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Abstract. In recent years, genetic programming-based evolutionary fea-
ture construction has shown great potential in various applications. How-
ever, a critical challenge in applying this technique is the need to select an
appropriate selection operator with great care. To tackle this issue, this
paper introduces a novel approach that leverages the Thompson sam-
pling technique to automatically choose the optimal selection operator
based on semantic information of genetic programming models gathered
during the evolutionary process. The experimental results on a standard
symbolic regression benchmark containing 37 datasets show that the pro-
posed adaptive operator selection algorithm outperforms expert-designed
operators, demonstrating the effectiveness of the adaptive operator selec-
tion algorithm.

Keywords: Genetic Programming · Evolutionary Feature
Construction · Adaptive Operator Selection

1 Introduction

Automated feature construction is an important technique in the machine learn-
ing domain and has achieved significant success in various applications [1,2]. For-
mally, given a dataset {X,Y }, the objective of automated feature construction
is to develop a set of features Φ1(X), . . . , Φm(X) that enhance the performance
of a learning algorithm on the given dataset. The effectiveness of automated
feature construction techniques has been well-demonstrated by deep learning [2]

Supplementary Information The online version contains supplementary material
available at https://doi.org/10.1007/978-981-99-7022-3_36.

c© The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2024
F. Liu et al. (Eds.): PRICAI 2023, LNAI 14326, pp. 385–397, 2024.
https://doi.org/10.1007/978-981-99-7022-3_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-981-99-7022-3_36&domain=pdf
https://doi.org/10.1007/978-981-99-7022-3_36
https://doi.org/10.1007/978-981-99-7022-3_36


386 H. Zhang et al.

and kernel methods [3]. However, the interpretability of the constructed fea-
tures remains a notable point of criticism within the field, demanding further
investigation and deliberation [4].

In recent years, interpretable automated feature construction techniques, par-
ticularly those based on genetic programming (GP), have demonstrated impres-
sive performance for enhancing ensemble learning algorithms [5,6], compared to
learning with original features. The variable-length representation and gradient-
free search mechanism make GP suitable for exploring flexible high-order fea-
tures, like (x1 + x2) ∗ x3, on non-differentiable machine learning algorithms.
Based on the evaluation methods, evolutionary feature construction methods can
be categorized into filter-based [7], wrapper-based [1,8], and embedded meth-
ods [9,10]. Filter-based methods do not rely on any specific machine learning
algorithm, making them efficient and generalize well to different learning algo-
rithms [7]. On the other hand, wrapper-based methods evaluate the constructed
features on a specific learning algorithm, which may lead to better features at
the cost of higher computation time [8]. Finally, embedded methods integrate
the feature construction into model learning, with GP-based symbolic regression
being a representative example [9].

To improve the search effectiveness, numerous selection operators have devel-
oped for GP, which are used in GP to select promising individuals for crossover
and mutation to generate new solutions, playing a crucial role in driving the evo-
lutionary progress. Representative examples include standard tournament selec-
tion [11], clustering tournament selection [12], lexicase selection [13], and multi-
dimensional archive of phenotypic elites (MAP-Elites) [14]. Each of these oper-
ators demonstrates unique advantages in different scenarios, such as dynamic
selection pressure adjustment [12], specialist preservation [15], and diversity
enhancement for ensemble learning [14]. However, selecting the most appropriate
selection operators in real-world tasks is challenging because suitable operators
vary with different optimization landscapes or phases, often unknown in advance.
Recent work has shown that GP performs well using tournament selection for the
first 10% of generations, then lexicase selection for the rest [16]. Therefore, an
adaptive operator selection (AOS) algorithm for the selection operator is needed.

There are two potential approaches for automatic operator selection. First,
operators can be selected based on historical knowledge [17], also known as
algorithm recommendation. However, obtaining historical knowledge requires
running numerous experiments in advance. Furthermore, the best operator may
change during the evolutionary process. Therefore, adaptive operator selection
may be a better choice [18]. Given the success of AOS techniques in select-
ing genetic operators for continuous numerical optimization problems [19–21],
particularly AOS based on the multi-armed bandit and dynamic Thompson sam-
pling [21], this paper explores the feasibility of automatically selecting the opti-
mal selection operators during evolution. However, in GP, relying only on the
improvement of fitness values may not provide sufficient rewards to selection
operators. Thus, this paper explores the use of GP semantics to design an effec-
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tive AOS method, where the semantics of each GP program refers to the output
values of each GP individual [22].

Goals: The main goal of this paper is to develop an AOS method for determin-
ing selection operators in GP-based feature construction. The specific objectives
of this work are as follows:

1. Developing a portfolio of selection operators for AOS in evolutionary feature
construction.

2. Proposing a semantic-based AOS method using dynamic Thompson sampling
to adaptively determine an appropriate selection operator during the evolu-
tionary process.

3. Evaluating the effectiveness of different selection operators and credit assign-
ment strategies on 37 datasets.

2 Related Work

2.1 Multi-armed Bandit

The multi-armed bandit is a reinforcement learning technique that aims to bal-
ance the exploration and exploitation of different options, also known as “arms”,
based on past rewards [21,23,24]. In the context of GP, selection operators can
be considered arms. In each generation, an operator with the highest estimated
rewards is chosen, and applying this operator to select two parents is a trial. The
goal is to find the optimal selection operator for GP through trials. Numerous
multi-armed bandit algorithms have been developed for various scenarios, and
two key techniques are particularly useful for GP.

– Dynamic Multi-armed Bandit [23,24]: In GP, the optimal selection operator
may change during the evolution process. Therefore, the multi-armed bandit
algorithm should have the ability to forget long-term history and focusing
on recent knowledge in order to adapt to these changes, which is known as
the dynamic multi-armed bandit. This is achieved via a forgetting mechanism
through explicit drift detection algorithm [24] or simple decay over time [21].

– Thompson Sampling [21]: GP is a population-based optimization algorithm,
and it requires to have a sampling algorithm that can generate multiple trials
of selection operators simultaneously. Thus, it is desirable to have an explicit
reward distribution for each selection operator, and each trial can sample a
value from each distribution to determine which selection operator to choose.
This process is known as Thompson sampling. Compared to using the upper
confidence bound and expected improvement, Thompson sampling allows for
trying different selection operators in each round, which is more naturally
suited for GP.

2.2 Automatic Operator Selection

In the evolutionary computation domain, numerous genetic operators have been
developed, and studies have shown that combining the advantages of different



388 H. Zhang et al.

Fig. 1. Workflow of the proposed algorithm.

operators is beneficial for addressing optimization problems [25]. Instead of sim-
ple hybridization, automatic operator selection has become a hot topic in the
evolutionary computation (EC) domain, aiming to dynamically choose the opti-
mal operator at each stage [20]. One pioneering approach is probability match-
ing, which adjusts the probability of selecting each individual based on reward
distribution [19], where the reward is typically defined as the improvement in
fitness values, either in a real-valued form [18] or a boolean-valued form [21].
However, probability matching does not consider accumulative reward distribu-
tion. To address this limitation, adaptive purist was proposed to accumulate
reward during the evolutionary process, leading to improved operator selection
performance [19]. Building upon this idea, a dynamic multi-armed bandit algo-
rithm with the Page-Hinkley test was proposed to further enhance operator
selection effectiveness [23,24]. Under the framework of fitness-rate-rank-based
multi-armed bandit (FRRMAB) [20], dynamic Thompson Sampling [21], deep
reinforcement learning [18,26], and other methods have been developed. While
numerous approaches have been proposed for automatic operator selection, most
of them primarily focus on solving numerical optimization problems and empha-
size the selection of genetic operators. For GP-based feature construction algo-
rithms, the effectiveness of automatic operator selection methods for selection
operators still requires further investigation.

3 The New Algorithm

3.1 Model Representation

In this paper, we focus on evolutionary feature construction for a linear regression
model due to its simplicity and effectiveness. Specifically, each GP individual
consists of m GP trees, representing m constructed features φ1, . . . , φm. Based on
these constructed features, a linear model is trained to make predictions for the
given data. To ensure accurate and robust predictions, the final predictions are
made by an ensemble model that incorporates the top-|A| individuals obtained
during the evolutionary process, where |A| is an algorithm parameter referring
to the ensemble size.
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3.2 Algorithm Framework

The algorithm follows a general framework of GP, as illustrated in Fig. 1, where
credit assignment and operator selection are the key components for the new
AOS method to determine the best selection operator. The main components of
the proposed algorithm are described as follows:

– Population Initialization: During the initialization stage, GP trees are ini-
tialized using the ramped half-and-half method [11]. Specifically, each GP
individual with m trees is randomly generated, with each tree representing a
constructed feature.

– Solution Evaluation: In the evaluation stage, all GP individuals are evaluated
using ridge regression. Specifically, m trees construct m features, and these
constructed features are then fed into a linear model to make predictions for
the given data. Fitness is determined by the R2 score on training data, with
leave-one-out cross-validation to avoid overfitting by selecting a regularization
coefficient from {0.1, 1, 10}.

– Credit Assignment: This phase updates the reward distribution of operators
based on evaluation results. The details of the credit assignment are presented
in Sect. 3.4.

– Operator Selection: Selection operators are sampled to select pairs of individ-
uals for crossover and mutation. For a population of n individuals, it needs to
sample n

2 operators. In this paper, lexicase selection and tournament selection
are defined as candidate operators since they are commonly used in GP.

– Parent Selection: At this stage, GP individuals are selected using the n
2 sam-

pled selection operators to select promising individuals.
– Archive Maintenance: In addition to selecting offspring, the top individuals in

the population and the archive A are compared, and the top |A| individuals
are stored in the archive to form an ensemble model.

– Offspring Generation: Offspring generation is a stage where new GP individ-
uals are generated using random subtree crossover and guided subtree muta-
tion operator [6]. In this paper, each individual has m GP trees, and thus
genetic operators are invoked m times for each individual to ensure sufficient
variations.

3.3 Selection Operators

This paper considers two widely used selection operators:

1. Tournament Selection: The tournament selection operator randomly samples
t individuals from the population, where t is the tournament size, and selects
the best as the parent. Here, t = 7 is used according to common settings in
GP literature.

2. Lexicase Selection [13]: The lexicase selection operator iteratively constructs
filters to progressively narrow down the selection pool until one individual
remains. In each round, the filter is constructed as minΦ∈P Lk(Φ) + εk, with
εk as the median absolute deviation of the loss on the k-th instance among
all individuals Φ ∈ P .
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Intuitively, tournament selection tends to converge by favoring individuals with
higher overall fitness values. In contrast, lexicase selection emphasizes improving
fitness on different instances, thus promoting diversity. Thus, using an AOS
method to choose between these can simultaneously improve the overall accuracy
and the accuracy on tough instances, leading to a superior ensemble model. This
idea is inspired by AdaBoost, where some learners have good overall accuracy
while others focus on hard instances. The ensemble model can then achieve good
accuracy on all instances.

Fig. 2. Credit assignment update in multi-armed bandit using beta distribution.

3.4 Dynamic Multi-armed Bandit

To apply the dynamic multi-armed bandit in GP, two components, credit assign-
ment and operator selection, must be carefully designed: credit assignment allo-
cates rewards to each operator, and operator selection samples operators based
on estimated rewards. This section delves into these components.

Credit Assignment: Credit assignment is a stage where rewards are assigned
to each selection operator, involving two main questions:

– How to define a successful trial? In this paper, a successful trial for a
selection operator is defined as having any improvement in one dimension
of the semantics compared to the best semantics among all parents. Seman-
tics (Φ(X1), . . . , Φ(XN )) refer to the output values of each GP individual
Φ, which can determine a loss vector (LΦ,1, . . . ,LΦ,N ). At each generation,
all individuals in the population Φ ∈ P can collectively form the best loss
vector, where each element corresponds to the minimum loss value that indi-
viduals in P achieve on each training instance. This vector is denoted as
{minΦ∈P LΦ,i|i ∈ [1, N ]}. For a new individual Φ+, if ∃i∈[1,N ]LΦ+,i <
minΦ∈P LΦ,i, it is considered a successful trial and is rewarded with one point.
This reward strategy is based on the principle that if a new individual out-
performs all existing individuals on a data sample, it indicates that useful
knowledge has been discovered, allowing the new individual to achieve the
best performance on that sample, even if average fitness does not increase.

– How to update estimated reward distribution? As shown in Fig. 2, in
order to use Thompson sampling, k = 2 beta distributions θ = (θ1, . . . , θk) are
defined for k selection operators with two sets of parameters α = (α1, . . . , αk)
and β = (β1, . . . , βk). All these parameters are initialized to one. After obtain-
ing a successful trial for each operator, the α parameters are updated, i.e.,
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αi = αi +1 and βi = βi. Otherwise, if the trial is unsuccessful, the β parame-
ters are updated, i.e., αi = αi and βi = βi+1. Due to the changing dynamics of
the evolutionary process, the reward distribution for k operators may change.
Therefore, weight decay is applied to all distributions. After each round of
updating, the distribution parameters α, β are decayed by a decay factor γ,
which is set to 0.9 in this paper. In order to prevent the probability from
diminishing to an extremely low value, which could lead to an operator never
being chosen in the future, the decayed value is restricted to a minimum of 1.

Operator Selection: Once the parameters of all selection operators have been
updated, the selection operators are sampled based on the probabilities associ-
ated with each selection operator in the operator selection stage. Specifically,
the probability of choosing selection operator i is defined in Eq. (1) [21], where
Γ (x) is the gamma function, that is, Γ (x) =

∫ ∞
0

tx−1e−tdt.

PBeta (θi) =
Γ (αi + βi)
Γ (αi)Γ (βi)

θαi−1
i (1 − θi)

βi−1
, (1)

After applying the selected operator to select an individual, the selected
operator is marked associated with the selected individual to be able to make
credit assignments.

Table 1. Parameter settings for GP.

Parameter Value

Maximal Population Size 30D (500)
Number of Generations 200
Ensemble Size 30
Crossover and Mutation Rates 0.9 and 0.1
Maximum Tree Depth 10
Initial Tree Depth 0–2
Number of Trees in An Individual 10
Elitism (Number of Individuals) 1
Functions Add, Sub, Mul, AQ, Sin, Cos, Abs,

Max, Min, Negative

4 Experimental Settings

4.1 Experimental Dataset

The experimental datasets are obtained from the Penn Machine Learning Bench-
mark (PMLB) [27] 1. Due to the constraints of computational resources, we
1 Details of Datasets: https://epistasislab.github.io/pmlb/

https://epistasislab.github.io/pmlb/
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selected datasets with fewer than 5000 instances. Additionally, we only evalu-
ate performance on real-world datasets. Based on these criteria, 37 datasets are
finally selected. Specifically, the number of instances in these datasets ranges
from 47 to 3848, and the number of dimensions falls between 2 and 124.

4.2 Parameter Settings

The parameters follow the conventions established in the GP literature, as out-
lined in Table 1. The population size is set to 30 times the number of original fea-
tures, with a maximum limit of 500. To address the issue of zero-division errors,
we replace the division operator with the analytical quotient operator [28]. The
analytical quotient operator is defined as AQ (a, b) = a√

1+b2
, where a and b are

two parameters.

4.3 Evaluation Protocol

The experiments are conducted on the New Zealand e-science infrastructure
(NeSI), which consists of a cluster of AMD EPYC 7713 CPUs. For the evaluation
protocol, each algorithm is independently tested on each dataset for 30 runs. The
comparisons between algorithms are performed using the Wilcoxon signed-rank
test. For each run, the datasets are split into training and test sets in an 80:20
ratio. The performance of an algorithm is evaluated using the R2 score as the
performance metric based on the test set.

4.4 Baseline Algorithms

This work considers three baseline selection operators within GP-based feature
construction algorithms:

– Lexicase [13]: Only the automatic epsilon lexicase selection operator is used
in GP.

– Tournament: Only the tournament selection operator is used in GP.
– TR/LS [16]: TR/LS is a heuristic operator selection strategy designed by

GP experts. Tournament selection is used in the first q generations to avoid
hyper-selection, and lexicase selection is used in the remaining generations.
In the original paper of TS/LS [16], q is set to 10% of the total generations.
Therefore, q is set to 10 in this paper.

Moreover, two different credit assignment strategies are studied to determine
the best one for GP:

– Semantics: Any improvement achieved by the selection operator over a value
in the vector of squared errors of parents is considered a successful improve-
ment. This is the credit assignment strategy used in this paper.

– Fitness: Any improvement achieved by the selection operator over the best
R2 score of parents is considered a successful improvement.
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5 Experimental Results

5.1 Comparison Between Selection Operators

Test Score: The experimental results using different selection operators are
presented in Table 2 2. The results demonstrate that AOS significantly outper-
forms tournament selection and lexicase selection operators on 16 and 9 datasets,
respectively, while not performing worse on any dataset. These results highlight
the advantages of combining different selection operators in the evolutionary
process. Interestingly, AOS also outperforms TL/LS, a hybrid operator designed
by GP experts. As shown in Table 2, AOS performs better than the TR/LS oper-
ator on 6 datasets, similar on 30 datasets, and worse on only one dataset. These
results suggest that AOS can provide an advantage over the heuristic operator
selection strategy designed by GP experts.

Table 2. Comparison of R2 scores for different selection operators.

TR/LS Tournament Lexicase

AOS 6(+)/30(∼)/1(-) 16(+)/21(∼)/0(-) 9(+)/28(∼)/0(-)
TR/LS — 11(+)/25(∼)/1(-) 5(+)/30(∼)/2(-)
Tournament — — 0(+)/26(∼)/11(-)

Fig. 3. Evolutionary plots of test R2 scores using four different selection operators.

To gain further insights into the advantage of using AOS over determinis-
tic operators, we plot the curve of test R2 scores for representative datasets in
Fig. 3. The results demonstrate that AOS can improves test R2 scores in later
generations, whereas tournament selection operators suffer from severe overfit-
ting, leading to degraded test R2 scores in later generations. Therefore, in the
following sections, we focus on analyzing the reasons behind the improved gen-
eralization ability of the ensemble models made by AOS.

2 Detailed Results: https://tinyurl.com/AOS-GP-Supplementary-Material

https://tinyurl.com/AOS-GP-Supplementary-Material
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Operator Selection Patterns: To understand why AOS outperforms TS/LS,
lexicase selection and tournament selection, we analyze the selection ratios of
different operators during the evolutionary process on four datasets, as shown in
Fig. 4. The results indicate that the lexicase selection operator performs well and
is selected more frequently than the tournament selection operator. For instance,
on the “OpenML_547” dataset, the lexicase selection operator has selected an
average of 181 times at the last generation, while the tournament selection oper-
ator is selected only 29 times on average. Although the proportion of tournament
selection operators is relatively small compared to the lexicase selection operator,
this small proportion is not negligible considering the significant improvements
achieved with using AOS compared with using lexicase selection alone, as pre-
sented in Fig. 3.

Fig. 4. Selection ratios of different operators during the evolutionary process.

Cosine Distance: To further demonstrate the reasons behind the superior per-
formance of AOS, we introduce the average cosine distance. The average cosine
distance is used as a metric to measure the complementarity of different models in
the archive, which is crucial for ensemble learning [14]. A larger cosine distance
indicates greater complementarity. The results in Fig. 5 demonstrate that the
adaptive selection operator achieves the greatest cosine distance by adaptively
balancing lexicase and tournament selections. Although lexicase selection fosters
a high level of diversity, incorporating a small proportion of tournament selection
appears to enhance it further. This may be because lexicase selection can suffer
from hyper-selection [29], where a superior individual dominating the other indi-
viduals can be chosen up to 90% of the time [29]. In such cases, introducing a
moderate proportion of tournament selection may improve archive diversity. In
other cases, the high usage of lexicase selection ensures a high level of population
diversity for discovering well-performing models on different training instances,
thereby forming a strong ensemble learning model.

5.2 Comparison of Credit Assignment Strategies

To demonstrate the superiority of the proposed credit assignment strategy, this
section compares the effectiveness of two different credit assignment strategies
for GP. The comparison results between semantics-based credit assignment and
fitness-based credit assignment are presented in Fig. 6a. The results indicate that
utilizing semantic information for credit assignment leads to significantly better
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Fig. 5. Cosine distance of archived individuals.

results on 10 datasets while performing worse on 2 datasets. This performance
can be attributed to the fact that credit assignment based on semantics encour-
ages the discovery of solutions with diverse semantics, thereby facilitating the
formation of a high-quality ensemble model. The evolutionary plots of the cosine
distance of archived individuals are shown in Fig. 6b, clearly demonstrating the
advantage of the semantic-based credit assignment strategy in terms of diversity
maintenance.

Fig. 6. (a). Statistical comparison of test R2 scores. (“+"/red bar indicates that for a
dataset, the semantic-based credit assignment strategy outperforms the fitness-based
credit assignment strategy.) (b). Evolutionary plots of cosine distances. (Color figure
online)

6 Conclusions

This work aims to automate the determination of the optimal selection operator
during the process of evolutionary feature construction. To achieve this, we use
the Thompson sampling technique to sample selection operators based on their
estimated rewards, where the reward is defined as an improvement in semantics.
The experimental results on 37 datasets demonstrate that the proposed method
outperforms using sole lexicase selection, sole tournament selection and a manu-
ally designed hybrid selection operator, highlighting the advantages of employing
AOS. However, it should be noted that this paper is limited to the use of AOS
for determining selection operators. In future research, it would be valuable to
extend this framework to the selection of genetic operators and environmental
selection operators in order to further enhance the performance.
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