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Abstract. Redundant genotype-to-phenotype mappings are pervasive
in evolutionary computation. Such redundancy allows populations to ex-
pand in neutral genotypic regions where mutations to a genotype do not
alter the phenotypic outcome. Genotype networks have been proposed as
a useful framework to characterize the distribution of neutrality among
genotypes and phenotypes. In this study, we examine a simple Genetic
Programming model that has a finite and compact genotype space by
characterizing its genotype networks. We study the topology of indi-
vidual genotype networks underlying unique phenotypes, investigate the
genotypic properties as vertices in genotype networks, and discuss the
correlation of these network properties with robustness and evolvability.
Using GP simulations of a population, we demonstrate how an evolu-
tionary population diffuses on genotype networks.

1 Introduction

A remarkable feature of natural evolutionary systems is how they maintain re-
silience to constant intrinsic and environmental perturbations while remaining
adaptive in the face of survival challenges. Robustness [1, 2] and evolvability
[3–5] have been discussed as closely related but somewhat contradictory proper-
ties in this context. Essentially, both properties reflect how evolutionary systems
respond to changes. Robustness enables them to remain intact in the face of
deleterious changes, whereas evolvability allows them to innovate to better fit
the survival pressures of the environment. Redundancy is a crucial mechanism
contributing to both robustness and evolvability. A redundant mapping from
multiple genotypes to a phenotype allows genetic variants to expand in neutral
mutational spaces. These neutral spaces are genotypic regions in which mutations
do not change the phenotype or fitness. Neutral genetic variations by mutations
possess the potential for creating novel phenotypes [6]. They serve as a quan-
titive staging ground for long-term adaptation and innovation. Such neutrality
provides a buffer against deleterious mutational perturbations, and augments
evolvability by accumulating genetic variations that might be non-neutral under
changes of the environmental context [7–10].
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Genotype networks, a.k.a. neutral networks, have been proposed as a use-
ful framework for studying neutrality [11–13]. In such networks, genotypes are
represented as vertices, and reversible mutational connections, as in common
evolutionary systems, are represented as undirected edges between pairs of geno-
types. One genotype network is comprised of all genotypes that encode for the
same phenotype. Therefore, within a genotype network, edges denote only neu-
tral point mutations. Different genotype networks, i.e. phenotypes, can also be
connected through non-neutral point mutations between genotypes that are phe-
notypically distinguished. Genotype networks provide a global view of how neu-
trality is distributed among various phenotypes, and hence become a very useful
framework to investigate how redundancy contributes to robustness and evolv-
ability. On one hand, studies have shown that evolutionary search really benefits
from expanding neutral regions [14, 15]. On the other hand, some evolutionary
systems are found to be constrained by the abundance of neutral mutational
variants [16].

A redundant mapping from genotype to phenotype is also pervasive in many
Evolutionary Computation (EC) systems, especially in Genetic Programming
(GP), where multiple genotypes encode identical phenotypes [17–19]. A sin-
gle point mutation to a genotype is defined as neutral if it does not alter the
phenotype or fitness. Such neutrality is largely contributed by the considerable
amount of non-coding regions in GP. Departing from early recognition of these
non-coding regions as disadvantageous, later extensive investigations and dis-
cussions have been conducted on how to characterize and utilize neutrality in
GP [20–22]. The notion of genotype networks has also been adopted in many GP
neutrality studies [23, 24]. However, most studies characterizing genotype net-
works are constrained by the infeasibility of enumerating genotypes due to the
infinite genotypic space of common GP systems. In a recent study, a quantitive
characterization of mutational robustness and evolvability was performed using
a simple Linear GP model, where the entire genotype and phenotype spaces are
finite and enumerable [25]. It is reported that robustness and evolvability are
correlated in a different way at the genotypic, phenotypic, and fitness levels.

In this study, we adopt the same Linear GP model as in a quantitative study
on evolvability and robustness [25] to take advantage of its genotype space be-
ing amenable to exhaustive enumeration. We characterize topological properties
of individual genotype networks and take a close look at vertex importance of
genotypes in the networks and how it correlates with robustness and evolvability.
Furthermore, using GP simulations, we investigate how an evolutionary popula-
tion diffuses on genotype networks and how those movements on the genotype
networks are reflected in fitness improvements.

2 Methods

2.1 Problem Instance

We consider a simple Linear GP system on a Boolean search problem as in a pre-
vious study [25]. In the LGP representation, an individual (or computer program)
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Fig. 1. Schematic diagram of a subset of genotype networks. Each vertex represents a
genotype and genotypes encoded to the same phenotype form one genotype network.
An edge links two vertices if the two genotypes can be transformed from one to another
through a single point mutation. Single point mutations can also connect genotypes
from different phenotypes, shown in dashed lines.

consists of a set of L instructions, which are structurally similar to those found in
register machine languages. Each instruction has an operator, a set of operands,
and a return value. In our study, each instruction consists of an operator drawn
from the Boolean function set {AND, OR, NAND, NOR}, two Boolean operands, and
one Boolean return value. The inputs, operands, and return values are stored in
registers with varying read/write permissions. Specifically, R0 and R1 are calcula-
tion registers that can be read and written, whereas R2 and R3 are input registers
that are read-only. Thus, a calculation register can serve in an instruction as an
operand or a return, but an input register can only be used as an operand. An
example program with L = 3 is given below.

R1 = R2 AND R3

R0 = R2 OR R1

R0 = R3 NAND R0

These instructions are executed sequentially from top to bottom. Prior to pro-
gram execution, the values of R0 and R1 are initialized to FALSE. Registers R2
and R3 read two Boolean input values. After program execution, the final value
in R0 is returned as output.

2.2 Genotype, Phenotype, and Genotype Networks

We consider each unique LGP program as a genotype and the binary Boolean
function f : B2 → B, where B = {TRUE, FALSE}, represented by the program
as its phenotype. We set two calculation registers, two input registers and four
operators, which means there are 2 × 4 × 4 × 4 = 27 possible instructions and
thus 221 possible programs of length L = 3. These 221 programs define the finite
genotype space mapping to the 16 possible binary Boolean functions f : B2 → B
as phenotypes.

Genotypes transform from one to another through point mutations. These
mutational connections can be well modeled by networks. The framework of
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genotype networks has been proposed to study how mutational connections are
distributed among genotypes underlying various phenotypes [11–13]. A genotype
network is comprised of all the genotypes, as vertices, that represent the same
phenotype. An edge connects a pair of genotypes if they can be transferred from
each other through a single point mutation (see Fig. 1).

Different phenotypes can have varying genotype network properties, and in-
vestigating these network properties provides insights into how an evolutionary
population explores the genotype space by expanding in genotype networks. We
take advantage of the simple yet representative LGP system to fully character-
ize the entire genotype space by enumerating all genotypes and constructing all
16 genotype networks. Then, for each genotype network, we look at their net-
work properties including network size, i.e. the total number of vertices, network
degree distribution and vertex closeness centrality.

The degree of a vertex in a network is the number of its connected neigh-
bors. In the framework of genotype networks, vertex degree reflects how robust
a genotype is when subject to point mutations. High degree vertices are geno-
types that are more likely to maintain their phenotypes under point mutations.
Vertex degree distribution describes the global connectivity of a network. At the
vertex level, centrality measures the importance of a vertex in the network. There
are a number of centrality measures that capture the individual contribution of
vertices to a network. In the current study, we look at the closeness centrality,
denoted as 1∑

j �=i dij
of a vertex i, where dij is the distance, i.e. the shortest path,

between vertices i and j [26, 27]. Closeness centrality describes how easily a
given vertex can reach all other vertices. A higher closeness centrality indicates
a more central position of a vertex in the network. Beyond mutational connec-
tions within genotype network, genotypes can mutate into different phenotypes
through non-neutral single point mutations. The evolvability of a genotype is de-
fined as the number of unique phenotypes that it can reach through single point
mutations [13]. This definition is intuitive in that if a genotype is adjacent to
genotypes from many other different phenotypes, it is considered more evolvable.

2.3 Population Evolution

Population evolution is simulated to investigate how a population diffuses on
genotype networks. The initial population includes |P | randomly chosen geno-
types from one given phenotype. Then for each generational iteration, a number
of individuals are subject to single point mutations, according to a mutation rate
r, and both |P | parents and r × |P | offspring are competing in a tournament
selection to form the next generation of |P | individuals. We set one particular
phenotype as the target and let the population evolve towards it. The evolution
process is terminated once the entire population converges to the target.

A single point mutation can apply to any locus of a genome, including the
return register, one of the two operand registers, or the operation function.
The fitness value of a genotype is calculated based on the mutational potential
from its phenotype to the target phenotype. Specifically, let vij denote the total
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Fig. 2. Genotype network properties of phenotype NAND. (a) Distribution of vertex
degree. (b) Distribution of vertex closeness centrality.

number of possible single point mutations that can transform genotypes from
phenotype i to phenotype j. The fitness of genotypes from phenotype k with
regard to the target phenotype t is defined as ft(k) = vkt∑

j �=k vkj
. This fitness

calculation is defined following the intuition that a phenotype with a higher
mutational potential towards the target is rewarded with a higher fitness value.

3 Results and Discussion

3.1 Properties of Genotype Networks

For our particular LGP system, the distribution of genotypes among different
phenotypes is highly heterogeneous. The size of genotype networks ranges from
a minimum of 64 genotypes (for phenotypes EQUAL and XOR) to a maximum of
617,024 genotypes (for FALSE), occupying between � 0.1% and 29.4% of the
entire genotype space, respectively. The mutational connections among pheno-
types are also unevenly distributed. Out of the total 16 genotype networks, 10
are mutationally accessible from all other genotype networks, 4 are adjacent to
14 other phenotypes, and the two smallest genotype networks (EQUAL and XOR)
have 13 phenotype neighbors. Moreover, these two smallest genotype networks
are comprised of 64 individual islands, i.e. all 64 genotypes mutate away from
their phenotype with any single point mutations, whereas the other 14 genotype
networks contain single connected components.

Due to the symmetry of Boolean functions, some genotype networks share the
same topological properties, e.g. phenotypes x >= y and x <= y. Interestingly,
all genotype networks, excluding EQUAL and XOR that have all genotypes as iso-
lated vertices, share the bi-modal vertex degree distribution. Fig. 2(a) shows the
degree distribution of the representative genotype network NAND. This degree
distribution suggests that the genotype networks are comprised of a dense core
of highly connected genotypes, as well as a cluster of genotypes towards the pe-
riphery. The vertex closeness centrality has a uni-modal distribution (Fig. 2(b)),
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Fig. 3. The correlations of genotypic evolvability and (a) vertex degree and (b) vertex
closeness centrality of the NAND genotype network. Grayscale of hexagons indicates the
density of value intervals.

suggesting that most vertices are about equally accessible from other vertices
in the network. The vertex degree and closeness centrality are also positively
correlated (Spearman’s rank correlation ρ = 0.5417, p < 2× 10−16).

Recall that the evolvability of a given genotype is measured as the number of
accessible unique phenotypes through single point mutations. We then look into
how genotypic evolvability correlates with the degree and closeness centrality of
a genotype in the network. Fig. 3 shows evolvability as a function of (a) vertex
degree and (b) vertex closeness centrality. It can be observed that both the
vertex degree and closeness centrality are negatively correlated with evolvability
(Spearman’s rank correlations ρ = −0.3379, p < 2 × 10−16 and ρ = −0.3865,
p < 2×10−16, respectively). This suggests that the dense center cores of genotype
networks have less access to other unique phenotypes, i.e. are less evolvable, than
the genotypes at the periphery.

3.2 Population Diffusion on Genotype Networks

After quantifying the static properties of genotype networks, we now use popu-
lation evolution to investigate how a population diffuses on genotype networks.
We set one of the least representative phenotypes, x == y, as the evolution tar-
get to allow evolution to proceed for a longer time. |P | = 500 individuals of a
given starting phenotype are randomly sampled as the initial population. We
set mutation rate r = 0.1 and use a tournament selection of size two. For each
starting phenotype configuration we collect 1,000 independent runs, and for each
run the required number of generations that a population converges to the target
phenotype is recorded.
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Fig. 4. The required evolution time as a function of the starting phenotype’s genotype
network properties. (a) The number of required generations increases as the geno-
type network becomes larger. (b) Evolution also requires a longer time if the starting
phenotype’s average vertex degree is larger. The lines provide a visual guide of their
correlations.

Fig. 4 shows the correlations of the required evolution time and the starting
phenotype’s properties. A population needs a longer time to reach and converge
to the target if it starts from a larger genotype network (Fig. 4(a), Spearman’s
rank correlation ρ = 0.6640, p = 0.0096). This positive correlation also exists
between the evolution time and the starting phenotype’s average vertex degree
(Fig. 4(b), Spearman’s rank correlation ρ = 0.6326, p = 0.0152). This suggests
that it takes a population longer to evolve if it starts from a larger and more
connected genotype network. This finding contradicts Wagner’s RNA results
where larger phenotypes, i.e. more robust phenotypes, are more evolvable [13],
but agrees with Cowperthwaite’s argument that the abundance of genotype net-
works constrains evolution [16]. We would like to point out that their correlation
crucially depends on the properties of an evolutionary system, specifically how
the genotype networks are adjacent to each other globally and where the target
phenotype is located. For our LGP system, the target phenotype can be accessed
from 13 other phenotypes, such that there are many possible paths to find the
target. Therefore, evolution is expected to take a longer time moving out of large
genotype networks and exploring novel phenotypes.

Last we take a close look at how a population diffuses on genotype networks
as evolution proceeds. Fig. 5 shows the average vertex degree of a population
changes as a function of generation in a typical run. The population starts with
the average vertex degree of the starting genotype network NAND. Individuals
then quickly move towards the periphery of the networks (generation 1 to 10).
During the subsequent search, the population visits many other phenotypes,
but leaves without going into their center cores (generation 11 to 160). The
population reaches the first genotype of the target phenotype at generation 161,
and quickly converges to the target in the next 33 generations. Also note that,
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Fig. 5. The change of average vertex degree of an evolving population as evolution
proceeds in a typical run of starting phenotype NAND. Points are population mean and
error bars are standard deviations.

data not shown here, the change of vertex closeness centrality follows the same
trend as the vertex degree since they are positively correlated.

4 Concluding Remarks

Here we have used a simple yet representative LGP system to fully characterize
all individual mutational genotype networks by exhaustively enumerating the
entire genotype and phenotype spaces. The 16 unique phenotypes are represented
by 16 genotype networks that possess both shared and distinguishing properties.
The two smallest genotype networks are comprised of isolated individual vertices,
whereas all other networks contain single connected components. The connected
genotype networks share similar bi-modal degree distributions, which indicate
that the networks are comprised of a dense core and a well-connected periphery.
In such genotype networks, vertices with high degrees are more likely located
in the center of connecting all other vertices. However, these high-degree and
high-centrality genotypes are less evolvable towards novel phenotypes.

By simulating population evolution, we find that a population requires more
time to find a target if it starts from a larger genotype network. This observation
conforms well to the static characterization of genotype properties in networks.
We would like to point out that how the abundance of mutational variants con-
tribute to evolvability crucially depends on the distribution of neutrality among
various phenotypes and where the target phenotype is located. Our simulation
also shows how an evolutionary population diffuses on genotype networks. It
moves from the center of a network towards the periphery as the evolutionary
search proceeds, accompanied by fitness improvements, and stays on the periph-
ery of genotype networks visited until the target phenotype is reached.

The findings of this study provide insights on how neutrality is distributed in
a typical LGP system. We conjecture that genotype networks could be shaped
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very differently in other GP systems, however our current observations cap-
ture many general properties of GP, and might even be applicable to other EC
systems. Specifically, the distribution of neutrality is very heterogenous among
various phenotypes. Some genotype networks, i.e. phenotypes, could be orders
of magnitude larger than others. Moreover, the mutational connections among
phenotypes are biased, where a phenotype has more potential to mutate to par-
ticular phenotypes and is less likely to mutate to or is even disconnected from
some phenotypes. The success of an innovative evolutionary search crucially de-
pends on locating the target phenotype, i.e. whether it is accessible from many
other phenotypes, and on finding an efficient mutational path towards it.

In future studies, we expect to use our methodology in other GP- or EC-
systems and test if our observations and conjectures hold for a wider range of
applications. It would be helpful to look into how a particular EC representation
correlates with genotype network properties, such that we can gain a better
understanding of how a representation influences evolutionary search and how
we could improve the performance of an evolutionary algorithm by designing
more appropriate representations.
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