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The determination of the parity of a string ofN binary digits is a well-known problem in classical as well as
quantum information processing, which can be formulated as an oracle problem. It has been established that
quantum algorithms require at leastN/2 oracle calls. We present an algorithm that reaches this lower bound
and is also optimal in terms of additional gate operations required. We discuss its application to pure and mixed
states. Since it can be applied directly to thermal states, it does not suffer from signal loss associated with
pseudo-pure-state preparation. For ensemble quantum computers, the number of oracle calls can be further
reduced by a factor 2k, with kP h1,2, . . . , log2sN/2dj, provided the signal-to-noise ratio is sufficiently high.
This additional speed-up is linked tosclassicald parallelism of the ensemble quantum computer. Experimental
realizations are demonstrated on a liquid-state NMR quantum computer.
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I. INTRODUCTION

Digital information processing relies on a number of error
checking and correction algorithms. The most basic form of
error detection checks the parity, which indicates if the num-
ber of 1’s in a binary string is even or odd. The number of
computational steps required to determine the parity of a
binary string increases linearly with the length of the string;
this holds true for classical as well as for quantum informa-
tion processorsf1g. Quantum algorithms can reduce the num-
ber of steps required by a factor of 2 compared to classical
algorithmsf1,2g.

Apart from error correction, the parity problem has re-
ceived significant attention in quantum information process-
ing ssee, e.g., Ref.f3gd, since the parity of a product of binary
strings can be used for efficiently searching a databasef4,5g.

For the analysis of the parity problem, it is often useful to
formulate it as a black-box problemf1,6g. The black box,
also referred to as an oracle, consists ofN Boolean variables
xi : X=sx0,x1, . . . ,xN−1d, where xi P h0,1j. On input i, the
oracle returns the Boolean variablexi. Usually one wants to
compute a propertypsXd of such a black box using as few
oracle queries as possible. The number of these oracle calls
is also called query complexity, which is the relevant com-
plexity measure in this context; the total number of gates
used is not considered.

When the parity problem is formulated as a black-box
problem, the desired property is the parity, which can be
written as the Boolean function

psXd = x0 % x1 ¯ % xN−1. s1d

Here % denotes theXOR operationsaddition mod 2d. A clas-
sical computer has to call the oracle with each of theN
possible inputsi to determinepsXd, while Bealset al. f1g and

Farhiet al. f2g showed that in a quantum computer the mini-
mum number of oracle calls isN/2.

In this paper, we discuss a quantum algorithm that is op-
timal in the sense of Refs.f1,2g and can be applied to pure as
well as mixed states. Variants of this algorithm can be opti-
mized for the application to ensemble quantum computers in
such a way that the number of oracle calls decreases expo-
nentially compared to single-issue quantum computers. The
algorithm discussed here was developed using an automatic
algorithm design technique called genetic programming.1

The paper is structured as follows: In Sec. II, we discuss
the basic algorithm and apply it to a single-issue quantum
computer. In Sec. III we apply it to an ensemble of quantum
computers and in Sec. IV we show how a further reduction
of the number of oracle calls is possible on ensemble quan-
tum computers. Section V contains the experimental imple-
mentation on an NMR quantum computer and Sec. VI draws
conclusions.

II. OPTIMAL EXACT QUANTUM ALGORITHM

The oracle gate whose parity we wish to calculate acts on
N possible inputsi, which are encoded intonù log2 N qubits.
If N is not a power of 2, the string is extended with zeros.
From now on we thus assume thatN=2n.

The gates used by the algorithm are the Hadamard opera-
tion H, theNOT operationsx, and then-qubit oracle gateO.
Upon input of a basis stateuil, the oracle gateO returns the
value of bitxi PX in the form of a phase shift applied to the
quantum register state:

Ouil = s− 1dxiuil. s2d

In the simplest case of a one-qubit quantum registersN
=2, n=1d, which is equivalent to Deutsch’s problemf7g, the
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1For the use of genetic programming in evolving quantum algo-
rithms seef13g. A general overview of genetic programming can be
found in f14g.
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parity of the string can be determined with a single oracle
call: With the qubit initialized in theu0l state, we apply an
oracle gate bracketed by two Hadamard gates. The resulting
state of the quantum register is

uc finall = HOH u0l = HO
1
Î2

su0l + u1ld

= H
1
Î2

fs− 1dx0u0l + s− 1dx1u1lg

= psXdu1l + f1 − psXdgu0l, s3d

up to a global phase factor. Readout of the qubit shows the
parity of X: even parity fpsXd=0g results in a final state
uc finall= u0l, while odd parity results inuc finall= u1l. The
speed-up by a factor of 2, compared to the classical algo-
rithm, results from the fact that the superposition determines
whether the two bits are equal or opposite, but does not
differentiate between, e.g., the strings “00” and “11.”

To apply this algorithm to strings of arbitrary lengthN,
we write the quantum register as

ucl = uxl ^ ujl, s4d

whereuxl contains the single qubit with index 0 that is used
for readout, whileujl consists of then−1 remaining qubits.
All n qubits are first initialized into theu0l state; a Hadamard
gate is then applied to the readout qubit to create the super-
position state

uc1l = sH u0ld ^ u0¯ 0l =
1
Î2

su00¯ 0l + u10¯ 0ld. s5d

If an oracle gate is applied to this state, it shifts the phase of
each of the two components byp depending on the bit at
position 0 orN/2 in X, respectively, being set. To take the
other bits into account, we use repeated oracle calls with
different inputsi. SinceO does not modify the input vector
ujl, apart from the overall phase factor, we can generate the
other inputs by subsequently flipping individual qubits. Fig-
ure 1 summarizes the resulting algorithm forn=2 andn=3
qubits. In then=2 case, theuxl component subsequently
takes the values 0 and 1, and in then=3 case, it goes through
00→10→11→01→00. The last step can be omitted, but
will be assumed here for the convenience of making the final
state independent of the sequence of single qubit flips. We
summarize this sequence ofN oracle calls alternating withsx
equal toNOT operations with the unitary operatorUc. Since
its component operationsO andsx are self-inverse and com-
mute with each other, one getsUc=Uc

−1=Uc
+.

After this sequence of operations, the state of the quantum
register is

uc1l = UcH
s0du00¯ 0l =

1
Î2

fs− 1dx0%x1¯%xN/2−1u00¯ 0l

+ s− 1dxN/2¯%xN−1u10¯ 0lg. s6d

The final Hadamard gate on the readout qubit transforms this
state into

uc finall = H s0duc1l = Hu00¯ 0l if psXd = 0,

u10¯ 0l if psXd = 1.
J s7d

The state of the readout qubit therefore codes the paritypsXd
of the stringX.

The number of calls of the oracle gatesN/2d required by
this algorithm coincides with the lower bound established in
Refs. f1,2g. Our algorithm is therefore optimal with respect
to the number of oracle gates required, but also with respect
to the number of additional gates, which are single-qubit
gates, independent of the size of the quantum register. If any
of the NOT gates were omitted, two oracle gates would be-
come adjacent to each other. According to Eq.s2d, the oracle
is its own inverse, so they could be eliminated from the
algorithm, thereby violating the lower bound. Our algorithm
requires the measurement of a single qubit, in contrast to the
N/2 measurements used by the algorithm proposed inf1g
and to then measurements required by the algorithm of Farhi
et al. f2g.

III. APPLICATION TO AN ENSEMBLE QUANTUM
COMPUTER

We now turn to the discussion of ensemble quantum com-
puters. To be able to discuss the operation of the algorithm
on pure and mixed states within the same formal framework,
we describe the state of the quantum register with a density
operator. In most implementations, like in liquid-state NMR
quantum computers, the initial state is the thermal state

%th <
1

N
s1 − Hd <

1

N
S1 − o

i=0

n−1

viI z
sidD , s8d

where we have set" /kBT=1 and invoked the high-
temperature approximation. HereH denotes the Hamiltonian
of the spin system,vi is the Larmor frequency of theith spin
squbitd, andI z

sid the corresponding spin operator.
The initial Hadamard gate on the readout qubit turns this

state into

FIG. 1. Parity algorithm for n=2 qubits stopd and n=3
sbottomd.
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% =
1

N
S1 − v0I x

s0d − o
i=1

n−1

viI z
sidD . s9d

The unity operator is time independent and does not contrib-
ute to any observable signal. The third term, which contains
the thermal polarization of most of the spins, also does not
contribute; we only need to consider the second term~I x

s0d.
To compute the effect of the oracle gate on this term, we use
the decomposition

I x
s0d =

1

2 o
j=0

N/2−1

su0lk1u ^ ujplkjp u + H.c.d, s10d

where jp stands for the binary representation of the natural
numbersj.

The oracle gate turns this into

OI x
s0dO =

1

2 o
j=0

N/2−1

s− 1dx2j%x2j+1su0lk1u ^ ujplkjp u + H.c.d.

s11d

Like in the single-instance case, we cycle the system through
all possible oracle inputs by applying the sequenceUc of
oracle gates and bit-flip operationssx. Each term in the
above sum then acquires the same phase factor:

UcI x
s0dUc =

1

2
s− 1dpsXd o

j=0

N/2−1

u0lk1u ^ ujplkjp u + H.c. =s− 1dpsXdI x
s0d.

s12d

By measuring the sign of the resulting spin polarization of
the readout qubit, we can therefore directly determine the
parity of the string in a single measurement.

IV. SPEED-UP FOR ENSEMBLE QUANTUM COMPUTERS

While the determination of the parity requires at leastN/2
oracle calls in a single-issue quantum computer, we now dis-
cuss a modified algorithm, which can determine the parity by
a single oracle call, provided it runs on an ideal, noiseless
ensemble quantum computer. This can be seen by calculating
the expectation value of the observableI x

s0d for the states11d
of the quantum register after the first call of the oracle gate:

TrfI x
s0dOI x

s0dOg =
1

2 o
j=0

N/2−1

s− 1dx2j%x2j+1. s13d

For even parity, the sum can reach extremal values of ±N/2,
and for odd parity, the extremal values are ±sN/2−2d. The
measured values are

kI x
s0dlpsXd=0 =

rv0

2N
; r P H−

N

2
,−

N

2
+ 4, . . . ,

N

2
J ,

kI x
s0dlpsXd=1 =

sv0

2N
; sP H−

N

2
+ 2, . . . ,

N

2
− 2J . s14d

A single call to the oracle gate thus allows one to determine
the parity by measuring the expectation value ofI x

s0d, pro-

vided the resolution of this measurement is high enough to
distinguish between neighboring values.

This separation between neighboring values decreases
with the lengthN of the string—i.e., exponentially with the
number of qubits. The scheme is therefore not scalable for
large systems, but even if the separation becomes too small
to be resolved by the measurement, it remains possible to
generate an exponential speed-up over the single-issue quan-
tum computer at the cost of a correspondingly higher de-
mand on the precision of the readout: The two cases that we
have considered so far, usingN/2 and a single oracle call,
respectively, can be considered extreme cases of a series of
algorithms that require 2n−k−1 calls of the oracle gate, corre-
sponding to a speed-up by 2k compared to the single-issue
quantum computer.

For this purpose, we subdivide the address registers4d
into three parts:

ucl = uxl ^ uml ^ unl, s15d

where uxl is again the single readout qubit, whileujl= uml
^ unl represents the remainingn−1 qubits. If the number of
qubits in unl is k, uml contains onlyn−k−1 qubits.

We now restrict the number of oracle calls to all possible
combinations of the qubits inuml—i.e., 2n−k−1. The relevant
term

I x
s0d =

1

2 o
m=0

2n−k−1−1

o
n=0

2k−1

su0mp np lk1mp np u + H.c.d s16d

in the density operators9d is then transformed into

UcI x
s0dUc =

1

2 o
n=0

2k−1FS p
m=0

2n−k−1−1

s− 1dx0mn%x1mnD
3 o

m=0

2n−k−1−1

su0mnlk1mnu + H.c.dG , s17d

whereUc=Uc
−1 represents the sequence of 2n−k−1 oracle and

NOT gates.
Calculating the expectation value for this state, in analogy

to Eq. s13d, we find

TrfI x
s0dUcI x

s0dUcg = 2n−k−2o
n=0

2k−1S p
m=0

2n−k−1−1

s− 1dx0mn%x1mnD .

s18d

Similar to the results from the single oracle call, the expec-
tation value forI x

s0d depends on the paritypsXd:

kI x
s0dlpsXd=0rv02

−k−2;

r P h− 2k,− 2k + 4, . . . ,2kj,

kI x
s0dlpsXd=1 = sv02

−k−2;

sP h− 2k + 2, . . . ,2k − 2j. s19d

Expectation values indicating opposite parities are thus sepa-
rated by
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ukI x
s0dlpsXd=0 − kI x

s0dlpsXd=1u ù v02
−k−1. s20d

The minimal separation therefore decreases exponentially
with the numberk of omitted address qubits or linearly with
the number of oracle calls saved.

The algorithm proposed by Miaof8g shows a similar ex-
ponential decrease in the difference of the signal strength
necessary to decide the parity problem. In contrast to Miao’s
approach we do not require nonunitary quantum operations.
Since our algorithm works directly with the thermal mixed
state, the signal strength suffers no exponential decrease if
the number of qubits increases; this is similar to the modified
Deutsch-Jozsa algorithm as proposed by Myerset al. f9g.

While we have only discussed the application of this re-
duced algorithm to the thermal state in Eq.s9d, it can equally
be applied to pure states of the form

% = H ^nu0¯ 0lk0¯ 0uH ^n =
1

N
o
i,j=0

N−1

uilk j u. s21d

V. EXPERIMENTAL IMPLEMENTATION

We implemented the two-qubit versionsn=2, N=4d of the
exact parity algorithm as well as the reduced ensemble algo-
rithm with k=1 on a liquid state NMR quantum computer,
using the spins of the1H and 13C nuclei in a carbon-13
labeled chloroform moleculesCHCl3d whose Hamiltonian is
of the form s"=1d

H = − v0
sHdI z

sHd − v0
sCdI z

sCd + 2pJI z
sHdI z

sCd.

Here v0
sHd and v0

sCd denote the Larmor frequencies of the
nuclear spins andJ the strength of the scalar coupling be-
tween them. In the following, we will use a resonant rotating
frame, wherev0

sHd=v0
sCd=0. All experiments were performed

at room temperature on a homebuilt NMR spectrometer with
a 1H operating frequency of 360 MHz.

The exact version of the parity algorithm, which needs
two oracle calls, was implemented as shown in the upper part
of Fig. 1. The first Hadamard gateH was replaced by the
pseudo-Hadamard operationh, which corresponds to a
sp /2dy rotation of the corresponding qubit around they axis.
The final Hadamard gateh−1 then cancels with the readout
pulse that would otherwise be required to convert the state
uc finall fEq. s7dg into observableI x

s0d magnetization. The read-
out sof transverse magnetizationd therefore starts immedi-
ately after the last oracle gate. As an additional simplifica-
tion, we omitted the last bit reversal of the second qubit,
which does not affect the readout qubit.

Thesx operationsNOT gated was realized by aspdx pulse.
The oracle gateO that represents the black boxX
=sx0,x1,x2,x3d has the matrix representation

O =1
s− 1dx0

s− 1dx1

s− 1dx2

s− 1dx3
2 .

Thus the oracle gate forX=s0,0,0,1d can be realized by the
pulse sequencet−sp /2d−z

C −sp /2d−z
H , where t=1/s2Jd de-

notes the time of a free evolution period where the system
evolves under the scalar spin-spin coupling, only. WithJ
=215 Hz one getst=2.326 ms. Thesud±z rotations cannot be
implemented directly by radio frequency pulses and were
thus realized by the composite pulse sandwichsp /2dx

−sud±y−sp /2d−x f10g.
Similar sequences were determined for the other 15 oracle

gates. The resulting oracle gates are pairwise equivalent,
modulo an overall phase factor, for strings with inverted bit
values. As an example, compare the matrix representations
for X=s0,0,0,0d andX=s1,1,1,1d, which correspond to ±1.
Clearly, the overall phase factor does not affect the measured
result. This ambiguity of the oracle gates is not critical for
our application, since the corresponding string pairs always
have the same parity.

The pseudopure state necessary for the pure-state algo-
rithm was realized via temporal averagingf11g—i.e., by add-
ing up the spectra of three experiments in which the popula-
tions of the statesu01l, u10l, and u11l were cyclically
permuted.

The free induction signals measured at the end of each
parity algorithm were Fourier transformed and are displayed
in Fig. 2 for all possible strings withN=4. The uppermost
trace shows, as a reference, the reference spectrum obtained
by applying a readout pulse directly to the thermal equilib-
rium state. The two resonance lines correspond to the two
spin orientations of the seconds1Hd spin, which are almost
equally populated in thermal equilibrium. The other traces
represent the Fourier-transformed free induction signals mea-
sured after applying the parity algorithm for the strings indi-
cated to the pseudopure stateu00l. According to the theoret-
ical result, we expect the sign of the13C signal to represent
the parity of the string. This agrees with the experimental
observation where the signal for the even-parity strings is
positive while the signal for the odd-parity strings is nega-
tive.

In the pure-state algorithm, the second qubit is always in
a definite state:u0l in the algorithm discussed in Sec. II,u1l if
the finalNOT operation is omitted. Accordingly, only one of
the two13C resonance lines has a nonvanishing amplitude.

As discussed in Sec. III, the algorithm can also be applied
to mixed states, thus eliminating the need to prepare a
pseudopure state and avoiding the corresponding reduction
of signal strength. We do not discuss the corresponding mea-
surements here, but proceed directly to the reduced version
where the number of oracle calls is reduced to onesk=1d.
Figure 3 shows the required sequence of gate operations.
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Instead of the general Hadamard gateH, we again use the
pseudo-Hadamard gateh—i.e., a sp /2dy pulse. The oracle
gate is the same as in the pure-state case.

For the results of the reduced mixed-state algorithm, we
only present the measurement results ofkI x

s0dl at t=0—i.e.,

immediately after the end of the oracle gate. The results,
shown in Table I, are ±s3.46±0.36d for the even-parity
strings and ±s0.24±0.07d for odd-parity strings, in good
agreement with the theoretical predictions of Eq.s14d.

VI. DISCUSSION AND CONCLUSION

We have introduced a family of quantum algorithms that
solve the parity problem with an optimal number of quantum
gate operations. It uses the black-box scheme introduced by
Beals et al. f1g to represent the strings as oracle gates. In
agreement with the lower bound established by Bealset al.,
our algorithm usesN/2 calls of the oracle gate, a factor of 2
less than the best classical algorithms. This reduction com-
pared to the classical case can be attributed to quantum par-
allelism, since the input state to the oracle gate is a superpo-
sition of two basis states.

A further reduction of the number of oracle calls is pos-
sible if an ensemble quantum computer is used rather than a
single quantum system. In this case, the number of calls of
the oracle gate can be reduced by a factor 2k,N, at the
expense of a smaller separation between the measurement
values that indicate even or odd parity. This additional
speed-up requires parallel operation of many, nominally
identical quantum systems, since a single system cannot pro-
vide the result in a single run.

The reduction of the number of oracle queries below the
lower bound ofN/2 may also be linked to the fact that en-
semble quantum computers are able to distinguish nonor-
thogonal states, as mentioned by Doraiet al. in f12g. Such
nonorthogonal states are the result of probabilistic quantum
algorithms, such as the reduced parity algorithm introduced
here.

The lower bound established in Refs.f1,2g was derived
for exact as well as probabilistic algorithms. This is appar-
ently in contradiction to our results for an ensemble of pure
states, where the number of oracle callss=N2−k−1d can be
arbitrarily smaller. The algorithm that we introduced here is,
however, not covered by the usual discussion of probabilistic
algorithms, where one assumes that the single-run error
probability must be,1/2, while the error probability in our
case is exactly 1/2.

This work demonstrates again the usefulness and creativ-
ity of evolutionary methods for generating new algorithms.

TABLE I. Experimental results ofkI x
s0dl for the ensemble parity

algorithm of Fig. 3. The numerical values are in arbitrary units.

psXd=0 kIx
s0dl st=0d psXd=1 kIx

s0dl st=0d

X=h0,0,0,0j 3.84 X=h0,0,0,1j −0.29

X=h0,0,1,1j −3.29 X=h0,0,1,0j 0.18

X=h0,1,0,1j 3.77 X=h0,1,0,0j −0.32

X=h0,1,1,0j −2.95 X=h1,0,0,0j 0.16

FIG. 2. Experimental results for the pure-state algorithm shown
in Fig. 1. The uppermost trace shows the real part of the carbon
spectrum after a readout pulse applied to the system in thermal
equilibrium. The remaining spectra show the real part of the carbon
spectrum after completion of the exact parity algorithm on the ef-
fectively pure initial stateu00l. The frequency is relative to
90.533 504 MHz.

FIG. 3. Ensemble quantum algorithm for two qubits, using a
single call of the oracle gate.
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