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Quantum and classical parallelism in parity algorithms for ensemble quantum computers
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The determination of the parity of a string Wfbinary digits is a well-known problem in classical as well as
qguantum information processing, which can be formulated as an oracle problem. It has been established that
guantum algorithms require at leddt2 oracle calls. We present an algorithm that reaches this lower bound
and is also optimal in terms of additional gate operations required. We discuss its application to pure and mixed
states. Since it can be applied directly to thermal states, it does not suffer from signal loss associated with
pseudo-pure-state preparation. For ensemble quantum computers, the number of oracle calls can be further
reduced by a factor®2with ke {1,2,...,log(N/2)}, provided the signal-to-noise ratio is sufficiently high.

This additional speed-up is linked folassical parallelism of the ensemble quantum computer. Experimental
realizations are demonstrated on a liquid-state NMR quantum computer.
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I. INTRODUCTION Farhiet al.[2] showed that in a quantum computer the mini-
mum number of oracle calls /2.

Digital information processing relies on a number of error | this paper, we discuss a quantum algorithm that is op-
checking and correction algorithms. The most basic form otjmal in the sense of Reff1,2] and can be applied to pure as
error detection checks the parity, which indicates if the numyye|| as mixed states. Variants of this algorithm can be opti-
ber of 1's in a binary string is even or odd. The number ofyjzed for the application to ensemble quantum computers in
computational steps required to determine the parity of &ych a way that the number of oracle calls decreases expo-
binary string increases linearly with the length of the St”nginentially compared to single-issue quantum computers. The
this holds true for classical as well as for quantum informa-g|gorithm discussed here was developed using an automatic
tion processorBl]._Quantum algorithms can reduce the nuUM- 5 gorithm design technique called genetic programming.
ber of steps required by a factor of 2 compared to classical The paper is structured as follows: In Sec. II, we discuss
algorithms([1,2]. _ _ the basic algorithm and apply it to a single-issue quantum

Apart from error correction, the parity problem has re-computer. In Sec. Il we apply it to an ensemble of quantum
ceived significant attention in quantum information processtomputers and in Sec. IV we show how a further reduction
ing (see, e.g., Ref3]), since the parity of a product of binary f the number of oracle calls is possible on ensemble quan-
strings can be used for efficiently searching a datab&$®  tym computers. Section V contains the experimental imple-

formulate it as a black-box probleiri,6]. The black box, onclusions.

also referred to as an oracle, consistdNdBoolean variables

Xi: X=(Xg,Xq, ... Xy-1), wWherex;€{0,1}. On inputi, the Il. OPTIMAL EXACT QUANTUM ALGORITHM
oracle returns the Boolean variable Usually one wants to
compute a propertp(X) of such a black box using as few oo X X ! s
oracle queries as possible. The number of these oracle car:%pNo_Ss'bli Inputs, Wh'?ga{ﬁ eni:c_)deql 'm”t? I%QZdN q.?r:)'ts'

is also called query complexity, which is the relevant com-" N IS not:a power of z, the string Is extended with zeros.

n
plexity measure in this context; the total number of gategzrom how on we thus assume.th:Z )
used is not considered. The gates used by the algorithm are the Hadamard opera-

When the parity problem is formulated as a black—boxtion H, theNOT operationay, and then-qubit oracle gat®.

; : : - Upon input of a basis staté), the oracle gat® returns the
Svrﬁt?é?]ma{st?hee %eosgfggnpffnpg% Is the parity, which can be ) o of bitx, < X in the form of a phase shift applied to the

quantum register state:
PX) =X © X"+ & X1 (1) Oli) = (- 1[i). 2

Here® denotes thexorR operation(addition mod 2. A clas- In the simplest case of a one-qubit quantum regigter
sical computer has to call the oracle with each of the =2,n=1), which is equivalent to Deutsch’s probldm], the
possible inputs to determinga(X), while Bealset al.[1] and

The oracle gate whose parity we wish to calculate acts on

For the use of genetic programming in evolving quantum algo-
rithms sed 13]. A general overview of genetic programming can be
*Electronic address: ralf.stadelhofer@udo.edu found in[14].
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call: With the qubit initialized in thd0) state, we apply an
oracle gate bracketed by two Hadamard gates. The resultini
state of the quantum register is

parity of the string can be determined with a single oracle H
10>

10> —

1
|finary = HOH|0) = HOE(|O> +1))

1
=H—=[(-10) + (- D*1)] 10> 4@
V2

=p(X)[1) +[1 -p(X)]|0), ()

|
up to a global phase factor. Readout of the qubit shows the
parity of X: even parity[p(X)=0] results in a final state
|hina? =10y, while odd parity results in¢na)=|1). The oo —
speed-up by a factor of 2, compared to the classical algo-
rithm, results from the fact that the superposition determines
whether the two bits are equal or opposite, but does not FIG. 1. Parity algorithm forn=2 qubits (top) and n=3
differentiate between, e.g., the strings “00” and “11.” (bottom.

To apply this algorithm to strings of arbitrary lengih

we write the quantum register as 00+ 0) if p(X) =0,

l =1 © &), (4) |10---0) if p(X)=1.

where|y) contains the single qubit with index 0 that is used The state of the readout qubit therefore codes the pafity

for readout, whilel&) consists of then—1 remaining qubits.  of the stringX.

All n qubits are first initialized into thi) state; a Hadamard ~ The number of calls of the oracle g&fe/2) required by
gate is then applied to the readout qubit to create the supethis algorithm coincides with the lower bound established in
position state Refs.[1,2]. Our algorithm is therefore optimal with respect
to the number of oracle gates required, but also with respect
to the number of additional gates, which are single-qubit
gates, independent of the size of the quantum register. If any
of the NOT gates were omitted, two oracle gates would be-
If an oracle gate is applied to this state, it shifts the phase ofome adjacent to each other. According to &}, the oracle
each of the two components by depending on the bit at is its own inverse, so they could be eliminated from the
position 0 orN/2 in X, respectively, being set. To take the algorithm, thereby violating the lower bound. Our algorithm
other bits into account, we use repeated oracle calls withiequires the measurement of a single qubit, in contrast to the
different inputsi. SinceO does not modify the input vector N/2 measurements used by the algorithm proposefijn

|&), apart from the overall phase factor, we can generate thend to then measurements required by the algorithm of Farhi
other inputs by subsequently flipping individual qubits. Fig-et al. [2].

ure 1 summarizes the resulting algorithm for2 andn=3

qubits. In then=2 case, thdy) component subsequently l1l. APPLICATION TO AN ENSEMBLE QUANTUM

takes the values 0 and 1, and in tive3 case, it goes through COMPUTER

00—10—11—-01—00. The last step can be omitted, but

will be assumed here for the convenience of making the final We now tum to the discussion of ensemble guantum com-

state ncependent of e sequence of sngle qui flps. W1 0 be S [0 scuss the overaton of e aorth
summarize this sequenceNforacle calls alternating witbr, P '

equal toNOT operations with the unitary operatbt,. Since we describe the state of the quantum register with a density

. ! : operator. In most implementations, like in liquid-state NMR
its component operatior@ ando, are self-inverse and com- o )

" N N gquantum computers, the initial state is the thermal state
mute with each other, one gdtg=U_"=U_.

0> ————

o 00—

| tinay = HOlyn) = { (7)

|w1>:<H|0>>®|0---0>:\,—15(|00---0>+|10---0>>. (5)

After this sequence of operations, the state of the quantum 1 1 1
register is on=—0-H)==(1-> oIV, (8)
N N i=0
|y = UH©@|00---0) = ir[(— 1) ®XNi2-100- - - 0) where we have seti/kgT=1 and invoked the high-
V2 temperature approximation. Hete denotes the Hamiltonian
+ (= 1Nz PN-|10- - 0)]. (6) of the spin systemy; is the Larmor frequency of thigh spin

(qubiy), andl(zi) the corresponding spin operator.
The final Hadamard gate on the readout qubit transforms this The initial Hadamard gate on the readout qubit turns this

state into state into

032345-2



QUANTUM AND CLASSICAL PARALLELISM IN PARITY ... PHYSICAL REVIEW A 71, 032345(2005

1-w = oIV (9)  distinguish between neighboring values.
i=1 This separation between neighboring values decreases
pwith the lengthN of the string—i.e., exponentially with the

ute to any observable signal. The third term, which contain&UMber of qubits. The scheme is therefore not scalable for
the thermal polarization of most of the spins, also does nof2f9€ Systems, but even if the separation becomes too small
contribute; we only need to consider the second tecmi?). to be resolved by the measurement, it remains possible to

To compute the effect of the oracle gate on this term, we us emneratri arI[ erxp(:r;ﬁntlal stpe(fad-up ?rver thr?d?r:n?le;fsr:‘(ar qduan-
the decomposition Um computer at the cost of a correspondingly higher de-

mand on the precision of the readout: The two cases that we

1( n-1 ) vided the resolution of this measurement is high enough to
e=x -
N

The unity operator is time independent and does not contri

N/2-1 have considered so far, usifdf2 and a single oracle call,
I(XO) =3 > (jox1] @ |84 + H.c), (100  respectively, can be considered extreme cases of a series of
=0 algorithms that require™*"* calls of the oracle gate, corre-

where ¢ stands for the binary representation of the naturafPonding to a speed-up by* 2ompared to the single-issue
numbers¢. quantum computer.

The oracle gate turns this into For this purpose, we subdivide the address regigter
into three parts:
N/2-1
o1%0 :% S (- 1yeesi(|0)d| @ [£)(E + H.c). [ =1x @ |we[v), (15
&0 where |y) is again the single readout qubit, whil& =|uw)
(11)  ®|v) represents the remaining-1 qubits. If the number of
Hubits in|v) is k, |u) contains onlyn—k—-1 qubits.
We now restrict the number of oracle calls to all possible
combinations of the qubits ifu)—i.e., 27%1. The relevant

Like in the single-instance case, we cycle the system throug
all possible oracle inputs by applying the sequekkeof
oracle gates and bit-flip operations,. Each term in the

above sum then acquires the same phase factor: term e
2n=K=loq 2K-1
N/2-1
1 9=z Ouw)(1pw| +H.c. 16
U E(O)Uc: E(_ ]_)p(X) 2 |0><1| ® |§><§| +H.c. :(_ 1)p(X)|)((0)_ X 2 ,u2=0 VE:O (| l_“-’>< /:W| ) (16
&0
(12)  in the density operato9) is then transformed into
k_ n-k-1_
By measuring the sign of the resulting spin polarization of © 1M (7 ' . ox
the readout qubit, we can therefore directly determine the Ul Uczég 1__[ (= 1)0u™
parity of the string in a single measurement. =0 #=0
2n—k—1_l
IV. SPEED-UP FOR ENSEMBLE QUANTUM COMPUTERS XS (o)A + H_C_)] Cav
=0

While the determination of the parity requires at |ds52
oracle calls in a single-issue quantum computer, we now disvhereU.=U_* represents the sequence 6f¥2* oracle and
cuss a modified algorithm, which can determine the parity byoT gates.
a single oracle call, provided it runs on an ideal, noiseless Calculating the expectation value for this state, in analogy
ensemble quantum computer. This can be seen by calculating Eq. (13), we find
the expectation value of the observabﬁfg for the statg(11) Koy [ ohklg
of the quantum register after the first call of the oracle gate: Tr[lﬁ(o)ucl f(O)UC] — k2 ( I 1)Xoﬂ®xlﬂ>

1 N/2-1 =0 n=0
wm90$kﬂ=gg%e1Wﬁ&w. (19 (18)

Similar to the results from the single oracle call, the expec-

For even parity, the sum can reach extremal values\of2+ tation value forl © depends on the parig(X):
« :

and for odd parity, the extremal values aréN£2-2). The

measured values are 1y xpmof 002 K2
o N N N
<|>(<0)>p(x>=o:ﬁ? rE{_E"E+4,...,§ , re{-24-2+4,....2%,
(I )((O)>p(X):1 =swp2 ¥
a0y =30 g L N N oL g
x Ip9=1= SN 2 e sef{-2+2,...,%-2}. (19

A single call to the oracle gate thus allows one to determingExpectation values indicating opposite parities are thus sepa-
the parity by measuring the expectation valuel @‘, pro- rated by
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[ o020 = (1) pog=a] = 02772 (20) (-1
(D™

The minimal separation therefore decreases exponentially (1%
with the numbek of omitted address qubits or linearly with (-D*
the number of oracle calls saved.

The algorithm proposed by Mig@] shows a similar ex-
ponential decrease in the difference of the signal strength
necessary to decide the parity problem. In contrast to Miao'd hus the oracle gate fot=(0,0,0, 1 can be realized by the
approach we do not require nonunitary quantum operationquulse sequence—(w/2)%,~(m/2)", where 7=1/(2J) de-
Since our algorithm works directly with the thermal mixed notes the time of a free evolution period where the system
state, the signal strength suffers no exponential decrease diolves under the scalar spin-spin coupling, only. With
the number of qubits increases; this is similar to the modified=215 Hz one gets=2.326 ms. Thé6),, rotations cannot be

Deutsch-Jozsa algorithm as proposed by Myegral. [9]. implemented directly by radio frequency pulses and were

duced algorithm to the thermal state in E9), it can equally ~(0)uy—(7/2)_, [10]
+y -x .

be applied to pure states of the form

X

Similar sequences were determined for the other 15 oracle
gates. The resulting oracle gates are pairwise equivalent,

N-1 modulo an overall phase factor, for strings with inverted bit
0 =H®0---0)0---O|H®"= 1 > x| (21)  Vvalues. As an example, compare the matrix representations
N{j=o for X=(0,0,0,0 andX=(1,1,1,2, which correspond to k

Clearly, the overall phase factor does not affect the measured
result. This ambiguity of the oracle gates is not critical for
our application, since the corresponding string pairs always
have the same parity.

The pseudopure state necessary for the pure-state algo-

We implemented the two-qubit versign=2, N=4) of the . ) . Lo )
exact parity algorithm as well as the reduced ensemble algor!thm was realized via temporal averagifid}—i.e., by add

rithm with k=1 on a liquid state NMR quantum computer INg up the spectra of three experiments in which thg popula-
using the spins of théH and 13C nuclei in a carbon-13 1ONS of the statesl01), [10), and |11) were cyclically

labeled chloroform moleculeCHCI;) whose Hamiltonian is permuted. . ) .
of the form (A=1) The free induction signals measured at the end of each

parity algorithm were Fourier transformed and are displayed
in Fig. 2 for all possible strings witiN=4. The uppermost
H=- ng)l (H) _ ,©)(©) 4 o3 H)(©) trace shows, as a reference, the reference spectrum obtained
z 0z z b lying a readout pulse directly to the thermal equilib-
y applying p y q
rium state. The two resonance lines correspond to the two
Here wE)H) and wE)C) denote the Larmor frequencies of the spin orientations of the secoritH) _spm, which are almost
nuclear spins and the strength of the scalar coupling be- €dually populated in thermal equilibrium. The other traces
tween them. In the following, we will use a resonant rotating"®Present the Fourier-transformed free induction signals mea-
frame, WheremgH):wgC):O. All experiments were performed sured after applying the parity algonthm for the strings indi-
at room temperature on a homebuilt NMR spectrometer wittfated to the pseudopure st@@). According to the theoret-
a'H operating frequency of 360 MHz. ical result, we expect the sign of th&C signal to represent
The exact version of the parity algorithm, which needsthe parity of the string. This agrees with the experimental
two oracle calls, was implemented as shown in the upper pagbservation where the signal for the even-parity strings is
of Fig. 1. The first Hadamard gaté was replaced by the positive while the signal for the odd-parity strings is nega-
pseudo-Hadamard operation, which corresponds to a tive.
(m/2), rotation of the corresponding qubit around thaxis. In the pure-state algorithm, the second qubit is always in
The final Hadamard gate™ then cancels with the readout a definite state|0) in the algorithm discussed in Sec. |1} if
pulse that would otherwise be required to convert the staténe finalNOT operation is omitted. Accordingly, only one of
[¢inar [EQ. (7)] into observablef(o) magnetization. The read- the two*C resonance lines has a nonvanishing amplitude.
out (of transverse magnetizatipnherefore starts immedi- As discussed in Sec. lll, the algorithm can also be applied
ately after the last oracle gate. As an additional simplificato mixed states, thus eliminating the need to prepare a
tion, we omitted the last bit reversal of the second qubitpseudopure state and avoiding the corresponding reduction
which does not affect the readout qubit. of signal strength. We do not discuss the corresponding mea-
The o operation(NOT gate was realized by &), pulse.  surements here, but proceed directly to the reduced version
The oracle gateO that represents the black boX  where the number of oracle calls is reduced to Gkel).
=(Xg,X1,%2,%3) has the matrix representation Figure 3 shows the required sequence of gate operations.

V. EXPERIMENTAL IMPLEMENTATION
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Referenc:jL

Even parity p(X) =0

X={0,1,1,0} X={1,0,0,1}
X={0,1,0,1} X=(1,0,1,0}
X={0,0,1,1} X=(1,1,0,0}
X={0,0,0,0} X=(1,1,1,1}

Odd parity p(X) = 1

<9 %%%F%

X={1,0,0,0} X={0,1,1,1}
X={0,1,0,0} X={1,0,1,1}
X={0,0,1,0} X={1,1,0,1}
X={0,0,0,1} X={1,1,1,0}
I I 1 >
-J/2 0 Jr2
Frequency

FIG. 2. Experimental results for the pure-state algorithm show
in Fig. 1. The uppermost trace shows the real part of the carbo
spectrum after a readout pulse applied to the system in therm

equilibrium. The remaining spectra show the real part of the carbon
spectrum after completion of the exact parity algorithm on the ef-

fectively pure initial state|00). The frequency is relative to
90.533 504 MHz.

Instead of the general Hadamard gate we again use the
pseudo-Hadamard gate—i.e., a(w/2), pulse. The oracle
gate is the same as in the pure-state case.

PHYSICAL REVIEW A 71, 032345(2005

TABLE I. Experimental results of io)) for the ensemble parity
algorithm of Fig. 3. The numerical values are in arbitrary units.

p(X)=0 19 (t=0) p(X)=1 19 (t=0)
X={0,0,0,0 3.84 X={0,0,0,3 -0.29
X={0,0,1,3 -3.29 X={0,0,1,0 0.18
X={0,1,0,3 3.77 X={0,1,0,0 -0.32
X={0,1,1,0¢ -2.95 X={1,0,0,0 0.16

immediately after the end of the oracle gate. The results,
shown in Table |, are 68.46+0.36 for the even-parity
strings and #0.24+0.07 for odd-parity strings, in good
agreement with the theoretical predictions of Etf).

VI. DISCUSSION AND CONCLUSION

We have introduced a family of quantum algorithms that
solve the parity problem with an optimal number of quantum
gate operations. It uses the black-box scheme introduced by
Bealset al. [1] to represent the strings as oracle gates. In
agreement with the lower bound established by Bealal,
our algorithm use&l/2 calls of the oracle gate, a factor of 2
less than the best classical algorithms. This reduction com-
pared to the classical case can be attributed to quantum par-
allelism, since the input state to the oracle gate is a superpo-
sition of two basis states.

A further reduction of the number of oracle calls is pos-
sible if an ensemble quantum computer is used rather than a
single quantum system. In this case, the number of calls of
the oracle gate can be reduced by a factb< R, at the
expense of a smaller separation between the measurement

"alues that indicate even or odd parity. This additional

peed-up requires parallel operation of many, nominally
entical quantum systems, since a single system cannot pro-
ide the result in a single run.

The reduction of the number of oracle queries below the
lower bound ofN/2 may also be linked to the fact that en-
semble quantum computers are able to distinguish nonor-
thogonal states, as mentioned by Doegaial. in [12]. Such
nonorthogonal states are the result of probabilistic quantum
algorithms, such as the reduced parity algorithm introduced

\Y

For the results of the reduced mixed-state algorithm, wehere.

only present the measurement results(lé% att=0—i.e.,

/7<

FIG. 3. Ensemble quantum algorithm for two qubits, using a

single call of the oracle gate.

The lower bound established in Ref4.2] was derived
for exact as well as probabilistic algorithms. This is appar-
ently in contradiction to our results for an ensemble of pure
states, where the number of oracle cd#dN27 1) can be
arbitrarily smaller. The algorithm that we introduced here is,
however, not covered by the usual discussion of probabilistic
algorithms, where one assumes that the single-run error
probability must be<1/2, while the error probability in our
case is exactly 1/2.

This work demonstrates again the usefulness and creativ-
ity of evolutionary methods for generating new algorithms.
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