotic stable
fixed point at �0.2, 0.4, 0.2�.

genotypes, but does not correctly predict the stability. In
the ODE model these fixed points are unstable. A small
perturbation would cause the system (ODE model) to run
into the stable fixed point attractor �0.4, 0.2, 0.4�. In the
seceder model this is impossible because a new genotype
(e.g., g1) cannot suddenly appear.

In summary, the seceder model shows how a simple lo-
cal mechanism— the advantage of being different—gives
rise to complex group formation phenomena. Can the
seceder model be used to explain (at least partly) the
formation and evolution of groups in a biological and a
social context? We think that it is a promising candi-
date for (partly) explaining group or sympatric species for-
mation [22] in an evolutionary context for the following
reasons: (1) The selection function fsel represents the ad-
vantage which stems from occupying a lowly populated
niche. (2) The macroscopic pattern of the evolving popu-
lation structure is similar to patterns derived from the
fossil record. (3) The model can be easily extended to
include bounded genotype space, environmental stress [7],
sexual recombination, external fitness pressure, a spatial
world, higher dimensional genotypes, etc. (4) Compared
to macroevolutionary models which assume a species to be
a given entity [1,7], the seceder model can explain group
3208
formation and evolution based on local interactions of
individuals.
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