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Abstract. Genetic programming (GP)-based feature construction has
achieved great success as an automated machine learning technique to
improve learning performance. The key challenge in GP-based feature
construction is that it is easy to overfit the training data. In super-
vised learning, unseen data usually lie in the vicinity of the training data
and behave similar to the training data. However, a rugged model may
make significantly different predictions, thus resulting in poor general-
ization performance. Here, we propose pessimistic vicinal risk minimiza-
tion method to control overfitting in GP-based feature construction. The
idea is to minimize the worst-case loss on vicinal examples of training
instances, where vicinal examples are synthesized using an instance-wise
mixing method. The experimental results on 58 datasets demonstrate
that GP with the proposed overfitting control method clearly outper-
forms standard GP and seven other overfitting control methods for GP,
validating the superiority of using pessimistic vicinal risk minimization
to control overfitting in GP for feature construction.

Keywords: Genetic Programming · Evolutionary Machine Learning ·
Symbolic Regression · Feature Construction · Vicinal Risk
Minimization

1 Introduction

Automated feature construction has become a well-studied topic in the recent
domain of automated machine learning [1]. For a given dataset (X,Y ), the
goal of automated feature construction is to construct a set of features Φ(X)
to improve the learning performance of algorithm A over the original feature
space X. Among automated feature construction methods, genetic programming
(GP)-based methods [1,2] are popular due to their flexible and variable-length
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representation, gradient-free optimization, and global search mechanism. These
characteristics enable GP to explore a symbolic space to discover interpretable
features and optimize non-differentiable losses, such as the L0-norm.

One challenge of existing GP-based feature construction methods is their
tendency to overfit training data, especially in the presence of label noise or
with limited samples. A widely used solution is to control model sizes; however,
this approach has been challenged because the generalization of GP is often more
about the semantics/behavior of the GP models rather than their sizes [3]. For
instance, sin(sin(x)) and x×x have the same model size but differ significantly
in their semantics, which can affect how well the models generalize.

Given the limitations of optimizing tree size to control overfitting, numerous
works have proposed to use theoretical statistical learning techniques, such as
Tikhonov regularization [4], VC dimension [5], and Rademacher complexity [6],
to control the complexity of GP and improve generalization. Although these
metrics have been found to be effective in traditional machine learning (ML),
such as in support vector machines, their effectiveness is challenged by large deep
neural networks with VC dimensions lower bounded by Ω(WL log(W/L)) for W
parameters and L layers [7], which is usually large for modern neural networks.
Thus, these metrics may not be suitable optimization objectives for controlling
overfitting [8].

In recent years, vicinal risk minimization (VRM) has achieved significant
success in controlling overfitting in deep learning [9]. For a model f and a loss
function L, a general loss is defined as follows:

L(f) =
∫

L (f(x), y) dP (x, y) (1)

where f(x) represents the prediction of the model on sample x, and P (x, y)
represents the probability of sampling the pair (x, y) from the underlying data
distribution. The empirical risk considers only the loss on training samples, i.e.,
1
n

∑n
i=1 L (f (xi) , yi). In contrast, VRM considers both the training samples xi ∈

X and their neighborhoods x ∈ N(xi), known as vicinal samples. Formally, the
vicinal risk is defined as follows:

VIC(f) = 1
n

n∑
i=1

∫
L (f(x), yi) dPxi

(x) (2)

Here, Pxi
(x) is a probability density function based on the distance between x

and sample xi, meaning that vicinal samples closer to the training samples have
a higher occurrence probability. By optimizing such an objective, it is hoped that
the model will not only perform well on training samples but also exhibit stable
behavior on samples generated from the same distribution as the training samples.

However, in ML, one issue is that within a radius τ around a sample x, for
all vicinity examples x+σ subject to ||σ|| ≤ τ , only specific perturbations σ may
worsen the training loss, as observed in adversarial attacks [10]. Thus, this paper
explores controlling overfitting by minimizing the vicinal risk in pessimistic cases
to avoid overfitting, with the hope that the model achieves uniform stability [11]
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across all possible unseen scenarios. Nonetheless, unlike adversarial training, the
unseen sample should lie on the manifold of the underlying data distribution.
Therefore, this paper focuses on mixup-synthesized samples [12], which are more
likely to synthesize data that lie on the real manifold, as defined by Eq. (3):

xmixup = λ · xa + (1 − λ) · xb, (3)

where xa and xb are two nearby training instances, and λ ∈ [0, 1] is a randomly
sampled mixing ratio.

1.1 Goals

In this paper, we propose pessimistic vicinal risk as a regularizer to control
overfitting, aiming for learned models to exhibit stable behavior on potential
unseen data. The objectives of this paper are summarized as follows:
– To control overfitting, a pessimistic VRM (P-VRM) framework is proposed

based on a multi-objective evolutionary feature construction algorithm.
– A theoretical analysis is conducted to demonstrate that P-VRM implicitly

promotes local linearity between each training instance and its worst-case
vicinal instance, thereby improving generalization performance.

– To validate the effectiveness of the proposed method, we compare P-VRM
with seven complexity measures and standard GP for their effectiveness in
controlling overfitting across 58 datasets.

2 Related Work

2.1 Overfitting Control Techniques in GP

Overfitting control techniques in GP can be divided into three main types. The
first type is based on the probably approximately correct learning theory, using
measures such as model size, Tikhonov regularization [4], VC dimension [5],
and Rademacher complexity [6] to control the complexity of GP models. These
approaches are based on solid theoretical foundations, yet their effectiveness is
somewhat limited for deep learning-based feature learning techniques [8]. The
second technique is ensemble learning, which is based on the bias-variance the-
ory, either through homogeneous [13] or heterogeneous ensemble learning [14],
assembling a set of GP models to enhance generalization performance. However,
these ensemble models often lack interpretability. The third category includes
several practical overfitting control techniques from ML that have been adapted
for GP, such as early stopping [15], semi-supervised learning [16], random sam-
pling [17], and soft targets [18]. However, these techniques often lack a strong
theoretical foundation.

2.2 Vicinal Risk Minimization

For deep learning-based feature construction, VRM has been demonstrated to
be effective in improving generalization performance [12]. VRM considers vicinal
examples during training and offers benefits like Jacobian regularization and
robustness against noisy targets [19]. However, VRM is rarely studied in GP,
especially for regression or feature construction.
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VRM in Deep Learning. In deep learning, particularly in computer vision,
VRM is commonly achieved through data augmentation techniques like ran-
domly cutting an image (CutOut) [20], mixing two images (MixUp) [12], mixing
patches of images (CutMix) [21], and mixing the original image with an aug-
mented image (AugMix) [22]. These approaches follow the idea of VRM, where
the average loss on synthesized samples directs gradient descent. Nevertheless,
adversarial attacks [23] demonstrate that very specific perturbations can dras-
tically alter the loss, suggesting that optimizing the average vicinal risk might
not be sufficient.

VRM in Genetic Programming. In GP, VRM has primarily been investi-
gated for classification. For classification, defining vicinity samples is straightfor-
ward, as adding a small perturbation ε to an input x typically does not change
the class label y. Therefore, VRM has been shown to be useful for learning
decision trees [24] and GP classifiers [25]. However, this assumption may not
hold for regression, where the output is continuous, which poses a challenge for
employing VRM in GP for regression.

2.3 Evolutionary Feature Construction

Based on evaluation methods, evolutionary feature construction can be cate-
gorized into filter-based, wrapper-based, and embedded methods. Filter-based
methods use general metrics like impurity [26] or information gain [27]. They
are cost-effective but may yield sub-optimal accuracy. Wrapper-based methods
evaluate features using a specific learning algorithm. For wrapper-based evo-
lutionary feature construction, multi-tree GP has been widely used, including
algorithms like M3GP [2], FEAT [1], and GP-GOMEA [28]. These methods can
construct highly discriminative features for a specific learning algorithm but
may lead to overfitting. Embedded methods integrate feature construction into
the learning process, such as symbolic regression [29]. They provide a balance
between training time and accuracy. This paper studies wrapper-based methods,
with a focus on addressing generalization issues.

3 Proposed Algorithm Framework

3.1 General Framework

In this paper, a multi-tree GP, denoted as Φ, is used to represent multiple fea-
tures φ1, . . . , φm, where m is dynamically evolved for different GP individuals.
These constructed features are employed to transform original features X into
the constructed features Φ(X), which are then fed into a linear regression model
LM to make predictions. This work follows the general framework of evolu-
tionary feature construction, incorporating additional steps such as vicinal data
synthesis, vicinal risk estimation, and archive maintenance1. The key steps are
as follows:
1 Source Code: https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/

experiment/methods/P_VRM_GP.py.

https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/experiment/methods/P_VRM_GP.py
https://github.com/hengzhe-zhang/EvolutionaryForest/blob/master/experiment/methods/P_VRM_GP.py
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– Population Initialization: At this stage, a population of GP individuals is
randomly initialized. For each individual, a GP tree is initialized using either
the full or grow method with equal probability, i.e., the ramped-half-and-
half method. The number of trees in an individual can be increased through
mutation operators later during the evolutionary process.

– Parent Selection: Automatic ε lexicase selection [30] is used for parent
selection. Lexicase selection iteratively chooses an instance k to set a threshold
for eliminating individuals with poor performance. The threshold is defined
as Lk(p) < minp′∈P Lk(p′) + εk, where minp′∈P Lk(p′) is the minimum loss
on instance k, and εk is the median absolute deviation. Those with a loss
larger than the threshold are eliminated from the candidate parent pool. This
process repeats until one individual remains and is selected as the parent. The
lexicase selection operator is applied |P | times to select |P | parents.

– Offspring Generation: Offspring are generated using random subtree
crossover and mutation operators. Additionally, random tree addition and
deletion operators [2] are used to dynamically increase or decrease the num-
ber of trees m in an individual Φ.

– Solution Evaluation: The evaluation of candidate solutions involves two
objectives: pessimistic vicinal risk based on the mixup strategy, i.e., O1(Φ),
and leave-one-out cross-validation loss, i.e., O2(Φ). These two objectives are
obtained based on four functions:

• Vicinal Data Synthesis: First, vicinal data X̃ is synthesized using the
instance-wise mixup strategy outlined in Sect. 3.3.

• Feature Transformation: For each individual Φ, both the original data
X and the vicinal data X̃ are transformed using all GP trees φ within
the individual Φ to form Φ(X) and Φ(X̃), respectively.

• Pessimistic Vicinal Risk Estimation (O1(Φ)): To evaluate the perfor-
mance of the constructed features on vicinal data, first, the original data
Φ(X) is used to train a linear regression model LM . Then, the pessimistic
vicinal risk is calculated by applying the linear model LM to the vicinal
data Φ(X̃) according to the vicinal risk estimation method detailed in
Sect. 3.4.

• Leave-one-out Cross-validation (O2(Φ)): This objective is obtained
by evaluating the leave-one-out cross-validation loss on the constructed
features Φ(X) using a linear model LM .

– Survival/Environmental Selection: After evaluation, non-dominated
sorting with crowding distance [31] is used to select promising candidates
for the next generation. This process reduces the set of parents and offspring,
initially sized at 2|P | individuals, back to |P | individuals.

– Archive Maintenance: At the end of each generation, the model with the
lowest vicinal risk O1(Φ) is stored in an external archive as the final prediction
model.

The processes of solution evaluation, parent selection, offspring generation, envi-
ronmental selection, and archive maintenance are repeated until a termination
criterion is met.



206 H. Zhang et al.

Fig. 1. (a) Comparison between empirical risk minimization (ERM), VRM, and P-
VRM using the Gaussian synthesis strategy. (b, c) Comparison between the Gaussian
synthesis strategy and the mixup synthesis strategy.

3.2 P-VRM

In this paper, we consider the loss in the worst-case scenario over all vicinal
examples, thus employing “pessimistic” VRM. Formally, pessimistic vicinal risk
is defined as:

V(f) = 1
n

n∑
i=1

max
x∈N(xi)

L (f(x), yi) , (4)

where N(xi) represents the neighborhood region of point xi. By optimizing Eq.
(4), we aim for the model to achieve stable behavior even in the presence of the
worst perturbations around each data point. Figure 1a illustrates the differences
between ERM, VRM, and P-VRM. Typically, vicinal samples used to calculate
vicinal risk are synthesized by adding Gaussian noise N (0, σ) to existing points
x ∈ X, as shown in Fig. 1b. In this paper, our mixup is based on synthesiz-
ing a mixture of a sample xi ∈ X with its neighboring point xj ∈ N(xi) with
a randomly sampled ratio λ ∼ Beta(α, β). An example of mixup-based vici-
nal example synthesis is shown in Fig. 1c. Intuitively, mixup can be understood
as a linear interpolation between two nearby points, thereby synthesizing data
without disrupting the data manifold.

3.3 Instance-Wise Vicinal Data Synthesis

In the traditional mixup framework, vicinal data are generated by mixing two
randomly selected examples from the original dataset [12]. This can lead to
some examples not being selected, while others are selected multiple times,
resulting in inaccurate and biased vicinal risk estimation. To achieve accurate
VRM, we propose an instance-wise mixup strategy to ensure that all examples
are selected exactly the same number of times. Specifically, for each instance
xa ∈ X, we mix it with K nearby instances xb,1, . . . , xb,K to generate vicinal
samples xmixup. There are two key questions in this approach: how to select the
K nearby instances xb ∈ N(xa), and how to mix the instance xa with xb.

Kernel-Based Sample Selection. To synthesize data, a nearby sample
xb ∈ N(xa) needs to be selected based on sample xa. Defining the vicinity
in feature space is challenging because it is difficult to capture the underly-
ing data manifold that represents the true data distribution. Therefore, we
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define vicinity based on labels, ya and yb. Specifically, to determine the sim-
ilarity between samples (xa, ya) and (xb, yb), we use a Gaussian kernel func-
tion: K(yb, ya) = e−γ‖yb−ya‖2

[32]. In each round of vicinal sample genera-
tion, distances are first normalized to create a probability distribution, i.e.,
P (yb|ya) = K(yb,ya)∑

yi∈Y K(yi,ya)
, which is then used to sample instances based on

their proximity to sample (xa, ya). Based on this probability distribution, K
samples are selected to generate vicinal samples.

Vicinal Data Synthesis. For a pair of samples {(xa, ya), (xb, yb)}, the standard
mixup equation is xmixup = λ·xa+(1−λ)·xb [12], where λ is the mixing ratio sam-
pled from a Beta distribution with parameters α = β [12]. The probability den-
sity function of the Beta distribution is given by: Beta(x;α, β) = xα−1(1−x)β−1

B(α,β) ,

where B is the beta function, B(α, β) =
∫ 1

0
tα−1(1 − t)β−1 dt. The choice of

the Beta distribution follows convention [12] and is motivated by its property of
ensuring the sampled mixing ratio λ falls within the interval [0, 1] with arbitrary
parameter settings.

However, for P-VRM, the vicinal sample xmixup of instance xa should contain
more of xa than xb. Thus, the instance-wise mixup is defined as in Eq. (5),

xmixup = (0.5 + |λ − 0.5|) · xa + (0.5 − |λ − 0.5|) · xb, (5)

where, by setting the sample ratio for xa to be 0.5+ |λ−0.5|, we ensure that the
ratio of xa in xmixup is greater than or equal to 0.5. The label of the synthesized
sample ymixup is synthesized using the same equation and ratio. The instance-
wise mixup equation can be viewed as adding a perturbation to the sample
(xa, ya):

xmixup = xa + (0.5 − |λ − 0.5|) · (xb − xa), (6)
ymixup = ya + (0.5 − |λ − 0.5|) · (yb − ya). (7)

Theorem 1. For a predictive model f : X → Y , pessimistic mixup implicitly
promotes local linearity around each sample xa ∈ X by optimizing the objective:
maxλ,(xb,yb)∈N(xa)(0.5 − |λ − 0.5|)2(yb − ya − ∇f(xa)�(xb − xa))2, where λ is a
mixup ratio drawn from a Beta distribution Beta(α, β), and N(xa) denotes the
neighborhood of xa.

Proof: The prediction of a model for a mixup sample, f(xmixup), can be
approximated using a first-order Taylor expansion around the sample point xa as

f(xmixup) ≈ f(xa) + ∇f(xa)�(xmixup − xa) + O((xmixup − xa)2), (8)

where f(xa) is the model prediction on the original sample xa, ∇f(xa) is the
gradient of the model prediction with respect to the input at xa. The term
∇f(xa)�(xmixup − xa) represents the linear approximation of the change in the
model prediction due to the perturbation xmixup − xa, and O((xmixup − xa)2)
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represents the higher-order remaining terms. For conciseness, let δ = (0.5− |λ −
0.5|). Substituting Eq. (8) into the vicinal risk loss (ymixup − f(xmixup))2, we
have:

(ymixup − f(xmixup))2 (9)

≈ (ya + δ(yb − ya) − f(xa) − ∇f(xa)�(xmixup − xa))2 (10)

= (ya + δ(yb − ya) − f(xa) − ∇f(xa)�((xa + δ(xb − xa)) − xa))2 (11)

= ((ya − f(xa)) + δ(yb − ya − ∇f(xa)�(xb − xa)))2 (12)

≤ 2(ya − f(xa))2 + 2δ2(yb − ya − ∇f(xa)�(xb − xa))2. (13)

This bound indicates that minimizing both the mean square error and the term
δ2(yb − ya − ∇f(xa)�(xb − xa))2 can achieve the same effect as minimizing the
mixup-based vicinal risk. To investigate the regularization effect of P-VRM based
on mixup, assuming a constant training error (ya − f(xa))2, the optimization
process focuses on the following objective:

V = max
λ,(xb,yb)

(0.5 − |λ − 0.5|)2(yb − ya − ∇f(xa)�(xb − xa))2. (14)

Discussion: To find the optimal model f∗ that minimizes V for a specific
instance x∗

b , y
∗
b , the optimal gradient can be determined by setting ∂V

∂∇f(xa)
= 0:

∂V
∂∇f(xa)

= 2δ2(∇f(xa)�(x∗
b − xa) − (y∗

b − ya))(x∗
b − xa) = 0. (15)

The optimal gradient is achieved when the gradient of the function ∇f(xa)
is parallel to the vector difference x∗

b − xa, scaled by the difference y∗
b − ya,

i.e.,∇f(xa)�(x∗
b − xa) = y∗

b − ya. Ideally, this alignment should occur for every
instance xb within a local vicinity of xa to minimize the pessimistic vicinal risk. In
practice, this implies that P-VRM encourages the model f to maintain a constant
gradient, i.e., to approximate a linear function on the worst-case instance lying
within the linear manifold, which is formed by each sample xa and its neighboring
points xb, thereby improving the generalization performance of the model f .

3.4 Pessimistic Vicinal Risk Estimation

The process of estimating the pessimistic vicinal risk is outlined in Algorithm 1.
To ensure reliable estimation, vicinal risk is estimated over K rounds for each
sample x, and the maximum loss on each synthesized sample xmixup is considered
as the pessimistic risk. Subsequently, the final pessimistic risk of the GP indi-
vidual Φ is computed as the average of the pessimistic risks across all instances
x ∈ X. In each iteration, two key components are worth highlighting:

– Cached Vicinal Data (Line 4): The mixup data (Xmixup, Ymixup) are
regenerated for the K rounds but generated only once for each round and
cached in memory for consistency across different individuals. There are two
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Algorithm 1. Pessimistic Vicinal Risk Estimation
Require: A GP Tree Φ, Input X, Target Output Y , Linear Model LM , Gaussian

Noise Standard Deviation σ, Number of Iterations K
1: Initialize Vicinal Risk: V ← 0
2: Φ(X) ← Feature Construction (X, Φ)
3: for k = 1, . . . , K do
4: Xmixup, Ymixup ← Instance-wise Mixup (X, Y, k) � Cached
5: Φ(Xmixup) ← Feature Construction (Xmixup, Φ, σ)
6: Ŷ ← Prediction(LM, Φ(Xmixup))
7: for i = 1, . . . , N do
8: Vi ← max(Vi, (ŷi − ymixup)

2)

Ensure: Pessimistic Vicinal Risk
∑N

i=1 Vi/N

benefits of using the caching strategy. Firstly, it can save computational costs
for synthesizing data. Secondly, it ensures a fair comparison on vicinal risk
across individuals by providing a shared reference for evaluations.

– Pessimistic Risk Estimation (Lines 7-8): After computing vicinal risk,
(ŷi −ymixup)2, it is compared to the historically worst vicinal risk on example
i, denoted as Vi. The historical worst vicinal risk Vi is updated if the new risk
exceeds the previously recorded worst risk.

4 Experimental Settings
4.1 Datasets

The datasets used in this paper are from the Penn Machine Learning Bench-
mark (PMLB) [33]. There are 120 “black-box” datasets in PMLB; after excluding
datasets synthesized by Friedman functions, 58 datasets remain, which are used
for experiments.

4.2 Comparison Methods

The comparison methods include standard GP and GP with seven common
complexity measures to control overfitting:

– Standard GP without Regularization: This is the standard GP with
leave-one-out cross-validation loss as the objective.

– Parsimony Pressure (PP) [34]: PP is based on Occam’s razor principle.
The number of nodes in GP trees within an individual is considered as the
complexity measure.

– Tikhonov Regularization (TK) [4]: This paper only focuses on zero-order
TK due to its simplicity and effectiveness [4], where zero-order TK of model
f is defined as ||f(X)||. The aim of zero-order TK is to prevent extreme
predictions.
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– Grand Complexity (GC) [4]: GC is a combination of parsimony pressure
and Tikhonov regularization, where the dominance relationship between these
two objectives is used as an optimization objective.

– Rademacher Complexity (RC) [6]: RC measures a model’s ability to fit a
given dataset with randomly labeled data. It is formally defined as: Rn(L) =
E

[
supl∈L

1
n

∑n
i=1 σil (xi, yi)

]
, where σi ∈ {−1, 1} is a random variable.

– Correlation between Input and Output Distances (IODC) [18]: IODC
measures the correlation between input pairwise distances and output pair-
wise distances to evaluate the smoothness of a model. It is defined as:
IODC(Φ) = Cov(I,O)

σIσO
. A higher IODC value indicates a smoother model.

– Weighted Maximum Information Coefficient between Residuals and
Variables (WCRV) [35]: WCRV seeks to minimize two factors: the cor-
relation between highly informative features and the residual R, and the
selection of uninformative features. It is formally defined as: WCRV (Φ) =∑

MIC
xk,Y

≥mv MICxk,Y ×MICxk,R +
∑

MIC
xk,Y

<mv

(
1 − MICxk,Y

)
.

– VRM: VRM refers to the conventional mixup-based VRM [12] that is
commonly used in deep learning, which focuses on minimizing the aver-
age loss across all vicinal samples N(x), rather than just the worst-
case samples. The objective function is formally defined as: V(f) =
1
n

∑n
i=1

∑
x∈N(xi)

L (f(x), yi) dPxi
(x), which corresponds to Eq. (2).

To ensure fair comparisons, we evaluate these methods using the same multi-
objective evolution framework as this paper. Standard GP adheres to this frame-
work without a survival selection operator. In VRM, the model with the low-
est vicinal risk is chosen as the final model. For other benchmark methods,
to balance training accuracy and model complexity, the minimum Manhattan
distance-based (MMD) knee point is used to select the final solution from the
non-dominated set of trade-off solutions for prediction [36]. Given the different
scales of complexity measures compared to mean squared error in the benchmark
methods, we first normalize the two objectives, denoted by O1(Φ) and O2(Φ).
Then, the individual with the smallest sum of the two objectives, O1(Φ)+O2(Φ),
is selected as the final model in the MMD method.

4.3 Parameter Settings

The parameter settings follow the convention in GP, as shown in Table 1. A large
crossover rate and a small mutation rate are used to encourage the exchange of
building blocks. To prevent division by zero, we use the analytical quotient,
defined as AQ(a, b) = a√

1+b2
[37]. Additionally, the analytical logarithm, which

is defined as Log(a) = log(
√
1 + a2), is used to replace the traditional logarithm

operator.

4.4 Evaluation Protocol

For each experiment, each baseline method is executed on each dataset with 30
different random seeds [38]. In each round, the dataset is randomly split into
a training set with 100 points, and all remaining data serve as the test data.
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Table 1. GP Parameter Settings

Parameter Value

Maximum Population Size 200
Number of Generations 100

Crossover Rate 0.9
Mutation Rate 0.1

Tree Addition Rate 0.5
Tree Deletion Rate 0.5
Initial Tree Depth 0-3

Maximum Tree Depth 10
Initial Number of Trees 1

Parameter Value

Maximum Number of Trees 10

Elitism (Number of Individuals) 1

Bandwidth of Gaussian Kernel 0.5

β of Beta Distribution 1

Iterations of Risk Estimation (K) 10

Functions

+, -, *, AQ,
Abs, Sqrt, Neg,
Log, Max, Min,
Sin, Cos, Square

Table 2. Statistical comparisons of test R2 scores across various overfitting control
strategies. (“+”, “∼”, and “-” indicate that the method in a row performs better than,
similarly to, or worse than the method in a column, respectively.)

VRM PP RC GC

P-VRM 22(+)/29(∼)/7(-) 22(+)/31(∼)/5(-) 46(+)/10(∼)/2(-) 23(+)/32(∼)/3(-)
VRM — 11(+)/38(∼)/9(-) 38(+)/10(∼)/10(-) 16(+)/29(∼)/13(-)
PP — — 38(+)/13(∼)/7(-) 15(+)/34(∼)/9(-)
RC — — — 5(+)/10(∼)/43(-)

IODC TK WCRV Standard GP
P-VRM 31(+)/24(∼)/3(-) 44(+)/12(∼)/2(-) 38(+)/18(∼)/2(-) 31(+)/21(∼)/6(-)

VRM 24(+)/25(∼)/9(-) 28(+)/29(∼)/1(-) 27(+)/23(∼)/8(-) 22(+)/34(∼)/2(-)

PP 23(+)/29(∼)/6(-) 25(+)/31(∼)/2(-) 26(+)/26(∼)/6(-) 25(+)/25(∼)/8(-)

RC 5(+)/21(∼)/32(-) 5(+)/20(∼)/33(-) 11(+)/17(∼)/30(-) 13(+)/14(∼)/31(-)
GC 25(+)/26(∼)/7(-) 23(+)/33(∼)/2(-) 25(+)/30(∼)/3(-) 24(+)/21(∼)/13(-)
IODC — 19(+)/24(∼)/15(-) 15(+)/30(∼)/13(-) 21(+)/16(∼)/21(-)
TK — — 11(+)/33(∼)/14(-) 10(+)/27(∼)/21(-)
WCRV — — — 17(+)/22(∼)/19(-)

This setting is used in existing GP literature to simulate the scenario of limited
samples [39]. For datasets with fewer than 100 points, a 50%-50% training-
test split is used to ensure enough training and test data. For the evaluation
metric, R2 scores are used to account for different scales across datasets. The
Wilcoxon signed-rank statistical comparison, at a significance level of 0.05, is
used to compare the statistical differences between pairs of algorithms [40].

5 Experimental Results

5.1 Comparisons of Test R2 Scores

General Analysis. The results of R2 scores are presented in Table 2 and Fig. 2.
All complexity measures effectively control overfitting to varying degrees. Even



212 H. Zhang et al.

Fig. 2. Evolutionary plots of the test R2 scores for different complexity measures.

Fig. 3. Evolutionary plots of the train-
ing and test R2 scores for P-VRM.

Fig. 4. Distribution of tree sizes across
58 datasets when optimizing different
complexity measures.

the least effective method, TK, reduces overfitting in 10 datasets. However, P-
VRM is particularly successful, outperforming standard GP on 31 datasets and
only underperforming on 6 datasets. In this section, we mainly focus on com-
paring P-VRM with VRM and PP, as P-VRM surpasses the other methods on
at least 23 datasets.

P-VRM vs. Parsimony Pressure. In GP, tree size has been widely used to
control overfitting. For GP-based evolutionary feature construction, the results
in Table 2 show that tree size remains a competitive measure for controlling
overfitting [41], outperforming standard GP on 25 datasets and only performing
worse on 8 datasets. However, tree size does not account for the semantics of
a GP tree; it cannot distinguish between the complexity of x2 and sin(x). The
results in Table 2 indicate that merely controlling the tree size is insufficient
for controlling overfitting. Optimizing VRM outperforms optimizing tree size
on 22 datasets while only underperforming on 5 datasets, and is similar on 31
datasets. This confirms that considering the complexity from the perspective
of the semantics of GP trees, especially pessimistic vicinal risk, leads to better
generalization performance.

P-VRM vs. VRM. The only difference between P-VRM and VRM is that
P-VRM focuses on the worst-case vicinal risk, while VRM considers the aver-
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age risk over all vicinal examples. Experimental results in Table 2 show that
P-VRM significantly outperforms VRM on 22 datasets and only performs worse
on 7 datasets. This suggests that pessimistic vicinal risk is more effective for
controlling overfitting than average vicinal risk.

5.2 Comparisons of Training R2 Scores

Statistical comparisons of training R2 results are presented in Table 3. The
results reveal that P-VRM is a stronger regularizer than VRM but weaker than
PP. P-VRM significantly underperforms in training R2 compared to VRM on
44 datasets out of 58, yet only underperforms compared to PP on 13 datasets
out of 58. Given the suboptimal results of VRM and PP on test R2 scores, this
suggests that effective overfitting control requires a carefully designed inductive
bias towards complexity regularization. Both overly strong and overly weak reg-
ularization can negatively affect test performance. Figure 3 further illustrates
the evolutionary plots of training and test R2 for the P-VRM method. The posi-
tive Pearson correlations between training and test R2 scores further affirm that
P-VRM is an effective measure for controlling overfitting.

Table 3. Statistical comparisons of training R2 scores across various overfitting control
strategies.

VRM PP RC GC

P-VRM 0(+)/14(∼)/44(-) 28(+)/17(∼)/13(-) 56(+)/2(∼)/0(-) 46(+)/10(∼)/2(-)
VRM — 48(+)/10(∼)/0(-) 58(+)/0(∼)/0(-) 56(+)/2(∼)/0(-)
PP — — 58(+)/0(∼)/0(-) 46(+)/12(∼)/0(-)
RC — — — 1(+)/4(∼)/53(-)

IODC TK WCRV Standard GP
P-VRM 37(+)/15(∼)/6(-) 36(+)/15(∼)/7(-) 39(+)/13(∼)/6(-) 1(+)/13(∼)/44(-)
VRM 53(+)/5(∼)/0(-) 53(+)/4(∼)/1(-) 48(+)/8(∼)/2(-) 2(+)/38(∼)/18(-)
PP 29(+)/23(∼)/6(-) 32(+)/20(∼)/6(-) 38(+)/15(∼)/5(-) 0(+)/3(∼)/55(-)
RC 1(+)/4(∼)/53(-) 0(+)/1(∼)/57(-) 2(+)/9(∼)/47(-) 0(+)/0(∼)/58(-)
GC 12(+)/27(∼)/19(-) 11(+)/26(∼)/21(-) 23(+)/25(∼)/10(-) 0(+)/1(∼)/57(-)
IODC — 16(+)/19(∼)/23(-) 27(+)/19(∼)/12(-) 0(+)/0(∼)/58(-)
TK — — 31(+)/12(∼)/15(-) 0(+)/4(∼)/54(-)
WCRV — — — 0(+)/2(∼)/56(-)

5.3 Comparisons of Tree Sizes

The comparisons of tree sizes are presented in Fig. 4. The results indicate that
P-VRM exhibits a similar magnitude of tree sizes compared to standard GP.
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This confirms that improving generalization performance is more about regular-
izing semantics rather than tree size [3]. Thus, rather than simply applying the
traditional Occam’s Razor philosophy, which suggests controlling tree sizes to
prevent overfitting, it is more effective to control functional complexity in GP.

In addition to comparisons of tree sizes, training time for different complexity
measures is also compared, as provided in Appendix A of the supplementary
material.

6 Further Analysis

In this section, we further analyze the advantage of P-VRM by considering two
questions:

– Is it useful to adopt mixup in place of Gaussian perturbation to synthesize
vicinal samples?

– Is the proposed vicinal risk also helpful when using Gaussian perturbation to
synthesize vicinal samples?

To answer these two questions, we compare the proposed P-VRM with two
variants under the same evolutionary feature construction framework:

– GVRM: This variant introduces a small Gaussian noise, N (0, 0.1), to synthe-
size vicinal data [25], while maintaining the original labels.

– P-GVRM: Similar to GVRM, but this variant focuses on pessimistic vicinal
risk rather than average vicinal risk.

Effectiveness of MixUp. The comparisons of test R2 scores between P-VRM
and P-GVRM are presented in Table 4. As indicated by the R2 scores, P-VRM
outperforms P-GVRM on 23 datasets and performs worse on only 8 datasets,
highlighting the effectiveness of using mixup instead of Gaussian noise [25] to
synthesize vicinal examples. The inferiority of P-GVRM is because Gaussian
noise may synthesize some examples that do not conform to the data manifold,
whereas mixup synthesizes samples more closely aligned with the data manifold.
Therefore, using mixup to synthesize vicinal data is more effective.

Effectiveness of Pessimistic Vicinal Risk. Another interesting finding is
that P-GVRM outperforms GVRM on 22 datasets and is similar on 34 datasets.
This suggests that even when Gaussian noise is used to synthesize vicinal exam-
ples, employing pessimistic vicinal risk benefits evolutionary feature construction
in controlling overfitting.
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Table 4. Statistical comparisons of R2 scores using mixup or Gaussian noise for syn-
thesizing vicinal samples.

P-GVRM GVRM

P-VRM 23(+)/27(∼)/8(-) 30(+)/21(∼)/7(-)
P-GVRM — 22(+)/34(∼)/2(-)

7 Conclusions

In this paper, we propose P-VRM to reduce overfitting and improve the gen-
eralization performance of GP-based evolutionary feature construction. P-VRM
minimizes the vicinal risk on the worst-case vicinal examples, and theoretical
analysis shows that P-VRM encourages the model to maintain a constant gradi-
ent and approximate a linear function between each instance and its worst-case
vicinal instance, thereby improving generalization performance. Experiments on
58 datasets show that P-VRM effectively controls overfitting compared to seven
other complexity measures, including classical VRM and parsimony pressure. An
analysis of model size suggests that controlling overfitting is more about con-
trolling semantic complexity rather than merely model size. Further comparison
between mixup-based vicinal data synthesis and Gaussian noise-based synthesis
reveals that using mixup to synthesize vicinal data is more effective in controlling
overfitting.

For future work, exploring the effectiveness of other strategies, such as Cut-
Mix [21], to further control overfitting in GP-based feature construction is worth-
while. Additionally, investigating the efficacy of the proposed P-VRM in broader
classes of symbolic regression techniques, including those based on reinforcement
learning [42] or transformer [43] techniques, is also promising.

Appendices

A Comparisons of Training Time

The comparisons of training time are presented in Fig. 5. It shows the distribu-
tion of median training time on each dataset over 30 random seeds. Experimental
results indicate that P-VRM requires more time than standard GP and simple
complexity measures, such as parsimony pressure. Specifically, P-VRM takes
1481 seconds in median, while standard GP takes 320 seconds in median. The
standard deviations of P-VRM and standard GP are 121 and 28 seconds, respec-
tively. The reason P-VRM is more time-consuming is that it needs to compute
the semantics of GP trees on vicinal data, whereas parsimony pressure merely
examines the syntax of GP trees. Hence, P-VRM is more time-consuming. How-
ever, the training time for P-VRM remains within a reasonable range. Also, the
overfitting issue cannot be solved by simply increasing the number of iterations
or training time. Therefore, the increase in training time of P-VRM to address
the overfitting issue is still acceptable.
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Fig. 5. Distribution of training time across the 58 datasets when optimizing different
complexity measures.

B Post-hoc Parameter Analysis

P-VRM involves two hyperparameters. The first is the bandwidth of the Gaus-
sian kernel used to sample instances xb based on xa, and the second is the α, β
values in the beta distribution used to determine the mixing ratio. This section
examines the sensitivity of these parameters to different settings.

B.1 Bandwidth

In P-VRM, a Gaussian kernel samples a paired instance yb based on ya as follows:

K(yb, ya) = e−γ‖yb−ya‖2
(16)

Here, the bandwidth γ, is a critical parameter that defines the scope of the
vicinity for each point. A smaller bandwidth implies a larger vicinity, while a
larger bandwidth suggests that only proximate samples are likely to synthesize
mixup instances. This study considers three different bandwidths, and the kernel
values K(yb, ya) for various combinations of bandwidth γ and instances ya, yb

are depicted in Fig. 6.

Fig. 6. Kernel values for different bandwidths γ and instances ya, yb.
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Experimental results, as shown in Table 5, indicate that the proposed method
is robust to changes in bandwidth settings, as changing from 0.5 to 0.25 has no
significant impact on 54 out of the 58 datasets.

Table 5. Statistical comparisons of test R2 scores across various bandwidths.

Bandwidth 0.25 0.5

1.0 3(+)/53(∼)/2(-) 0(+)/58(∼)/0(-)
0.25 — 1(+)/54(∼)/3(-)

B.2 Alpha/Beta

In mixup, the mixing ratio λ is sampled from a Beta distribution Beta(α, β).
The probability density function of the Beta distribution is defined as:

p(x;α, β) =
1

B(α, β)
xα−1(1 − x)β−1, 0 ≤ x ≤ 1, (17)

Fig. 7. Probability density functions of the Beta distribution for different α values.

where B(α, β) denotes the Beta function. For simplicity, α is set to be equal to β
in mixup, i.e., α = β. In this section, three different settings of α are examined:
0.5, 1, and 10, and their probability density functions are illustrated in Fig. 7.

Table 6 presents a comparison of test R2 scores obtained using different α
values in the Beta distribution for sampling the mixing ratio. The experimental
results indicate that an α value of 1 yields reasonably good results. This suggests
that, in practice, a uniform distribution can be used in P-Mixup to speed up the
sampling process, as the uniform distribution is more straightforward to sample
from than the Beta distribution.
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Table 6. Statistical comparisons of test R2 scores across various α values.

α 10.0 1.0

0.5 6(+)/46(∼)/6(-) 4(+)/54(∼)/0(-)
10.0 — 4(+)/49(∼)/5(-)
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