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Abstract The open-endedness of a system is often defined

as a continual production of novelty. Here we pin down this

concept more fully by defining several types of novelty that

a system may exhibit, classified as variation, innovation,

and emergence. We then provide a meta-model for

including levels of structure in a system’s model. From

there, we define an architecture suitable for building sim-

ulations of open-ended novelty-generating systems and

discuss how previously proposed systems fit into this

framework. We discuss the design principles applicable to

those systems and close with some challenges for the

community.

Keywords Modelling and simulation � Open-ended
evolution � Novelty � Innovation � Major transitions �
Emergence

Introduction

Background

Open-endedness, roughly defined as ‘‘the ability to con-

tinuously produce novelty and/or complexity’’,1 is consid-

ered a ubiquitous feature of biological, techno-social,

cultural systems, and many other complex systems that

develop in a self-organized manner. There is ample liter-

ature arguing that both natural and artificial systems share

this feature in various domains and that examples of open-

ended systems are provided by biological evolution, human

languages, legal systems, economic and financial systems,
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music and art, science and mathematics, to name only a

few.

In the field of artificial life (ALife), open-ended evolution

and general open-endedness are crucial concepts, whose

quest and fulfillment constitute one of its ‘‘millennium prize

problems’’ (Bedau et al. 2000). What is surprising, how-

ever, is that open-endedness has not found a sufficiently

clear-cut and stringent definition but remains ill defined,

despite more than 20 years of efforts to study its realization.

Motivation

Open-ended evolution seems to be one of the fundamental

characteristics of life, perhaps even a defining character-

istic, motivating the search for a deeper understanding of

the phenomenon. But in recent years the problem has taken

on an added urgency, because the open-endedness of

human socioeconomic–technological systems has begun to

have profound consequences on earth’s ecosphere as a

whole: we are now living in the Anthropocene.

We contend that open-endedness is essentially a generic

property, one that can be best understood if studied not just

in one domain, biology, but in all the types of systems in

which it operates, including artificial ones. Such a generic

formal framework would also be an important step toward

a unified scientific treatment of natural-human systems.

Informally, open-endedness refers to the ability of a

system to continue producing ‘‘interesting’’ novelty without

exhaustion. In this paper, we aim to advance the study of

open-endedness from both a scientific and an engineering

perspective. Classically, the former tries to understand and

analyze phenomena, while the latter tries to implement,

modify, and manage them. However, in the context of

computational sciences and particularly ALife, one may be

interested in implementing the phenomenon to understand it.

That is why we here specifically discuss the conditions for a

suitable implementation of open-endedness.

There are several and diverse reasons to study open-

endedness. These include the following:

• We want to understand life as it is: how do the

microscopic laws of physics generate organisms? With

life being a historical system forged by evolution,

understanding the open-endedness property of this

evolutionary process is likely to shed light on life itself.

• We want to understand the emergence of complex

organisms, including us: what enables a seed and a set

of scattered and disparate elements to develop into a

complex multicellular organism? Is development open-

ended?

• We want to explain evolution in vivo: what are the

reasons for the actual path of evolution observed on

Earth? In particular, do the ‘‘Major Evolutionary

Transitions’’ (Maynard Smith and Szathmáry 1995) that

occurred in the actual evolutionary history follow some

specific rules that would be those of open-endedness (if

any)? Or is it contradictory even to speak of ‘‘rules’’ of

open-endedness, as ‘‘rules’’ tacitly exclude or constrain

some otherwise ‘‘open’’ possibilities?

• We want to follow the emergence of intelligence as a

continuum: how do biological organisms generate and

internalize useful models of the world in which they are

embedded?

• We want to understand the change and growth of

human socioeconomic systems, including the emer-

gence of autonomous entities such as corporations and

governments.

• We want to elucidate fundamental and methodological

aspects of ALife: can we engineer or manage ‘‘major’’

transitions (Maynard Smith and Szathmáry 1995) in

technical, social, or biological systems by building

models able to represent them—but without hard-

coding these transitions explicitly?

• We want to realize the property of open-endedness in

algorithms: can the ‘‘universality’’ of physical comput-

ers support the generation of artificial open-endedness?

Do results from the theory of computation and com-

plexity in computer science apply to open-endedness?

• We want to understand the essential role of time: what

are the characteristics of the fundamental difference

between the computation of an algorithm and the

mathematical ‘‘calculation’’ of a feature of the world,

for example, a novelty or a transition?

• We want to feed back into bio-inspired engineering the

concepts of biological complexity: is it possible to

design and implement creative machines?

Hence, there is a need for a sufficiently precise definition of

open-endedness to ensure that those interested in this topic

can agree on what they observe, or the nature of the

problem(s) they are actually trying to solve. Further,

requirements need to be established for open-endedness to

ultimately become a measurable and quantifiable feature of

a system. Artificially designed systems will help in this

process of refinement as they allow for well-prepared

complex systems to be observed and manipulated in arbi-

trary ways.

Inception

This paper is the outcome of a workshop on ‘‘Open-ended

Novelty’’ held in the summer of 2014 at the Department of

Computer Science, Memorial University of Newfoundland,

Canada. The authors come from diverse backgrounds and

have different interests, yet share a common vision: we

believe that open-endedness and the continual creation of
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novelty are key characteristics of our universe, which can

be observed at different levels of multiple systems. We

think this merits a close study as it might provide valuable

insights into how complex systems work and can be

applied. We are convinced that a better understanding of

the questions relating to the open-ended production of

novelty is one of the central intellectual challenges of our

time.

Outline

The structure of our argument is as follows. Before pre-

senting our own definition, we need to install the concept

of open-endedness on better foundations, hence start with a

review of the literature on the topic (‘‘Definitions of open-

endedness’’). Then, as our elements of definition are nec-

essarily relative to some model, we introduce a method-

ological discussion of models and meta-models, and

describe the main features of our own model: entities,

systems, levels, information, and timescales (‘‘A meta-

model for open-endedness’’). This establishes a framework

in which open-endedness can be defined using three classes

of novelty (‘‘Open-endedness and novelty’’).

This definition also exposes certain limits to open-end-

edness from various perspectives, including issues of

computational simulation (‘‘Limits to open-endedness’’).

Given these limits, we augment our model of open-ended

systems with two engineering components to provide an

architecture for effective simulations of open-endedness

(‘‘Simulation of open-endedness’’). We discuss a number

of examples from the literature in terms of our framework

and associated architecture (‘‘Illustrative examples’’).

Finally, we pose a number of (grand) challenges to the

community (‘‘Conclusions’’).

Definitions of open-endedness

‘‘Open-ended’’ may refer to different properties of a sys-

tem’s processes. At least two major categories of open-

endedness, based on two meanings of ‘‘end’’, can be dis-

tinguished: (1) processes that do not stop, and (2) processes

that do not have a specific objective. Biological evolution

clearly fulfills both criteria, but they need not always be

correlated. Absence of time limit within a small set of

possible outcomes (or a single outcome) is the hallmark of

attractor dynamics, by which a system settles into one

stable or stationary pattern, such as a limit cycle or a

chaotic trajectory: while it is still running on the short

timescale, it has nevertheless reached an end state. Con-

versely, absence of goal within a bounded duration would

be the case of a stochastic system such as a roll of the dice

or a bagatelle (a board game in which a ball bounces on

pins): these are short lived but can basically ‘‘land

anywhere’’.

Combining these two categories of open-endedness (as

in biological evolution) creates a third category, which is

likely to be the most appropriate one from our point of

view: (3) processes that do not stop and have no specific

objective. This position emphasizes the transient part of

dynamical systems, which in many cases can be extremely

protracted to the point of never reaching convergence.

Much of what goes on in living systems could be charac-

terized as an ‘‘attempt’’ to remain in that transient part.

A look at the literature

There is substantial scientific literature using the expres-

sion ‘‘open-endedness’’ (OE) or ‘‘open-ended evolution’’

(i.e., OE in the context of biological evolution) from which

some general features are visible.

Despite the fact that the concept strongly involves ref-

erence to biological systems and evolution in the bio-

sphere (Bedau 1999), literature on OE mainly originates

from the fields of ALife and evolutionary computation.

This contrasts with the idea conveyed by many papers that

life is obviously open-ended (Bedau 1996; Sipper et al.

1997, 1998; Bedau et al. 1998; Maley 1999; Skusa and

Bedau 2002; Nehaniv et al. 2006; Stepney and Hoverd

2011; Huneman 2012). Moreover, except for a few seminal

contributions Bedau (1991), Ray (1992), Harvey (1992),

Barricelli (1962), most of this literature is from the last 20

years. However, many classical questions in evolutionary

biology can be considered close to the question of OE.

Notable examples from the biological literature are the

studies by Rensch (1959), Maynard Smith (1988) and

Waddington (2008), which are discussions of OE in all but

name.

Although OE is a central concept in many scientific

articles and communications, very few authors risk a def-

inition that goes beyond the couple of sentences of general

papers in which OE is also not defined precisely, for

example, Bedau et al. (2000). Some have even referred to

‘‘truly open-ended evolution’’ without clarifying what it

means.

When we take a closer look at the various definitions of

OE proposed in the literature, four different categories

emerge: OE can be defined as (1) ‘‘perpetual production of

novelty’’, (2) ‘‘unbounded evolution’’, (3) ‘‘continual pro-

duction of complexity’’, or (4) ‘‘the essence of life’’.2 We

discuss these categories one by one:

2 Note, however, that the last definition may not be exclusive. In

particular, one can define open-ended evolution as an unbounded

evolutionary process and simultaneously consider that open-ended

evolution is a definition of life.
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1. OE as perpetual production of novelty This is the most

classical definition of OE (Rasmussen et al. 2004;

Lehman and Stanley 2011; Stepney and Hoverd 2011;

Ruiz-Mirazo et al. 2008; Bianco and Nolfi 2004;

Baptista and Costa 2013). It mainly follows Taylor’s

work (1999), although some earlier references can also

be found (Kaneko 1994). Taylor defines an open-

ended evolutionary system as ‘‘a system in which

components continue to evolve new forms continu-

ously, rather than grinding to a halt when some sort of

‘optimal’ or stable position is reached’’. Interestingly,

he adds that ‘‘open-ended evolution does not neces-

sarily imply any sort of evolutionary progress’’, which

clearly distinguishes this definition from the ones

based on evolution of complexity (see third item

below).

2. OE as unbounded evolution This definition of OE is

due to the seminal work of Bedau (Bedau 1991; Bedau

and Packard 1992; Bedau et al. 1998), illustrated in an

ecological model of L-system plants (Fernández et al.

2012) where evolution is deemed ‘‘without a definite

maximum fitness, hence no optimal goal or solution to

reach’’, or in abstract heterogenous cellular

automata (Medernach et al. 2013), where it is qualified

as ‘‘long-term’’. It is close to (1), but complemented by

statistical measures to characterize long-term evolu-

tionary dynamics and distinguishes between three

classes of evolutionary systems, including a test for

OE. These measures have been refined by Chan-

non (2003), and a fourth class has been added by Skusa

and Bedau (2002). A few models have successfully

passed the given test (Maley 1999; Channon 2001).

However, their long-term dynamics are far from the

level of diversity and complexity observed in natural

systems, thus raising questions about the test itself and

about the equivalence of unboundedness and open-

endedness of evolution (Maley 1999).

3. OE as continual production of complexity In the

previous definitions of OE, there is no explicit

qualitative characterization of the kind of novelty

produced by evolution. In this third definition, only

novelties that increase the complexity of the evolving

entities are considered. This definition of OE as a

continual production of complexity is popular (Hutton

2002; Bentley 2003; Fernando et al. 2011; Heylighen

2012; Schulman et al. 2012; Ruiz-Mirazo and Moreno

2012; Lehman and Stanley 2012). However, this

definition, which implicitly requires the existence of

an ‘‘arrow of complexity’’ in biological evolution, is

rejected by some authors, who state that open-ended

evolution does not imply an increase of complexity

but, simply, creates the possibility for it (Taylor 1999;

Ruiz-Mirazo et al. 2004; Markovitch et al. 2012).

Other authors suggest that the issues of OE (considered

as continual production of novelty) and of complexity

increase are linked because simple agents in artificial

life have less possibility of producing novelty (Stan-

dish 2003; Soros and Stanley 2014), though this is

clearly not the case in biological systems, given the

history of bacteria.

4. OE as the essence of life Although not widely accepted

in the literature, the idea that open-ended evolution

could be considered as a definition of life is proposed

in many papers. Ray writes that he ‘‘would consider a

system to be living if it is self-replicating, and capable

of open-ended evolution’’ (Ray 1992), an idea that was

further discussed by Bedau (1996). For Ruiz-Mirazo

et al. (2004), a living system is considered to be an

autonomous system with the property of OE brought

about by a process of evolution.

All four definitions are similar to each other. In many

contributions, the difference between ‘novelty’ and ‘com-

plexity’ is not clear at all. Moreover, they all originate from

considerations on biological evolution per se, whereas the

phenomenon of OE is widespread in the universe, as we

stated earlier. Most importantly, these definitions generally

suffer from a major drawback: they are based on terms

whose definition is itself challenging (‘novelty’, ‘com-

plexity’, ‘unbounded’, ‘life’), as attested by qualifications

added to the meaning of these terms. For example, Bianco

uses the expression ‘major novelty’ (Bianco and Nolfi

2004), while Rasmussen et al. speak of ‘adaptive nov-

elty’ (Rasmussen et al. 2004). Similarly, Taylor suggests

that continuous production of novelty means that ‘‘an

indefinite variety of phenotypes are attainable through the

evolutionary process, rather than continuous change being

achieved by, e.g., cycling through a finite set of possible

forms’’ (Taylor 1999). Thus, not all forms of novelty

would lead to OE.

We, therefore, arrive at two contrasting definitions. On

the one hand, there is the idea of continual (unbounded)

creation of novelty, which appears to be necessary but not

sufficient. On the other hand, there is the notion of con-

tinual (unbounded) creation of complexity, which appears

to be sufficient, but not necessary for OE.

One of the motivations of this paper is to offer a new

definition that avoids these pitfalls. To this end, we propose

to keep the first idea above, that of ‘‘continual generation of

novelty’’, but reposition it in the well-defined context of

models and modeling. We argue that the concept of a

model is fundamental to the definition and analysis of OE

and open-ended systems, because the very notion of nov-

elty cannot be understood without the requirement for a

model of the observed (and changing) system. The mod-

eling aspect is sufficiently general to capture non-
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biological systems as well, and allows us to see them from

the perspective of OE.

In the next section, we discuss this point further by

introducing the notion of models and ‘‘meta-models’’.

Then, we give a few basic definitions of the elements that

constitute the model that we later used to define OE.

A meta-model for open-endedness

‘‘All models are wrong, but some are useful’’

George E. P. Box, 1987

Models and meta-models

Scientific models

Scientific models are descriptive models of part of the

existing world.

Physical reality comprises material and energy with

structure and dynamics, exhibiting patterns in structure and

behavior. We perceive some of these patterns (and even

non-existent pseudo-patterns), and build models of the

world. The models are abstractions; we overfit and underfit,

abstract and omit, err, confabulate and imagine. Our

models range from implicit mental pattern recognition and

expectations, through prose, informal cartoons, sketches

and diagrams, to fully formal computational and mathe-

matical models. But they are all models, and reality can be

different (richer, poorer, other). In particular, our models

tend to be ‘‘crisper’’ than reality, identifying classes and

categories where there are actually spectra, and having

difficulty with ‘‘borderline’’ structures that fall between or

on the boundaries of our categories (for example, viruses

are problematic if we are using a model that insists life is a

binary property).

In scientific models, if reality and our model disagree

unacceptably for our purposes, it is the model that is

wrong. The model needs to be corrected.

We can use our models to classify, understand, explain,

and predict. Things can happen in the world that are out-

side the model. For example, a model of traffic flow might

not include the current phase of the moon—unless it

explicitly considers the effect of moon luminosity on

traffic. At other times, things can happen that are in the

scope of the model, but the model does not capture them

sufficiently well (for example, borderline entities), or

things can happen that start in the model, but move outside

the model (for example, the evolution of a new species of

entity), requiring a modification of the model to capture the

new features. Hence, our scientific understanding of the

system is model dependent (for example, if we were

already using a model of the system as it exists after a

speciation, then the speciation event would not move out-

side the model).

There are many model types used to categorize the roles

that models play in scientific practice, for example, phe-

nomenological models, computational models, scale mod-

els, analogue models. For a philosophical overview of

categorizing models in science, see the studies by Frigg

and Hartmann (2012), Suppes (1960). The rise of computer

simulations has significantly shaped our understanding of

models and their relation to theory and experiments. These

issues are addressed by Humphreys (2004), Winsberg

(2010) and [Weisberg (2013), ch. 4]. For a discussion of

developing false models as a means to making scientific

progress, see the study by Wimsatt (1987).

Engineering models

Engineering models are prescriptive or normative models

of a system to be built in the world, for example, a

bridge.

When building a system, we construct a model of what

the system is meant to do. An engineering model describes

what we are trying to bring into existence, in contrast to a

post hoc scientific model of existing reality. It is still a

model, however, in that it may not capture exactly what the

system does. [We are here assuming for simplicity that the

underlying scientific model of the relevant domain is well

understood and correctly applied. More complete accounts

are available, for example Horsman et al. (2014)].

In engineering, if reality (the engineered system) and the

model of the system disagree, it is reality that is wrong, for

example, if the bridge collapses. Reality needs to be ‘‘de-

bugged’’ to conform more closely to the model.

Computational models

Software is a special case of an engineered system, with the

model being the specification and design of the software,

and the engineered system being the executing code. For

example, in an object-oriented system, the model could be

a collection of UML diagrams. The software is the exe-

cuting code that conforms to this model (coded classes

corresponding to boxes in the class diagram, with behav-

iors following the sequence diagrams). If no engineering

model pre-exists, if the model is implicit and only the code

is written, then a post hoc scientific-style model can be

inferred. Such a model will be much messier than a

designed engineering model.

Computational science and ALife can involve many

different intertwined models, both engineering and scien-

tific. In computational science, software can be used as an
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executable model of a real object (biological, sociological,

technological, etc.). The model of interest is the scientific

model built from observing the execution of the code

(analogous to the scientific models built from observing

real-world behaviors). Additionally, the software will

generally have been designed using engineering models

(for example, UML diagrams). See Fig. 1.

So computational models can have different content

depending on the specific objectives: scientific or engi-

neering. For example, if the objective is to engineer an

open-ended software system, the property of OE will be

part of the engineering model of the code. Alternatively, if

the objective is to model the observed behavior of the

simulation of a real-world open-ended system (in the

context of computational science), then OE may be present

in the scientific model, derived from observing emergent

behavior in the execution of the code, but it need not be

present in the prior engineering model of the code. Indeed,

it should not be present in the engineering model, if the

objective is to determine if certain low-level behaviors can

exhibit certain emergent properties.

Meta-models

As discussed above, the purpose of a model is to provide an

abstract language for the relevant domain concepts. In the

case of a computational model, it defines the concepts to be

implemented in code. The purpose of a meta-model is to

provide the analogous language to define such models, to

provide the concepts that can be used to build the model.

For example, in an object-oriented system, the meta-model

would contain the concepts of ‘class’, ‘object’, ‘method’,

‘association’, and so on. Similarly, a diagram describing

the Krebs cycle of an organism is a model whose meta-

model contains the concepts of ‘reactions’, ‘metabolites’,

or ‘enzymes’. See the study by Hoverd and Stepney (2011)

for an example of a meta-model capturing concepts of

‘energy’, ‘environment’, and ‘organism’, and its instanti-

ation in an agent-based model. Roughly speaking, the

meta-model is the key to the model in the way the key to a

map lists all the graphical concepts used to draw the map.

In many modeling contexts, the relevant meta-models may

be implicit.

A variety of models may conform to the same meta-

model. For example, the meta-model used by the model of

the Krebs cycle can be used by models of other metabolic

pathways. On the other hand, the same system can be

captured by a variety of models conforming to different

meta-models. For example, a metabolic pathway can be

modeled by a set of Ordinary Differential Equa-

tions (ODEs), with a meta-model including concepts such

as ‘concentration’ and ‘enzymatic rate’ (Andrews et al.

2011). Metabolic pathways can also be modeled using

agent-based formalisms (Amar et al. 2008), with a meta-

model including concepts such as ‘agent’ and ‘rule’. The

choice of a meta-model directly determines the limits of

the models that could conform to it. In the example, the

meta-model allowing ODE descriptions and resulting ODE

models cannot account for spatial behavior of the meta-

bolic pathway or for its stochastic behavior. A meta-model

allowing agent-based formalisms admits models which can

naturally include both behaviors.

In essence, a meta-model is a model of a model [Kleppe

et al. (2003), ch. 8]. Since a model may itself be a meta-

model, there is no need for a separate concept of a meta-

meta-model, although there may be examples of such. For

example, UML is the meta-model of the meta-model pre-

sented in Fig. 3. Similarly, one can view this paper as an

(informal) meta-model of open-endedness.

Our entity-based multilevel meta-model

OE is a process by which continual novelty is produced in

the course of a dynamic process. In this paper, we propose

a scientific (descriptive) meta-model with which we illus-

trate our definition of OE. This particular entity-based

multilevel meta-model should cover evolution in biological

life, change in socioeconomic systems, and processes in

ALife. Although ALife concerns artificial systems, our

meta-model is not a prescriptive (normative) engineering

model, but a model for describing open-ended systems,

natural or artificial. Other meta-models of OE are probably

possible, for example, ones supporting mathematical

models formulated in terms of ODEs or PDEs. Our hope is

that such a definition of OE in terms of models and meta-

models will help the design of normative engineering

models for implementing ALife, and provide tools to

describe and understand the long-term dynamic of open-

ended systems.

Executing code

evresbOtnemelpmI

Run 

Executable 
code 

Fig. 1 Two kinds of computational model. An engineering model is

used to specify the software to be implemented. A scientific model is

derived from observations of the execution of the software. These

models can have different structures, even about the same software
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In our models, we are working with systems (biological,

social, artificial) of entities organized into multiple levels.

In the following subsections, we introduce basic definitions

with respect to some (meta-)model. In a given situation, the

chosen model must be a sufficiently good representation of

reality to be useful.

Domain of interest

The purpose of our meta-model is to provide a language

able to model any open-ended system. As explained below,

this system can itself be composed of (sub-)systems. We

use the term ‘‘domain of interest’’ to describe the open-

ended system under investigation, and to avoid confusion

between the system to be modeled and the systems com-

prising the model. Note that the concept of domain of

interest is not part of our meta-model (Fig. 3), but rather a

limit between what we want to study and what remains out

of scrutiny. Since we do not wish to model the entire

universe, the domain of interest encompasses the part of

the world that we are modeling.

Entities

An entity is an identifiable integrated whole within the

model: a ‘‘thing’’ with structure (organization) and

behavior (activity, processing). Entities can interact with

each other, and with their environment. We explicitly

sidestep any discussion of the non-trivial issue of identifi-

cation or demarcation of entities (Buss 1987).

Note that entities may themselves contain entities. This

property naturally leads to the concept of levels:

• A level-0 entity is an atomic entity, with no modeled

internal structure.

• A level- N entity (where N[ 0) is a system entity,

having lower level entity components.

The concept of levels is refined further in ‘‘Levels’’.

Environment

An environment is a model of part of the domain of interest

not modeled as explicit entities, including space, fields,

flows, and so on. What is part of an environment and what

is an entity is a modeling decision, and depends on what

entities are chosen to be on the lowest level of our systemic

hierarchy (‘‘Levels’’).

A local environment is the part of a system that is not

modeled explicitly as entities.

An external environment is that part of the domain of

interest which is external to the system but exerts an

influence on it. For example, it might impinge on the

system via inputs (flows, forces, signals) and be in turn

influenced by the system via outputs. The external envi-

ronment may host other entities external to the system.

System

A system is a local environment plus a population of pos-

sibly differentiated and interacting entities, forming some

identifiable whole, and separated from an external

environment.

A system may be an aggregate system, comprising a

collection or population of entities in a local environment,

but not considered to form an entity in its own right. For

example, a simple population of organisms is usually an

aggregate system, and not an entity in its own right.3

Alternatively, a system may be a system entity, an entity

at a higher level than its component self-organized entities,

constraining them and their local environment via down-

ward causation.

An atomic entity is not a system, as it has no internal

(modeled) structure.

The specific entities comprising the system’s compo-

nents may change over time, for example, by recycling

material. In addition, specific entities may belong to more

than one system, either separated in time as entities flowing

from one system to another, or simultaneously. For

example, subsystems may be composed into a larger sys-

tem by overlapping/intersecting some of their entities. A

system needs to have a boundary in some space; typical

such spaces include physical space, time, speed, or

behavior.

Interactions

Entities interact with each other, and with their environ-

ment, potentially forming and dissolving systems.

Levels

We have defined a system entity to be an entity at a higher

level than its component entities. Entities can be recur-

sively classified into levels with corresponding interactions

(Fig. 2; ‘‘Entities’’). Here level-0 entities are atomic enti-

ties and level-N[ 0 entities are system entities that contain

at least two lower level entities, of which at least one is

level-N � 1.

Following this classification of entities into levels, the

domain of interest can be divided into domain levels:

domain level N comprises all the existing/instantiated

level-N entities.

3 Though proponents of group selection, who claim that natural

selection can act on populations and not just on individuals (Wilson

1997), would disagree.
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For example, if we characterize bacteria to be level-N

entities, then eukaryotes could be modeled as level-N þ 1

entities, since nuclei, mitochondria, and chloroplasts all

originated from ancient bacterial introgressions. Depending

on modeling choices, however, these events could either be

considered as a single kind of event, leading to the emer-

gence of one higher level Nþ1, or as separate events,

leading to the emergence of several higher levels (Sza-

thmáry 2015). Colonies of bacteria that act as entities in

their own right rather than mere aggregates could also be

modeled as level-Nþ1 entities. Multicellular organisms

could be modeled as level-Nþ2 entities, and multicellular

organisms in symbiosis with populations of bacteria as

level-Nþ3 entities. Alternatively, one could also think of a

model where a human would be merely an environment for

gut bacteria, not a separate entity on its own level. In sum,

the actual levels identified depend on the model being used,

which itself depends on the scientific questions being

asked.

Let us clarify that we do not assume reality to be

actually composed of discrete levels. Rather, levels are

concepts in our meta-model. A level-Nþ1 entity is an

abstraction of a particular collection of level-N entities that

have organized and stabilized into a system. Many theories

of reality include such levels, either implicitly or explicitly,

for example, Koestler’s ‘‘holonic hierarchy’’ (Koestler

1970) in which holons are defined as self-contained wholes

that are at the same time-dependent parts.

The multilevel model we adopt here permits a level-N

entity to have direct interactions with entities on any other

level. However, having too many interactions across mul-

tiple levels is likely to render the model impossible to

analyze. We suggest that, to be useful, a model of an OE

system should have the overwhelming majority of inter-

actions between levels occurring between nearest neigh-

bors only: from N to Nþ1 and N�1.

Putting it all together, our resulting meta-model of

environments, systems, entities, interactions, and levels is

shown in Fig. 3.

A discussion of philosophical aspects of levels can be

found in‘‘On levels’’ in Appendix

Hierarchies and emergence in the natural world

and in human systems

In the natural world, we can observe phenomena that can be

modeled as many levels of systems nested within each

other. The interest in level hierarchies stems from the fact

that they allow us to say something about emergence of

complexity in organizations (Lan 2006). More specifically,

we consider higher levels of a hierarchy, as exemplified by

living systems in the form of cells, tissues, organs, organ-

isms, groups of organisms and societies, to be the result of

processes of emergence. We shall say that the emergence of

a new level in a hierarchy is a transition that produces a new

system level, which happens in many cases through the

composition of groups that subsequently stabilize and form

entities on the higher level (see Fig. 2). It is also possible for

entities to emerge by the loss of interactions, such as with

simplification of gene expression pathways in biological

systems. But the emergence of complexity through sim-

plification cannot be the only pathway to emergence, since

there is a bound to the number of features that can be

eliminated from a system before it becomes trivial.

Niches are conditions of the environment at a certain

level that influence the effects of selection on entities at

that level. Niche construction is the process by which

entities modify their environment, hence improving (or

sometimes degrading) chances of survival (i.e., modifying

selection forces) for themselves and other entities. Some

argue that the process of niche construction is as important

to biological evolution as is selection (Odling-Smee et al.

2003). While we do not want to engage in that discussion,

we note that the active modification of the environment is a

process that can be observed at several levels in the bio-

logical hierarchy as well as in social systems and other

artificial hierarchical systems.

If one considers the emergence of ‘‘tentative’’ groups of

entities to be the first (haphazard) step in the emergence of

(A) 

(B) 

(C) 

Fig. 2 Relationships between the levels of a system. a A collection

of level-N entities (solid circles) interact (thin solid arrows) in an

aggregate system. b The dynamics of these interactions stabilize the

aggregates into level-N þ 1 system entities (dashed circles) and these

level-N þ 1 entities contain ‘‘specialized interface elements’’ (red

circles) that concentrate most of the interactions between both parts

(red arrows). c These new level-N þ 1 entities can be modeled

independently of their level N components and the stabilized

interactions can be considered as higher level interactions. Level-

N þ 1 entities may similarly aggregate and interact to form a level-

N þ 2 entity, and so on
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a new level, it follows that only those groups that achieve a

certain degree of coherence can become candidates for

entities at the emerging higher level. It is through down-

ward causation4 constraining the behavior of lower level

entities that coherence becomes more pronounced. Com-

petition of gradually more coherent groups of entities sets

in and further channels the variations provided by the lower

level, building a new system entity from patterns in the

aggregate system.

We exemplify our view by discussing a specific case,

Darwinian evolution, in the general model (Fig. 4). Any

model of Darwinian evolution would include a population

of biological individuals (‘‘organisms’’) at a level N. These

individuals are entities having the property of reproduction

(sexually or asexually). Now, reproduction is governed by

molecular mechanisms at the lower level (N�1). Since

these mechanisms are error prone, level N�1 drives the

variation component of Darwinian evolution. At the upper

level (Nþ1) the individuals are organized into populations

that interact in a finite world. These interactions result in a

differentiation of the reproductive success (due to

Malthusian mechanisms, predation, parasitism, altruism,

etc.). This may result in many selection types, such as a

neutral process (if the population is too small regarding the

difference in reproductive success), natural selection in the

Darwinian sense, or removal selection as in artificial

systems. Ultimately, the interactions of these three levels

(molecules, individuals, population) result in the realiza-

tion of a Darwinian process.

In socioeconomic (or, more generally, socio-ecological)

systems as well, the emergence of new entities may be

identified with the emergence of downward causation, or

agency as it is referred to in the social sciences. Individual

people have agency, and are thus entities, but collections of

people are often simply queues or crowds. But when their

behavior in a group is formally constrained so that it is the

group itself rather than the individuals composing it that

exercises agency, then the formally structured group is

itself a higher order entity such as a corporation, a gov-

ernment, or a regulatory agency; it is able to exercise

causation on other entities at its level or below. As was

pointed out in ‘‘Levels’’, there is no clean separation

between levels, but in the case of socioeconomic systems

the separation may be not just model dependent, but

intrinsic. In Western societies, individuals are legally

treated as autonomous entities. But many individuals are

also ‘‘components’’ of higher level entities such as corpo-

rations or government agencies, and in that context must

act out the appropriate role, which is not one of an

autonomous individual.

The situation in human systems is even more complex

because some entities in these systems, specifically gov-

ernments, have acquired or given themselves the power to

confer entityhood, (for example, when a business is

incorporated), and the consequences can be unusual. For

0..*   interacts Interacts   0..* 

0..* 0..* 
2..* 

has 
0..*    1 

at 

0..* 

0..* 

has 

1..* 

1 
at 

Fig. 3 Our meta-model, written in UML, defining the concepts to be

used in any model conforming to it. Boxes are classes from which

objects in the model can be instantiated. Links indicate associations

between classes (associations being named and valued), arrows

indicate inheritance (‘‘kind of’’), diamonds indicate aggregation. An

Environment can be a Local Environment or External
Environment. A System can be an Aggregate System or a

System Entity. An Entity can be a System Entity or an

Atomic Entity. A System has a Local Environment and

two or more Entities. An Entity exists at both a system Level
and an information structure (model) Level. An Atomic Entity
exists at Level 0. Many Environments and Entities can

have be involved in each Interaction

4 We circumvent the question of whether or in what sense

‘‘downward causation’’ exists in reality by focusing on models where

we introduce it as existing.
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example, if we consider the atmospheric system in iso-

lation, then it appears to be one in which macro-scale

patterns such as storms emerge, much like the flocks in

boids (Reynolds 1987). Yet as previously pointed out,

these do not constitute new entities and, therefore, no

new, higher level is present. But if a storm satisfies the

legal definition of a hurricane, then from the point of

view of a governmental entity the storm itself becomes an

entity, with a name, and its presence in the area causes

the release of reconstruction funds that would not have

been available if the storm had not achieved the status of

an entity. The storm itself as a physical phenomenon may

cause changes in coastal land forms, but the storm as a

legal entity can induce other changes in the local geo-

morphology, such as dykes and drainage canals built with

the reconstruction funds. Thus, depending on the point of

view, the storm both is and is not an emergent higher

level entity, and these points of view are inherent in the

system itself.

Information

Life provides the dominant template as well as the lan-

guage for thinking about OE. A key marker of the transi-

tion from non-living to living systems is that, unlike non-

living systems, living systems are information dependent.

They are dependent on information because they include as

an essential component explicit models of themselves.

Indeed, life may be defined as an entity that has a model of

itself and its relations with its environment (Rosen 1991).

The genome may be considered to be analogous to the code

describing the model, while the phenotype in a sense

executes it to survive and reproduce.

With more complex organisms such as vertebrates, the

models are not just coded genomically, but also neurally

based, and in human systems some are coded liguistically

in oral traditions and even in external devices such as

books, pictures, and software. The fact that all living sys-

tems, including economic and social systems (and the

technology produced by these), incorporate models in an

essential way means that they experience an additional

source of indeterminacy. This indeterminacy arises from

the fact that the models are necessarily incomplete or

imperfect, and their imperfections are various, depending

on the particular circumstances under which the models

were generated, while behavior of these systems depends to

a greater or lesser extent on the various models held by the

individuals making up the system. This form of indeter-

minism associated with ‘‘knowledge creation’’ (i.e., model

creation) was the crux of Popper’s argument for an ‘‘open

universe’’ (Popper 1982). One manifestation of this inde-

terminacy is the ability of agents to mislead or cheat other

agents—or themselves.

Furthermore, because the models are created in part on

the basis of perceptions of the surrounding environment or

system, living systems have evolved to a degree on the

basis of their own perceptions of themselves. Perception

must, therefore, be considered a fundamental element in

evolution and OE.5 Perceptions and misperceptions, and

the model errors engendered by misperceptions, may, in

some biological systems, rival genome-level phenomena as

a source of the variations required for evolution; in the

evolution of social systems they are clearly of primary

importance. Finally, perception always involves a point of

view. Therefore, in all living systems, ‘‘point of view’’ is an

intrinsic part of the phenomenon we are trying to under-

stand—not just something we have as we look at the

problem of open-endedness and decide what approaches

we want to take in trying to understand it.

Timescales

We adopt the following notion: one way to distinguish

levels is by the timescales on which their dynamics can be

observed.

A natural question to ask is what provides the condi-

tions for a level in the model and how we can recognize

these conditions to be fulfilled in a particular hierarchical

system we want to observe? Since the systems we intend

to consider are open and dynamical, the notion of time is

an indispensable element of our discussion. Higher levels

Level N-1 

Level N 

Level N+1 

R 

V 

S 

Fig. 4 A general model of three levels of an evolutionary system

interacting within and between levels. Level N is the evolving layer:

it is composed of entities having a (self-)replication property (‘‘R’’).

Selection (‘‘S’’) is a constraint imposed by the system at level Nþ1

(the ‘‘ecosystem’’, which may include level-Nþ1 entities such as a

public health agency) upon level N. Variation (‘‘V’’) is a consequence

of the laws of level N�1 (molecules, including DNA, in Darwinian

evolution) on the behavior of level N. This general model encom-

passes both the scientific model of Darwinian evolution, and

engineering and simulation models (though these may include

‘‘shortcuts’’ implemented at any of the three levels; see below)

5 By ‘‘perception’’ we mean the ability of the system to sense (by

whatever means) aspects of its environment, allowing it to act and

react; it would not necessarily need to be a living system.
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typically have slower dynamical timescales associated

with them, as when groups of organisms forming a society

(higher level) develop on a slower timescale than the

organisms (lower level) themselves. The difference of

dynamical timescales between levels can be many orders

of magnitude, but might also be down to few orders of

magnitude only, with extreme cases at the lower end of

perhaps just one order of magnitude. When such a dif-

ference in dynamical timescales is relevant, higher levels

need to slow down their development to exist or be per-

ceived by an observer as something different from their

elements.

In cases such as these, we might say that downward

causation from level-N coordinates the level-N�1entities.

We might also say that the emergence of a level-

Nþ1 entity is due to regularities and coordination at

level N. Hence, the level we focus on helps determine our

explanation of the various levels. More discussion ‘‘on

timescales and levels’’ can be found in the appendix.

Open-endedness and novelty

We use our meta-model, defining entities, systems and

levels, to consider OE more closely, starting from the

definition already mentioned:

Open-endedness is the continual generation of

novelty.

Given this definition, there are different kinds of OE

depending on the kinds of novelty generated. We consider

novelty in more detail here.

Once the relevant domain of interest has been modeled

using the meta-model in our entity-based multi-level meta-

model, and simulated, one can then use the model to

interpret observations of its dynamics and to identify dif-

ferent kinds of novelty and observe different kinds of open-

endedness. It follows that the kind of novelty/OE identified

is relative to some model and meta-model of the system

under investigation.

In this section, we define different types of novelty, then

discuss the different classes of OE to which they can lead.

Types of novelty

Having defined the primary concepts of consideration in

the meta-model, we now turn to dynamics. Due the their

interactions, the systems and entities change over time.

These changes can be observed and described in the model

of the system as changes of the entities. Since level-N en-

tities are composed of lower level entities and are com-

ponents of higher level entities, a change observed at

level N is generally not confined to a single level: it may be

caused by changes at lower levels and may itself cause

changes at adjacent levels.6

When focusing on a given change in the system, three

cases can be distinguished, depending on whether the

observed change can be described within the given model,

within the given meta-model (but with a model change), or

whether it requires a change to the meta-model. These

three cases lead to three different types of novelty:

Type-0 novelty: variation

Variation: novelty within the model.

Variation is a change to an instance of the model, a

change to the values of a variable that conforms to the

model.

Variation explores a pre-defined (modeled) state space,

producing new values of existing variables as in, for

example:

• changing the value of an integer-value variable: x ¼ 4,

then x ¼ 5

• changing a gene to a different allele

• increasing or decreasing the size of a finch beak

• changing the number of individuals in a population

(including to zero: extinction)

• swapping out one entity for another of the same type

• flipping a bit in GA with fixed length bitstrings

• changing prices of existing economic goods

In our meta-model, a variation does not change the set of

entities the model captures at level N. Thus, the combi-

natorics of these entities, i.e., the state space, is not chan-

ged either.

Type-1 novelty: innovation

Innovation: novelty that changes the model.

Innovation is a change to the model: a change that adds

a new type or relationship that conforms to the meta-

model, or possibly eliminates an existing one.

Innovation changes the combinatorics and the size/

structure of the state space, thereby growing/shrinking the

possibilities of variation. Examples of changes to the model

include:

• moving the value of a variable outside the range

constrained in the model: x is modeled as an integer

value initially, then x :¼ 0:5

• adding a new dimension of the same type: x, y : X, then

x, y, z : X

• duplicating a gene or chromosome

6 It may also have no effect at all, as, for example, is the case of a

neutral mutation.
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• growing a parse tree in Genetic Programming

• adding a new species in an ecosystem

• adding a new product or production technology in an

economic system

A question for our specific meta-model is whether an

innovation systematically corresponds to an increase of the

number of entity types. Innovation may correspond to the

addition of a new species, but this event may be associated

with the extinction of other species at the same level, thus

reducing the total number of entities at this level. Examples

of such a process can easily be found in the economy when

a new economic good replaces a previous set of goods (for

example, the computer replaced the typewriter and the

mechanical calculator). Note that the number of entities

cannot be reduced continuously at a given level.

The extinction of a species that provides necessary

ecological services is a fundamental change to the ecosys-

tem, and can be modeled as a type of innovation at the

ecosystem level caused by the loss of a species. However,

there is no necessity to remove a type from a model when

that type has no instances. If the model is not so modified,

the extinction is classed instead as variation, with the value

of the population size variable decreased to zero.

Type-2 novelty: emergence

Emergence: novelty that changes the meta-model .

Emergence is a change to the meta-model: a change that

adds a new meta-type or relationship, or possibly elimi-

nates an existing one.

Potential examples of emergent phenomena include:

• the addition of the concept of discrete entities to a

meta-model based on continuum concepts;

• the addition of a new mechanisms for variation, such as

sexual recombination;

• the addition of the concept of processes to a meta-

model based on entities;

• the addition of the concept of energy to a meta-model

based on movements.

One particularly important phenomenon is the emergence

of a new level of organization. Our meta-model has been

designed to highlight this form of emergence, by the

inclusion of the concept of discrete levels.

In our meta-model, a change observed at level N cannot

be described at this level because it changes the composi-

tion rules of the level-N entities. Thus, to be described in

our modeling language, this change needs the creation of

new entities at level Nþ1 or the elimination of all entities

at some level. Note that this can require a reorganization of

the levels structure. This is the case, for example, when

bacteria and a multicellular eukaryote engage in an

endosymbiosis relationship: if the multicellular eukaryote

is level-N, the compound is level-Nþ1 and the ecosystem,

formerly level-Nþ1, is now level-Nþ2. Or, if the loss of a

species at level-N causes the loss of the ecosystem at level-

Nþ1, then any structure at level-Nþ2 becomes level-

Nþ1.

This generally happens when a population of entities

(aggregate system) becomes a new system entity at a

higher level. Examples are:

• when configurations in cellular automata exhibit large-

scale coherent patterns (see ‘‘Illustrative examples’’)

• when bacterial cells evolve into eukaryotic cells with

cytoplasm, nuclei and organelles

• when single-celled organisms form organized multicel-

lular structures such as animals, plants and fungi

• when solitary individuals become colonies or societies

• when a population of cell tissue forms an organ

• when a group of individual economic agents pool their

resources and form a company

• when a number of species form an organized ecosystem

• when a number of artists form a new school

We have specifically included each new level as a separate

component in our meta-model, ensuring that each transition

to a new level is a type-2 novelty. Consequently, each new

level will be added to the meta-model only once, and

emergence corresponds to the first occurrence of the type of

entity. Once the first level-Nþ1 entity has emerged as a

type-2 novelty, similar entities appearing later will be added

to a pre-existing level. Thence, the next level-Nþ1 entity to

appear is only a type-1 novelty, an innovation at level Nþ1.

Indeed, it ‘‘simply’’ changes the level-Nþ1 structure, but

no further change to the meta-model is needed.

Classification versus measures

We have provided a classification of novelties, with respect

to some model and meta-model. Our classification com-

plements various measures of novelty in the literature, for

example, those of Bedau and Packard (1992), Bedau et al.

(1998), Droop and Hickinbotham (2012). Those measures

tend to be expressed in terms of ‘components’ (be they

genes, individuals, or whatever); they track abundances of

different components as new components enter the system.

It is assumed that it is possible to distinguish and compare

these new components.

Our classification allows us to determine if the compo-

nents differ through variation (if they are mutated strings,

say), or through innovation (if they are new species to the

model, say), or differ through emergence (if they are new

levels of organization, say), dependent on the model in use

(in the current literature, the relevant model is usually

implicit). The cited measures could then potentially be
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used to quantify the respective amounts of variation,

innovation, or emergence activity, to determine if the

activity of the respective type is continuing (see also

‘‘Open-ended events and open-ended systems’’).

Events and classes of events

Any particular change is potentially the result of a set of

changes at a range of levels, and may result in changes at a

range of levels. We group such changes into an event: a set

of cascading changes at various levels of the system that

ultimately corresponds to a single novelty at a given level.

It directly follows from this definition that events can be

classified into three classes according to the highest type of

novelty they generate at the different levels where they are

observable.

The distinction between changes (observed at a given

level) and events (groups of changes at all levels) is a

fundamental one. In particular, it captures the question of

timescales (see ‘‘Timescales’’) since a single change at one

level may be the consequence of many changes at the lower

levels. For a given system, the observed events will be

relative to the model and meta-model. The composition

rules that are used to define levels in our meta-model have

no equivalence for the types of novelty: any type of novelty

at a given level can be the cause or consequence of any type

of novelty at another level. In particular, all kinds of novelty

can ultimately be connected to a set of variations at level 0.

Open-ended events and open-ended systems

We are now able to discern three types of events in our

model: variation, innovation and emergence. Two of these

types, innovation and emergence, we define as open-ended

events.

Open-ended system: a system with the ability to

continually produce open-ended events

Variation (type-0) events correspond to the ‘‘normal’’

regime of any dynamical system, and thus we do not

consider them open-ended. For example, engineered

mechanical systems (for example, a car) undergo events,

but none of these events change the structure of the system

(i.e., number and kind of entities composing the car).

Innovation (type-1) provides a form of OE of new kinds

of things (new types in the model) that nevertheless cor-

respond to existing concepts (the new types conform to the

concepts in the meta-model). Emergence (type-2) provides

another form of OE, of new concepts (new components in

the meta-model). We have designed our specific meta-

model to support the idea of ‘‘major transition’’ although

this idea is not made explicit here. According to Maynard

Smith and Szathmáry (1995), a major transition is the

emergence of an entity composed of (sub-)entities that

were capable of autonomous replication before the transi-

tion but that are no more capable of replication after—

while the aggregate entity is now capable of replication. In

our meta-model, a major transition is a type-2 open-ended

event (emergence) that adds a new level, and therefore the

ability to evolve on a higher level. However, the loss of the

replication property at the lower level is not included in our

meta-model because this property is still present in the low-

level entities that are not engaged in this specific major

transition. Different changes to this meta-model (adding

other concepts than new levels) would probably lead to

other classes of emergent novelty.

Interestingly, the distinction between type-1 (innova-

tion) and type-2 (emergence) events captures the distinc-

tion between the notion of continual novelty and the notion

of continual increase of complexity. The repeated occur-

rence of type-2 events does not, however, imply that there

is an arrow of ‘‘progress’’. A type-2 event implies that new

levels must be added to the model, but these can be the

cause or consequence of a decrease of ‘‘complexity’’ at

other levels through partial or complete loss of structure or

function. For example, the establishment of an endosym-

biotic relationship between bacteria and multicellular

organisms can lead to a heavy loss of complexity of the

bacteria (McCutcheon and Moran 2012; Batut et al. 2014).

Limits to open-endedness

Proving that a system will continually produce open-ended

events is challenging. On a theoretical basis, one can

question whether such systems, when instantiated physi-

cally, are even possible in a finite universe. A continual

production of novelty would require physical systems that

are unbounded in space, time, and combinatorial possibil-

ities. Conceptual models and other abstractions are not

limited in this way. This point is discussed in ‘‘On com-

putational limits’’ in Appendix.

Should we be looking for systems able to continually

produce open-ended events, or ‘‘simply’’ for systems able

to produce a sufficient number of open-ended events? We

thus distinguish systems that are theoretically open-ended

from those that are effectively open-ended. The former may

be demonstrable in a mathematical universe, but ques-

tionable in a finite universe; the latter are questionable in a

mathematical universe (at least for non-platonists), but may

be demonstrable in a physical universe. If one says that life

is open-ended, one can only claim its open-endedness so

far. Similarly, when seeking to simulate open-endedness

most authors are willing to simulate one or a small number

of open-ended events. This point is further discussed in

‘‘Effectively open-ended’’.
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Upward limits

There are severe limits to achieving open-endedness in

simulation and also in the real world. The growth of

resources required to populate the higher levels will

quickly lead to an exhaustion of material or entities. In

biological systems, it was this Malthusian limitation that

led Darwin to develop the theory of Natural Selection.

A requirement of any such system is a lower level that

comprises entities with combinatorial power and behavior,

which can generatively combine in multiple ways to form a

huge (‘‘effectively unbounded’’) diversity of entities. We

call these entities, and the rules for their combination, the

‘‘chemistry’’ layer. This is level 0.7 Suppose that, at each

level i, mi entities combine into a single higher level sys-

tem, and every lower level entity belongs to exactly one

higher level system.8 A level-1 system comprises m0 level-

0 entities. A level-2 system comprises m1 level-1 entities,

each comprising m0 level-0 entities, hence it contains m1 �
m0 level-0 entities. A level-k system contains Pk�1

0 mk

level-0 entities. If we assume for the sake of the argument

that all the mi are identical (and that entities’ components

do not overlap and are not shared), then such a level-

k system contains mk level-0 entities.

Hence, the number of base entities needed to populate a

system grows exponentially with the number of levels.

After several levels, a system like this will exhaust the

number of level-0 entities available (molecules, computer

memory cells). Moreover, for a given m0 number of atomic

entities at level 0 the maximum number of entities at the

highest level rapidly decreases as the number of levels

grows. As long as Darwinian selection is at work, this

decreases the efficiency of selection at this level and can

increase the amount of ‘‘drift’’ (Kimura 1984). A direct

consequence is that the possibility for the system to acquire

a more complex structure (innovation events) also neces-

sarily declines as the number of levels grow. Another

consequence is that innovation at each level will be less

constrained by selection at that level, and more the con-

sequence of intrinsic dynamics such as drift.

To summarize, the open-endedness of any discrete

system with mi [ 1 will be limited by the combination of

two processes: first, the exponential exhaustion of level-0

entities used in the system’s ‘‘complexification’’ limits the

possibility of observing type-2 events (emergence); second,

the reduction of the selection efficiency with the decrease

in number of entities at the higher level limits the possi-

bility of predicting the direction of type-1 events (innova-

tion). Therefore, one can conjecture that a finite discrete

system cannot be theoretically open-ended (in the sense

that it can reach barriers to further novelty that could be

transcended only through some ‘‘external’’ intervention to

‘‘expand’’ the finite limits).

Downward limits

Schrödinger hypothesized that living systems were only

possible on the macroscopic scale, due to quantum effects

at the atomic level (Schrödinger 1944). More generally, he

argued that order on large scales was a consequence of

disorder on small scales, which he called the ‘‘order from

disorder’’ hypothesis. For him, living matter must display

homeostasis, which is a maintenance of large-scale (rela-

tive to the atomic scale) organization over time. But he also

pointed out that living things inherit and bequeath order

along their lineage, and that the mechanism for maintaining

order through lineages must be small, on the molecular

scale. He even postulated that this material was probably

an ‘‘aperiodic crystal’’ that conveyed information via

covalent bonds. Inheritance on the molecular scale would

be a possible explanation of hereditary variation arising,

ultimately, from quantum effects. Schrödinger’s breath-

taking hypothesis prefigured the eventual discovery of the

biological function of DNA by Crick and Watson a decade

later, and both credited him as an inspiration for their work.

For our purposes, Schrödinger’s foray into the molecular

basis of life reminds us that innovation is only possible in

physical systems that are sufficiently large. If living things

were too small, quantum effects would make inheritance

impossible: it would be impossible to maintain structure,

and innovation is typically only possible in physical sys-

tems that are sufficiently large (Anderson 1972).

Effectively open-ended

As explained above, the hierarchical organization of our

meta-model imposes strong limits to the open-endedness of

any bounded system, particularly when one considers type-

2 open-ended events (emergence): the number of levels one

can model from a finite number of level-0 entities is

severely limited by a potentially exponential increase of

level-0 entities dynamically linked in level-N entities.

Moreover, if one simply considers variation in a state space

with a finite number of dimensions, each of which can take

a finite number of values (for example, a bitstring which

forms a boolean hypercube), then the state space itself is

finite and bounded, and so the possible variations are

bounded. Strictly speaking, the system is not open-ended.

However, considering a system S at a time t of its

7 With our meta-model model, it is not ‘‘turtles all the way down’’!
8 This does not imply or require that the set of mi entities constituting

any specific level-iþ 1 individual is fixed or static for the lifetime of

that individual. It is a specific characteristic of biological individuals

that they continuously turn over their constituent lower level

components, while retaining their systemic coherence and

individuality.
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evolution, we propose to say that S is effectively open-

ended if the size of the population at the highest level of the

hierarchy is large enough such that open-ended events are

still possible.

Physical systems (for example, the biosphere, techno-

social systems) are effectively open-ended if one considers

type-1 open-ended events (innovation). Indeed, these sys-

tems have a sufficiently large state space and the states

realizable or explorable within a reasonable time (say,

within the age of universe) are an insignificant fraction of

the entire set of ‘‘interesting’’ states. When considering

type-2 open-ended events (emergence), whether these

systems are effectively open-ended is for us quite literally

an open question. Indeed, either the biosphere or the

techno-social systems are now limited by the finiteness of

earth’s resources and the possibility of the emergence of

new levels of organization is not clear.9

Now, consider computational simulations.10 The num-

ber of entities in a simulation is severely limited by com-

putational power, including both CPU time and memory. In

the universe, there is a vast number of molecules; in a

computer simulation, there is a large, but not vast, number

of memory cells (its ‘‘effective unboundedness’’ is less

effective). If we wished to simulate interesting models with

many levels, we could not do so from the bottom up: there

would simply be too many level-0 elements to simulate

efficiently, or even to fit into memory. Additionally, reg-

ularities in the dynamics of a level-Nþ1 entity comprising

a system of level-N entities tend to be on a longer

dynamical timescale (slower processes) than in the level-

N entities themselves and the events we are seeking are

likely to be rare events. This implies the need for an

exponential amount of simulated time in a multilevel sys-

tem. Thus, the upward limits will be quickly reached as the

number of levels grows (that is, as emergence events

accumulate). One can still simulate effectively open-ended

systems if the total number of levels in the system is low

enough for the number of entities to be large. However,

though effectively open-ended, the system will eventually

exhaust its possibilities.

Simulation of open-endedness

Consider artificial life as an example of computational

simulation. One of the central goals of ALife is to use

simulation to study and understand open-ended systems,

including open-ended Darwinian evolution (Bedau et al.

2000). In particular, we wish to study how living systems

have undergone successive major transitions from the first

replicative molecule to the techno-social level (Maynard

Smith and Szathmáry 1995). Systems of this kind have a

hierarchy of levels, with lower level entities forming higher

level systems. Thus, this goal directly hits the computa-

tional limits we conjectured above and may be an inac-

cessible dream, at least with current computational

technologies. Hence, we need to optimize the approach,

taking stock of the exhaustion of resources. What that

means is that we need to hard code some of the emergent

properties and laws at certain levels, rather than letting

them emerge from lower levels. Some hard-coding will

cover the entire set of lower levels not considered (the

‘‘generative’’ layer), and some will cover the examined

(emergent) levels to ‘‘cheat’’ (optimize, hard-code) certain

behaviors through what we call shortcuts.

Generative layer

The question of level-0 entities in natural systems is an

open question: is level 0 populated by molecules, atoms or

even lower level particles? Now, in a simulation, one

cannot start from too low a level, simply because it would

naturally increase the number of levels that separate

level 0 from the level of interest for the question under

study. Thus, our multilevel model will generally possess a

lowest combinatorial level (level 0), which we refer to as

‘‘chemistry’’ or ‘‘artificial chemistry’’ (Dittrich et al. 2001;

Banzhaf and Yamamoto 2015). This level should be able

to subsume all the diversity created by putative lower

levels (atoms, particles, and below) and, conversely, pro-

vide the necessary diversity of elements to the higher

levels. This basal level provides the ‘‘physics’’ (rules and

behaviors) and ‘‘chemistry’’ (combinatorics) of the simu-

lation, thus implementing level 0. For example, in bio-

logical evolution, the existence of elements that can be

combined through bonding dynamics into molecules of

different types—in itself a substantial compression of what

goes on in atom/quantum physics and quantum chem-

istry—provides different chemical characteristics as a

prerequisite for the variety we can observe at higher levels

of the hierarchy.

Examples of generative layers are numerous in the

ALife literature. It can be composed of bit strings as in the

case of genetic algorithms [for example, Holland (1975)],

artificial molecules in artificial chemistry [for example,

9 One can still argue that, on a larger horizon (namely on the level of

the entire universe), although the universe is bounded, the potential

for novelty is unlimited, be it generated by variation, innovation or

emergence. Following this idea, one could consider that the universe

is effectively open-ended.
10 As opposed to statistical simulations, such as ‘‘draw an infinite

number of reals from (0, 1), with an exponential distribution’’, where

innovation in the form of seeing new numbers is certain. Our

argument here applies to any physical simulation, not just to

computational ones.
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Hutton (2002)] or code in genetic programming [for

example, Koza (1992)], to give a few examples.

Shortcuts

If one wants to study a layered system like the ones we

envision in our meta-model, one needs to simulate multiple

levels that successively emerge from the generative ‘‘soup’’

of level 0. As conjectured above, such a simulation is

impossible to implement in practice for large values of

N. We may thus need to introduce new elements in our

simulation that will simplify or accelerate the dynamics of

the higher levels. We call these new elements shortcuts

since they directly implement some properties of the higher

level that, in an ideal simulation, would emerge from the

generative layer.

Shortcuts are hard-coded design optimizations manually

introduced into the simulation. One can consider the

shortcuts as ‘‘cheats’’, which limit the generality of the

model. It would certainly be preferable to be able to sim-

ulate open-ended systems (or at least effectively open-

ended systems) without making use of any such stopgap

measures. This is clearly feasible, but the number of

emergent levels in the simulation will definitively be lim-

ited and this would probably preclude the simulation of

deep multiscale models,11 such as those ranging from

molecules to ecosystems. If one wants to simulate multi-

level systems with a large enough number of levels,

shortcuts will be necessary and, to the best of our knowl-

edge, all ALife simulators designed and implemented so far

have used some kind of shortcuts. It is better to be aware of

this fact and to use it explicitly, rather than to introduce

shortcuts implicitly in a simulation without even realizing

it.

The problem of how to try to simulate OE can be

reformulated as: how to shortcut in a principled way? or

how can we design shortcuts that provide optimizations,

without precluding the possibility of particular kinds of OE

of interest. Indeed, shortcuts provide optimizations by

explicitly constraining structures and behaviors at their

level, rather than requiring these constraints to emerge

from the system’s behavior. Hence, specific shortcuts will

enable or constrain certain classes of OE.

When designing the simulation of an open-ended sys-

tem, one crucial design step is then the identification and

implementation of relevant shortcuts. These will be

research dependent, i.e., they will depend on the specific

question one wants to answer with the simulation. Exam-

ples of such potential shortcuts that might be inserted in

certain simulations include individuality, replication, and

fitness.

Individuality

Individuality is the ‘‘mother of all shortcuts’’. Entities of a

level N[ 0 are hard coded rather than emergent. This can

be implemented in two slightly different ways: either by

directly simulating the dynamics of these entities, which

could be called an ‘‘identity shortcut’’ or by setting

boundaries that group together entities of level N�1 in

level-N entities, which would rather be a ‘‘boundary

shortcut’’. In Fig. 2, an identity shortcut hard codes the

circles of subfigure C while a boundary shortcut hard codes

the dashed circles of subfigure B. Obviously, this shortcut

makes it impossible to observe emergence at level N but it

still enables emergence at level Nþ1. However, when

limited to the boundary part, an individuality shortcut

enables innovation at level N.

Replication

Replication is a central process in biological evolution. In

computational simulations, a replication shortcut is the

explicit implementation of operators that replicate the

entities at level N from the outside of the entities. This

shortcut generally comes with secondary ones, for exam-

ple, to synchronize the replication of all the entities of the

same level or to include variation operators that slightly

modify the offspring.

Fitness

Fitness in evolutionary computation is a classical shortcut.

It replaces the differential reproductive success emerging

from the difference between level-N entities (in terms of

composition of level-N�1 entities), and from their inter-

actions in the level-Nþ1 population, by an explicit com-

putation of reproductive success according to some target

task such as computing a given function, seeking ‘‘food’’,

gaining ‘‘energy’’, and so on.12

Many authors have argued that explicit fitness precludes

OE (Channon and Damper 2000; Baptista and Costa 2013;

Ray 1992) and some have proposed to replace it by implicit

fitness or by subtler approaches such as selection for

novelty (Lehman and Stanley 2011; Soros and Stanley

2014). This is sometimes merely a change in terminology,

renaming the target task with something more biologically

11 A two scale model is technically ‘‘multiscale’’, but can perhaps be

simulated in some cases.

12 Fitness in biological systems is defined as differential reproductive

success. But in nature fitness is assessed retrospectively, through

natural selection.
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sounding, such as replacing ‘‘increasing a score’’ by ‘‘ac-

cumulating energy’’.

However, OE should be possible with an explicit fitness

at a level N (which would shortcut differential reproductive

success driven by interactions at level N�1), providing

that level N entities interact in such a way that level Nþ1

can still have an influence on their reproductive success. In

effect, the variations at level N (the phenotype) may induce

variation at level Nþ1 (the ecosystem). The fitness values

of level N entities, though explicit, will then change due to

the downward causation of level Nþ1 on level N (that is,

the same phenotype could have different fitness depending

on its neighborhood). This could happen, for example,

when the model includes an explicit fitness for resource

uptake but that this resource is shared by all individuals

[which is, for example, the case in Tierra (Ray 1992)].

A general architecture for open-ended simulations

In Fig. 5, we identify a general architecture for layer-based

emergent simulations of OE. This architecture separates

out the base layer, implementing the physics and chem-

istry, from the shortcuts at higher levels. The base layer of

‘‘generative rules’’ provides the implicit coding of all levels

below the lowest simulated level. These rules generate and

enable the lowest level of simulated entities, and the rele-

vant lowest level of an internal environment.

In addition, each simulated layer may have some hard-

coded shortcuts. The collection of these is the set of

‘‘structuring rules’’. These rules provide optimizations by

explicitly constraining structures and behaviors at the level,

rather than requiring these constraints to emerge from the

system’s behavior. In particular, these rules might provide

shortcuts for determining or recognizing the identity of

entities, for communicating between entities at a level, for

providing parts of the internal environment, and for

explicitly implementing ‘‘downward causation’’-style con-

straints imposed by higher levels of the system.

Note that for population systems in this architecture to

be at a higher level than their constituent entities, they

cannot be mere aggregate systems (which do not have a

level in our meta-model) but must be genuine system

entities. If we were to consider a population-as-aggregate

system to be at a higher level than its constituent entities,

then we could never get interesting emergence (in this

meta-model).13 This is because we would generate the

higher level (and get emergence) merely by virtue of

having the population; there would be no opportunity to

generate the (emergent) new level later, when the higher

level system entity itself arose. Making a population into a

system entity immediately is a form of shortcutting an

emergent transition.

Changing the model

The previous architecture provides a methodology to sim-

ulate open-ended systems by means of software compo-

nents that are not open-ended. However, if one wants to use

OE to create software technologies to implement creative

machines, a.k.a. computational ‘‘living technologies’’, one

may want to implement OE directly at the software level.

But how can changes working outside the model be

implemented in software? In conventional programming

languages, the code is fixed, so the design model is fixed.

All that happens is that the pre-existing code executes.

Generally, no new code is produced. In some languages,

however, it is possible for code to modify itself as it runs.14

In standard software development, self-modifying code is

generally to be avoided, as it makes it difficult if not

impossible to know beforehand what the code will do;

therefore, very difficult to design (or debug) code to

demonstrate specified behaviors. Developers usually write

code to do something specific and well defined (such as

calculate payroll, control power stations, or launch small

irate birds at acquisitive pigs). In low-level assembly lan-

guages, self-modifying code is relatively easy to achieve.

‘‘Automata chemistries’’ (Tierra, Avida, Stringmol) are

examples from ALife that exploit this concept, constructing

entities that are strings of assembly language instructions,

hence new code (see further discussion in ‘‘Coreworlds/

automata chemistries’’). Some higher level languages have

also been designed explicitly to facilitate program self-

modification (Spector and Robinson 2002).

In most high-level (structured) languages such as C??,

Java, Python, self-modification requires special effort and

is not possible in all cases (other than using the language to

implement an interpreter for a new language in which it is

possible). A ‘‘reflective’’ language can examine its own

code; some languages (particularly interpreted rather than

compiled languages) can also produce new code on the fly.

Such a language is needed to implement software that can

change its own model as it runs. The final model of the

system, implicitly produced by executing the software, will

need to be inferred.

13 This is another possible difference between our computer simu-

lation-motivated meta-model and biology. This argument in a

biological context would imply that innovation in living systems is

impossible without group selection. This would be a highly

contentious claim.

14 This is different from external modification, or ‘‘patching’’,

running code.
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Capturing the novelties

The shortcuts and corresponding simulation code above

explicitly implement the (computational) model of the

simulation. To capture novelties that change the model

(innovations) and meta-model (transitions), there needs to

be simulator code to make these changes. There are several

possibilities:

1. The emergent novelty is recognized outside the

simulation. The simulation data are analyzed and the

presence of relevant emergent ‘‘model-breaking’’ phe-

nomenon is inferred, but not explicitly realized as a

new entity or level in the simulation (for example, the

emergence of a flock in a boids simulation (Reynolds

1987), recognized through visualization by the obser-

ver or by statistical analysis, but not explicitly present

in the simulation code).

2. The type of emergent novelty is anticipated and

recognized, with pre-coded recognizers present in the

code, available to report it once it appears (for

example, a boids simulation with a pre-coded flock

detector that recognizes if and when it emerges).

3. The type of emergent novelty is anticipated and

captured, with pre-coded structural rules present in the

code, available to recognize and make it a component

of the simulation once it appears.

4. The emergent novelty is somehow emergently recog-

nized by the simulator, and new code is generated by

the simulator to capture the recognition [for example,

self-modifying code (Stepney and Hoverd 2011)].

5. The emergent novelty is somehow emergently cap-

tured by the simulator: once recognized, new shortcut

code is generated by the simulator to capture the

specific emergence [for example, self-modifying

code (Stepney and Hoverd 2011)]. The difference to

the previous situation is that the new shortcut here is

not only detected as an event but shortcut code is also

created that accelerates the simulation by explicitly

coding the new, emergent, level.

Design principles

We can use the CoSMoS (Complex Systems Modeling

and Simulation) approach (Andrews et al. 2010, 2012;

Stepney 2012; Stepney and Andrews 2015; Stepney et al.

2016) to help implement a principled computer simula-

tion that conforms to the architecture described above.

CoSMoS is a particular approach to simulation of com-

plex systems and their emergent properties, but the

components are necessary (if not always explicitly

identified) in any principled simulation work. The com-

ponents include:

• Research context: a description of the research ques-

tion(s) to be addressed by the simulation, for example,

‘‘to understand the system’s exploration of its designed

search space’’, or similar.

• Domain model: a scientific model of the biological,

socioeconomic or other system of interest, including the

emergent levels and OE classes of interest (for exam-

ple, speciation, or a major transition, in an evolutionary

model), such as shown in Figs. 2 or 4.

• Platform model: an engineering model of the software

simulation system. It does not include a model of

desired emergent properties, explicitly ensuring that the

answer is not coded into the software. It includes,

however, additional features needed for efficient sim-

ulation, such as the generative and optimization short-

cut components in our proposed architecture (Fig. 5),

and interfaces.

• Simulation platform: the software implementation, built

from the Platform Model specification, suitable for

running Simulation Experiments.

• Results model: a scientific model analyzing the output

of the simulation experiments in terms of Domain

Model concepts.

• Argumentation: that the simulation is ‘‘fit for purpose’’

relative to the Research Context; specifically here that

the shortcuts neither inhibit nor hard code the desired

OE in the simulation platform.

• Meta-model: a model encompassing the concepts used

in the Domain, Platform, and Results Models, to ensure

consistency between these concepts across the process.

Within the CoSMoS approach, the framework described in

this paper gives a structured way of thinking about the

design of a system to display open-ended novelty, includ-

ing the model, any simulation of it, and the effect of par-

ticular design decisions.

For example, we could design a simulation to investi-

gate our open-ended novelty framework within the CoS-

MoS approach by producing the following components

(summarized in Fig. 6):

1. A meta-model: given that our framework defines

novelty with respect to a model and a meta-model, it

is necessary to define a particular meta-model. The

meta-model defined in this paper (Fig. 3) is one

possibility; others might be used to capture other

forms of OE. Whatever meta-model is chosen, it must

be sufficient to support the desired concepts of OE.

2. A domain model: an instantiation of the meta-model in

domain terms, including desired emergent properties

(where known), and excluding shortcuts.

3. A platform model: another instantiation of the meta-

model related to the domain model in the following

way:

148 Theory Biosci. (2016) 135:131–161

123



• the domain desired emergent properties are not

present in the platform model, to ensure that they

do not become explicitly coded into the simulator

• once the necessary shortcuts have been determined,

and have been argued not to preclude the desired

emergence, the relevant domain components are

replaced with their shortcut alternatives in the

platform model

• the remaining domain model components are

transferred across to the platform model

• instrumentation and interfaces are added, to allow

the simulator to be used to run open-ended novelty

experiments; this might include emergent recog-

nizers and model changers (see ‘‘Capturing the

novelties’’), where appropriate.

4. A simulator built to the specification that is the

platform model.

5. A results model: a further instantiation of the meta-

model, suitable for capturing and analyzing observed

emergent properties of the simulator in domain model

terms.

The CoSMoS approach is a principled way to examine

complex systems. There are other possible approaches that

can be used to avoid confusion and to make sure that the

novelties discovered in a simulation were not already built

into the system from the outset. One should use some

principled, coherent methodology, so that one can make

meaningful claims about types of novelty.

Illustrative examples

In this section, we explain via examples from the literature

how the model/meta-model approach captures the presence

and absence of OE in both computational systems (Game

of Life, ‘‘Game of life’’) and real-world systems (experi-

mental biological evolution, ‘‘Experimental evolution’’),

and in particular how it is all relative to a model/meta-

model.

Then we give examples of genetic algorithms (‘‘Genetic

algorithms’’), genetic programming (‘‘Genetic program-

ming’’), and automata chemistries (‘‘Coreworlds/automata

chemistries’’) to demonstrate some of the ‘‘shortcuts’’

described earlier, how they constrain the amount of nov-

elty, and what consequences these shortcuts have for OE.

Game of life

Conway’s Game of Life (GoL) (Berlekamp et al. 1982;

Gardner 1970) is a two-dimensional cellular automaton

(CA), and a typical example quoted when talking of

novelty and emergence. Here we show how GoL

exhibits various kinds of novelty relative to a model

instantiated from our meta-model. Other authors discuss

emergence in GoL in different terms, for example Gotts

(2009).

The base-level model has the following components: the

cells, atomic entities at level 0 that can be in state ‘alive’ or

‘dead’; the entire GoL arena, an aggregate system com-

prising a collection of cells laid out in a grid pattern; the

environment, considered as providing the space and time

for this grid; and interactions between cells, which com-

municate their state to their eight nearest neighbors, and

behave by synchronously updating their own state based on

the GoL rules: each timestep: if a cell is dead and has

exactly three live neighbors, it becomes alive; if it is alive

and has fewer than two or more than three live neighbors it

dies.

As the CA executes, cells change state, exhibiting

variation, that is, type-0 novelty (a change within the

existing model only modifying the value of the existing

state).

Rapidly, the observer notices the appearance of certain

patterns: some localized groups of cells switch through

cyclic patterns (on a longer timescale). These localized

groups are modeled as level-1 entities, comprising the

relevant level-0 cells and the local grid environment over

an extended number of update cycles. Thus, the meta-

model is augmented with a new level: level 1; the model is

augmented with a specific system entity type: an oscillator

(including period-1 oscillators called ‘‘still lives’’). This

modeling of oscillators is then an example of emergence,

that is, type-2 novelty (a change to the meta-model adding

a new level).

The observer also notices further patterns that seem to

move across the grid, called ‘‘gliders’’ (or, more generally,

‘‘spaceships’’). These are also modeled as level-1 entities,

comprising the now-changing sets of cells and local grid

environments that encapsulate these patterns. This model-

ing of gliders is then an example of innovation, that is,

type-1 novelty (a change to the model adding a new entity

type).

Then, the observer notices that these moving gliders

interact by colliding: such interactions can produce new

oscillators, gliders, and other patterns. This modeling of

gliders is also an example of innovation, that is, type-1

novelty (a change to the model adding a new kind of entity,

hence a new interaction type).

Eventually, the observer notices that these moving

gliders and oscillators can be positioned to interact in such

a way that they form a level-2 entity: a Turing

Machine (Rendell 2002). This model of Turing Machine in

the GoL is then another example of emergence, that is,

type-2 novelty (a change to the meta-model adding yet

another new level).
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In this example, the scientific model and meta-model are

changed based on observations, hence innovation and

emergence are observed. The possibility of innovation and

emergence spring from the GoL engineering model that is

itself not changed during the process (see Fig. 1).

Experimental evolution

Experimental evolution is a biological discipline where

organisms evolve in controlled experiments, to explore

natural evolution in real time. By defining experimental

protocols, and preparing isolated strains of organisms for

observation, shortcuts are introduced into the process,

removing it from the natural evolutionary environment.

Since many predictions of evolutionary biology assume

very large effective populations or many generations, most

experimental evolution systems use viruses or bacteria,

though other microorganisms (such as yeast and other

fungi, nematodes, and more) and even some larger organ-

isms (including fruit flies, mice, plants, and more) have

also been used. The typical experiment involves several

generations of the organism(s) under study, while selecting

for some trait. Given a response to selection, which is

nearly always present, the biologist can untangle the causes

of the response using genetics, transcriptomics, metabo-

lomics, or other techniques.

Experimental evolution is often ‘‘open-ended’’ only in

that the experimenter does not specify or enforce pre-de-

termined mechanisms for adaptation. However, this is not

the kind of open-endedness we defined in this paper. Yet,

innovation—in our use of the term—commonly emerges,

such as when viruses adapt to a new host, new temperature,

or other environmental change in an evolving viral/bacte-

rial system. Some experimental evolution systems, such as

Richard Lenski’s famous ‘‘long term evolution experi-

ment’’ have shown a clear open-ended dynamics (in our

use of the term). Lenski has transferred over 62,000 gen-

erations of E. coli as of the time of this writing (personal

communications), without (intentionally) selecting for any

particular phenotype (Barrick et al. 2009). Different lin-

eages of organisms with clearly distinct phenotypes and

reproductive fitness have emerged during the course of this

experiment. More recently, after over 27 years, a genuine

speciation event may have arisen, where the bacteria have

developed the ability to metabolize an entirely new energy

source, which was always present in the media but never

used: citrate (Barrick and Lenski 2013; Blount et al.

2008). Other open-ended events have been observed in this

experiment such as the observation of a stable polymor-

phism (Plucain et al. 2014) that may correspond to the

emergence of a new ecological level. One of the main

difficulties in experimental evolution is to understand how

the ‘‘shortcuts’’ (e.g., serial transfer, culture medium, arti-

ficially stable environments...) are likely to trigger the

observed OE events.

Genetic algorithms

The genetic algorithm (GA) (Holland 1975; Goldberg

1989) is another example of the benefits of shortcuts. GAs

have exhibited an astounding ability to produce creative

and surprising solutions to technical optimization and

design problems (Renner and Ekárt 2003).

GAs work by manipulating a set of parameters that code

for the solution of an application problem, such as the

minimization of a function. Each of these parameters might

be considered a level-0 entity, with the set of parameters

providing a solution being an entity at level 1. In GAs, this

is called a genome.

At a still higher level in the GA (level 2) sits the so-

called fitness function, a shortcut for helping to judge the

Observed, 
program data 

Sets of rules: 
A. Generative rules compressing level 0 
B. Shortcuts (optimization rules compressing 

parts of levels 1, 2…)  

B 

A 

? 

Level 1 

Level 2 

Level 3 

Fig. 5 Simulation with shortcuts, generic figure. Level 0 is abstracted

by the set of generative rules encoded in ‘‘A’’. Levels 1 and 2 are

predefined by the simulation (parts of them are hard coded) but they

include emergent parts that enable variation, differences or innova-

tion. Level 3 is fully emergent, not at all included in ‘‘B’’ (but may be

anticipated by the modelers when designing ‘‘A’’ and ‘‘B’’ since they

want to observe 3). If level 3 is a system made of entities of lower

levels, then its emergence is a transition. If the level 3 entities are

replicators, then emergence of level 3 is a major transition

150 Theory Biosci. (2016) 135:131–161

123



quality of a solution. In biology, fitness is an implicit

concept assigned retrospectively to individuals based on

their reproductive success. In GAs, fitness is usually

explicitly defined, while individuals are implicitly assumed

to be produced by the genome. We described evolutionary

computation above in terms of function minimization,

where the difference between the function and what is

required for the minimum (the error) is equivalent to (in-

verse) fitness and can be used to judge solution quality.

The list of fitness values can now be used to provide a

selection signal from this level-2 system to level-1 entities

by removing low-quality solutions and thus providing

space for new individuals in the population generated by

variation processes. The actual variation is produced by

random change on individual parameters (mutation) or by

choosing sets of parameters from different individuals

(recombination).15

Often a set of discrete parameters can encode a solution

for the problem and the number of dimensions does not

change. Thus, the space of all possible combinations of

parameters (and therefore solutions) is bounded. Yet, still

interesting and novel solutions might emerge (despite using

only type-0 novelties) as the combinatorial spaces under

consideration quickly exceed the number of elementary

particles in the universe. The limiting factor in GAs seems

to be the fixed fitness function, which leads the search

sooner or later to stagnating fitness plateaus.

The situation with respect to shortcuts is depicted in

Fig. 7. A genetic algorithm as well as other similar evo-

lutionary systems are highly constrained. Individuals

(level 2) are organized in a population (level 3) with an

entirely hard-coded structure that imposes selection on

individuals. Individuals are made of data but some of their

properties are hard coded (individuality, replication).

Individuals are made of genes that are chemical entities

(level 1) producing the variation. Here, however, variation

is hard coded and cannot change. The generative rules

(denoted by ‘‘A’’ in Fig. 7) are also highly simplified: they

are a fixed-size bitstring.16

Genetic programming

Genetic programming (GP) (Koza 1992; Banzhaf et al.

1998) is a computational method using similar principles as

GAs. The individuals under variation and selection are

computer programs or other active entities. Here, type-1

novelties make their regular appearance, as a result of the

active nature of the required solution. Still, an explicit

fitness function (often unchanging) governs the procedure

and leads to improved solutions. Individuals in GP have to

accommodate regular dimensional changes and should be

better considered behaviors of their genomes (Foster

2001).

Level-0 entities in this case are elementary behaviors

that might be useful in the context of the problem. An

example might be a GP system learning to play a game like

chess. The combination of elementary behaviors makes up

an individual able to play a game of chess. This would

include the judgement of particular positional situations

which would lead to different responses. These game-

playing strategies would be level-1 entities subjected to

type-0 and type-1 changes, again controlled by random

mutations and recombinations.

Level 2 would be a more or less successfully played

game. Here we can see that higher levels require the

integration both in time and space of what is coded in the

genome of an individual. Again, the constraints to the GP

model are severe and tend to greatly limit the emergence of

novelty.

In some forms of genetic programming, however, the

mechanisms of variation are not fixed. For example, in

‘‘meta-genetic programming’’ a population of variation

operators co-evolves with the main population (Edmonds

1998; Kantschik et al. 1999), while in ‘‘autoconstructive

evolution’’ systems the individuals in the main population

are responsible both for problem solving and for producing

offspring with variation (Spector and Robinson 2002;

Observed 
emergents

Simulator

Run, observe, 
analyse

Remove       Add

Transfer

Replace

Analyse, 
compare Implement

Domain model Platform model 

Results model 

Fig. 6 Open-ended novelty simulation design within the CoSMoS

approach. The Domain, Platform and Results models are instantiated

from a common meta-model, and related to each other as shown (see

text for further explanation)

15 The variation is technically pseudorandom, being generated by a

deterministic algorithm. This process is itself a lower level system in

the model. Details of this level can significantly affect GA behavior.
16 Note that open-ended GAs could be implemented providing the

bitstring length and the number of genes it encodes can evolve. In this

case innovation events could be possible as observed, e.g., in Knibbe

et al. (2007).
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Spector 2010). In these systems the mechanisms of varia-

tion are themselves subject to variation and selection, and

hence can evolve. The potential that these systems have for

producing open-ended novelty is a subject for future study.

Coreworlds/automata chemistries

So-called ‘‘coreworlds’’ or ‘‘automata chemistries’’ denote

a loosely defined set of related, but distinct, evolutionary

computational systems. Examples include Coreworld

(Rasmussen et al. 1990), Tierra (Ray 1992), Avida (Adami

and Brown 1994) and Stringmol (Hickinbotham et al.

2010, 2016). These are conceptually, or superficially,

similar to GP systems, in that the Darwinian individuals are

computational processes (executing programs) hosted in

some shared, or at least interconnected, memory system.17

However they should be contrasted with GP systems in a

number of important respects.

First, replication is not implemented by shortcut: the

processes are responsible for their own replication. Indeed,

non-replicating or sterile processes can be instantiated by

design, or can arise through spontaneous perturbation, and

can significantly influence evolutionary dynamics; a phe-

nomenon which is not possible in most GP (or GA) systems

where all individuals are directly replicated by shortcut,

regardless of their intrinsic functionality. As one specific

consequence of this self-replication, fitness is, to some

significant extent, intrinsic rather than extrinsic.

Second, the individual processes execute (pseudo-)con-

currently, and their dynamic interaction typically consti-

tutes another significant factor determining relative fitness.

Third, the programming formalism is usually based on a

machine code representation (translated to an assembler-

like representation in the user interface); as opposed to the

high-level formalisms (e.g., lisp) typically adopted in

GP. This formulation makes self-modification/metapro-

gramming (the ability of programs to treat their own code,

and that of other programs, as data to be operated on) very

natural and easily accessible. In almost all empirical work

with coreworlds, this metaprogramming forms the basis for

implementing replication through a mechanism of direct

self-inspection. However, this is not in any sense intrinsic

to the underlying platforms, and some examples exist in the

literature of implementing fully von-Neumann style self-

reproduction with mutable GP-mapping instead (McMullin

2012; Hasegawa 2015; Baugh 2015).

In terms of the framework presented here, all coreworlds

have a base-level model (level-0) which includes one or

more discrete random access memory system(s) and a

dynamic (and indefinite) number of execution threads

(CPUs). At this level, they generally support type-0 novelty

through stochastic perturbations of memory contents. An

individual process (level-1) is constituted by one or more

CPUs coupled with some configuration (content) of one or

more segments of memory. All coreworlds directly allow

for type-1 novelty at level-1 (the spontaneous and open-

ended introduction of new types of level-1 entities). This is

typically triggered through the type-0 stochastic perturba-

tion of memory contents at level-0; but can also be gen-

erated through (re-)writing the content of memory

locations (i.e., by programmatic action). Either type of

mechanism can lead to expansion (or contraction) of the

memory segment(s) in use by any given process, that is,

even if level-1 individuals are modeled as dynamic systems

on a state space, the dimensionality of this state space can

itself change.

Level-1 individuality in coreworlds (individually dis-

tinguished and identified executing processes) is normally

shortcut to the extent that there is external ‘‘operating

system’’ support to group together one or more execution

threads with one or more memory segments, which the

system monitors and logs as constituting individuals.

However, the coherence of this shortcut may be blurred or

undermined if the memory segments are drawn from a

shared address space, because in that case individual pro-

cesses may still potentially read, write, or execute memory

segments that are notionally associated with a different

process (or with none). This can have significant phe-

nomenological consequences in particular coreworld

systems.

Typical experiments in these systems are externally

seeded with one or more such (level-1) individuals, which

have been designed to have the property of self-replication.

Further, the self-replication mechanism is such that it

supports the possibility of heritable mutation (type-1 nov-

elty within the class of self-replicating level-1 individuals).

Thus, the meta-model already allows for the development

of populations (lineages) of level-1 individuals having

essentially identical programmatic behavior (by virtue of

identical initial memory content). These lineages are then

level-2 entities that can be classified into distinct strains,

which exhibit typical ecological and evolutionary phe-

nomena. However, because these strains were already part

of the meta-model, their appearance does not generally

constitute type-2 novelty (emergence).

That said, an exception might be argued for the Amoeba

coreworld system (Pargellis 2001). In that case, it is not

seeded with self-replication functionality at level-1, but

that spontaneously emerges. The system was conceived

and designed with that specific possibility in view, as have

been several autoconstructive evolution systems (Spector

17 The ‘‘core’’ in ‘‘coreworld’’ derives from the earlier CoreWar
programming game (Dewdney 1987), and invokes the typical linear,

random access, memory configuration originally associated with early

magnetic core hardware.
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and Robinson 2002; Spector 2010). Nonetheless, it can be

said that the meta-model initially lacks any coherent level-

2 entities; but once the level-1 self-replication functionality

emerges, then such population-lineage entities must be

added to the meta-model (i.e., level-2 must be introduced)

and, therefore, this is properly an example of type-2

novelty.

Returning to the case of coreworlds where self-repli-

cating level-1 individuals are externally seeded, there are

still some subtleties in classifying the types of novelty

arising. In the case of the ‘‘original’’ Coreworld (Ras-

mussen et al. 1990), although seeded with coherent self-

replicating level-1 individuals, the self-replicating func-

tionality (and thus conventional Darwinian evolutionary

dynamics at the level-2 of interacting lineages) is typically

lost very quickly, due to unrestricted overwriting of

memory segments notionally associated with different

individuals.18 This could be modeled as a type-2 novelty

where the meta-model is changed by losing a level. By

contrast, Tierra introduced a critical design feature of a

‘‘write protection’’ shortcut. This allows individuals to

protect against external disruption of their own ‘‘allocated’’

memory segments, while still allowing them to pervasively

read the contents of all memory (allocated or not). This

ensures reliable persistence of the self-replication func-

tionality and thus the level-2 of distinct strains. Unfortu-

nately, in itself, this also allows a single self-replicating

seed process to generate an exponentially growing lineage

that quickly exhausts (allocates) the entire, finite, memory

system. This would prevent any further replication (since

no more memory segments can be allocated), and bring

evolution (open ended or otherwise) to a halt. Accordingly,

it was necessary to introduce a further, additional, shortcut,

the so-called ‘‘reaper’’, which stochastically ‘‘kills’’ ran-

dom processes, and deallocates their memory segments

(and destroys their execution threads). This does allow

Tierra to exhibit sustained type-1 innovation at the

level-2 of strains, including phenomena of selection and

diverse forms of parasitism.

In practice, however, evolutionary novelty even in

Tierra quickly ‘‘plateaus’’. While there is continuing

generation of type-1 novelty at the level-1 of individuals,

and this does continue to generate new, distinct, strains at

level-2, these seem to exhaust the scope for any further

distinctive ecological or selective behaviors at level-2, that

is, there is no further even type-1 novelty at level-2, and

certainly no generation of identifiable, coherent, entities at

any higher level (i.e., no instance of type-2 novelty of

emergence).

The Avida system sought explicitly to open up further

evolutionary potential in a coreworld system (as com-

pared to Tierra) by adding the possibility for addi-

tional, externally specified, ‘‘behavioral challenges’’.

These take the form of ‘‘tasks’’ that level-1 individuals

may complete, and by doing so may enhance the Dar-

winian fitness of their corresponding lineages (strains).

While this does lead to a diverse range of interesting

phenomena, for the purposes of the current discussion, it

does not seem to add any decisive new feature. In par-

ticular, the ‘‘plateauing’’ of novelty phenomenon is still

observed. It is delayed somewhat while solutions are

sought for the externally defined tasks. Once those tasks

are satisfied, evolution again stagnates as, within the

system itself, there is no mechanism for new tasks to arise

and, as with Tierra, there is no case of type-2 novelty

(emergence of level-3 entities).

For the moment, it is an open (and active) research

question whether the coreworld approach can be further

developed in a way that would significantly extend its

capability to exhibit open-ended evolution. As a minimum,

any such development would seem to require mechanisms

for generation of new selective ‘‘niches’’ (i.e., where

selection, at the level-2 of strains, is not operating in just a

single fitness landscape) and for the potential ‘‘individua-

tion’’ of new entities at level-3.

Conclusions

Summary

In brief summary, our argument is:

• Models and meta-models are used for building both

scientific and engineering models of systems (they may

be implicit)

• We define types of novelty and open-endedness with

respect to the system’s current model and meta-model:

– Novelty in an observed system is classified as:

0. Variation: novelty within the model

1. Innovation: novelty that changes the model

2. Emergence: novelty that changes the meta-

model

– Open-ended event: an event that results in innova-

tion or emergence

– Open-ended system: a system with the ability to

continually produce open-ended events

• We provide one particular meta-model, incorporating

the concept of levels, which allows it to capture ‘‘major

transitions’’ as emergent events
18 Strictly, Coreworld does not incorporate a memory ‘‘allocation’’

shortcut per se at all.
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• We introduce simulation ‘‘shortcuts’’: hard-coded

behaviors at different levels needed to implement

effective computer simulations

• We describe some illustrative existing systems in terms

of their types of novelties and shortcuts

Discussion

The constant emergence of novelty from complex systems

is a fundamental phenomenon of nature, societies, and

computer simulations for which one might desire a unified

theory. However, as we have shown, it is difficult to pre-

cisely characterize a notion of open-endedness that works

in all cases, so that a general theory of open-endedness is

hard to come by. The barriers are both conceptual and

computational, as we have highlighted in the appendices.

However, we have argued that it is possible, and even

useful, to attempt such a general theoretical framework,

without committing a priori to any particular application

domain.

One function of a general theory would be to develop

domain-independent models of open-endedness, so that

predictions and experiments in one domain might support

cross-domain conclusions. We have presented a meta-

model for open-endedness that we have argued can

encompass similarities between models of open-ended

evolution in biological systems, the emergence of socio-

economic systems, and computer simulations. We have

applied this meta-model specifically to the unbounded

emergence of novelty in computer simulations, with suf-

ficient software engineering detail to show that our theo-

retical aspirations do not sacrifice practical applications.

Our emphasis on computer simulations is a pragmatic

choice. Suppose we had chosen biological evolution to

make our argument. Life on earth has demonstrated con-

tinuing emergence of novelty, but it has taken billions of

years and a vast number of molecules and organisms, not to

mention the abiotic and energetic richness of an entire

planet, to do so. While a general theory should be able to

encompass this grand sweep of biological complexity, it

would be very difficult indeed to test. The best one could

hope for would be to develop models of open-endedness

that predict, and hopefully predict the parameters for,

specific biological phenomena.

In any case, biological models alone are insufficient;

models of biological innovation should be paired with

laboratory or field experiments. This has been done in some

specific domains, such as the emergence of cooperation,

resource competition, virulence, and collective behavior.

Much of this work has been done in microbial systems such

as bacteria and yeast, since the populations sizes and

timescales involved are amenable to human experimenta-

tion. But none of the models or experiments of which we

are aware are genuinely open ended, in the sense of this

paper.

The previous two paragraphs also apply, mutatis

mutandis, to socio-economic systems. One could argue that

the emergence of human socio-political systems is the

latest manifestation of the emergence of eusociality in

primates, and as such is a subset of biological evolution.

Hence, it should be largely appropriate to apply a general

model of perpetual emergence of novelty in biological

evolution to socio-economic systems—but at different

temporal and physical scales. It would be difficult to test

such models experimentally, since we lack both the time

and resources for controlled experimentation on entire

human social systems, and it would be unethical in any

case. However, historical data provide an empirical basis

for model testing in this domain. A sufficiently rich model

of socio-economic evolution should predict the emergence

of new social, political, or economic forms of organization,

Sets of rules: 
A. Generative rules compressing level 0 
B. Shortcuts (optimization rules compressing 

parts of levels 1, 2…)  

B 

A 

Observed, 
program data 

individual

Pop. 

Chem. 

Fig. 7 Simulation with shortcuts, GA example. In a GA, the level of

interest is the individual. These individuals are grouped into a

population and they are made of elements (genome, phenotype) that

give them their dynamic. Now the population level is a mere

aggregate of individuals (see Sect. ‘‘A general architecture for open-

ended simulations’’), hence not an explicit level in the hierarchy.

Similarly, the elements that compose the individual and their

relationships (e.g., the genotype-to-phenotype mapping) are explicitly

encoded in the software. So the classical GA structure is a level 2

composed of individuals that evolve through variation events imposed

by a fully shortcut lower level and a selection pressure imposed by a

fully shortcutted higher level. Note that for sake of clarity we

distinguish the generative rules (a) from the lower level chemistry

rules in box (b) but that the latter could have been merged with the

former
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consistent with historical experience [see Morris (2010) for

attempts in that direction].

More to the point of this paper, biological and socio-

economic evolution are both subject to the same general

theory of open-endedness, and so a sufficiently good model

should apply to both. A general theory should provide a

dictionary that would help us translate results from one

domain into the other. One could never state that human

social structures are the same as, say, bacterial biofilms.

But a unifying theory would allow one to express exactly

what they have in common, without simply anthropomor-

phising bacteria or dehumanizing people.

By the same argument, computational models based on a

general theory of open-endedness should share enough with

biological or socio-economic models to lay out exactly how

computer simulations of open-endedness inform hypotheses

about the emergence of novelty in biology and society.

There is an established field of artificial society simulation,

and simulations of biological phenomena are legion. Few of

these computer simulations, however, explicitly present a

model for the emergence of novelty together with a theo-

retical argument that the model is the same for both the

simulation and the system being simulated.

We have argued that such a general theory of open-

endedness is possible, and that it can lead to meta-models

of the emergence of novelty that are appropriate for com-

puter simulations. We do not claim, however, that the

specific meta-model we present is always the most appro-

priate for a given analysis. Nor have we demonstrated how

our computer simulation model is appropriate beyond the

domain of computer simulations. There is probably no

single meta-model for all questions, even if one has a

general theory of open-endedness. Nevertheless, our hope

is that attempting to develop such a theory, while

remaining cognizant of the specific models that it would

support, can be useful for prediction and experimentation

across multiple domains.

There remain both conceptual and technical barriers to

developing such a theory. In a sense, these are grand

challenges to open-endedness. We state some of these

challenges more explicitly using the terminology we

developed above.

C-1: It remains an open question how to fully charac-

terize how specific structuring rules (shortcuts) constrain

specific classes of open-endedness. Consequently, it is

unclear how to design a sufficiently rich set of generative

rules such that no structuring rules are needed to explore

even a three-level model. Thus, we challenge others and us

to develop a simulation that can: (1) ‘‘write’’ its own

structuring rules that act as shortcuts to bootstrap itself to

the next level; (2) learn the structuring rules that fix the

downward causation arrows (Ellis 2011); (3) recognize

higher levels and higher level entities.

C-2: The hierarchical meta-model we present above is

largely mereological, which has limitations that need to be

explored. In particular, when a higher level of abstraction

affects a lower level, the system is no longer describable in

terms of a strict hierarchy. For example, when an ecosys-

tem, which is an aggregation of individuals, changes the

abiotic resources available to individuals, individuals

adapt, changing the ecosystem.

It is even unclear what an ‘‘individual’’ or level zero

entity is, in natural systems. For example, a human is an

aggregation of thousands of species of bacterial, human,

and viral genomes, where each constituent affects both the

others and aggregations of the others. For example,

endogenous retroviruses move genes into human genomes,

where the genes reproduce and evolve in response to

human behavior. Genes from endosymbiosis, such as those

in the mitochondrial ancestors, move into the host gen-

omes, where again they evolve according the activities of

the host.

It may be the case that some specific research questions

can only be answered with non-mereological models. So

the challenge is to develop non-mereological models and

demonstrate them in simulation.

C-3: Another challenge is to develop metrics of open-

endedness that can be applied across the full range of

biological, socio-economic, and computational complex

systems. How open-ended does a model have to be to, say,

predict when an endosymbiotic gene will migrate into a

host, and then into a host of the host?

C-4: There are specific emergent systems that remain to

be modeled and simulated. In particular, it would be

helpful to have sufficiently rich models and meta-models,

along the lines we have presented, with which the major

transitions of life can be captured (Maynard Smith and

Szathmáry 1995).

C-5: We also challenge others and us to model and

simulate the movement of internal information systems

such as genes, to external ones such as databases, and then

back into internal ones, for example by genetic

manipulation.

C-6: Another challenge is to model and simulate the

emergence of high-level socio-economic entities such as

corporations or governments, that then change the behavior

of their constituents in such a way that new levels of socio-

economic entities emerge, for example by merger or

revolution.

C-7: A challenge in the realm of social systems would

be the emergence of culture or specific languages, which

then affect the nature of other cultures or languages.

Given the absence of a theory, we believe that novelty,

innovation, emergence and open-endedness constitute

some of the most fascinating and fruitful topics in the

scientific discourse of today.
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Appendix

On levels

Levels in philosophy

There are at least two different approaches one could take

to characterizing the notion of level. On the one hand,

philosophers like Wimsatt have provided a prototype of

levels (as opposed to providing definitions) (Wimsatt

1994). Under this treatment, levels are distinguished by a

cluster of rankable features: objects at different levels will

have different sizes; objects at different levels stand in

composition relations to one another; objects at the same

level are governed by the same laws and the forces at play

have similar magnitudes; objects at the same level are re-

liable detectors of one another because they stand in reg-

ular and predictable relations with one another; objects at

the same level are investigated with the same set of tech-

niques with respect to similar disciplinary perspectives.

The advantage of providing a prototype treatment of levels

is that some examples of levels may lack one or more of

the aforementioned features.

On the other hand, philosophers like Craver have

approached the issue by providing a taxonomy of the dif-

ferent senses of level (Craver 2007). This approach high-

lights the similarities and differences between the senses of

level and can provide clarity where there are often mis-

leading associations between them. For example, Craver

distinguishes between four different senses of levels of

composition: mereology, aggregativity, mere material/

spatial containment, and mechanism:

1. Levels of mereology are formed by part–whole relations

so that the collection of parts are at a lower level than

the object that the parts make up. On the mereological

conception of levels, complex things are regarded as

wholes, but this does not emphasize whether the part–

whole relation is constituted by material or spatial

containment, or some other feature. It also does not

specify what relations hold between the parts.

2. Levels of aggregativity, on the other hand, specify that

the properties of items at a higher level are the simple

sums of the properties of the items at the lower level.

For example, the mass of a pile of sand is the sum of

the masses of the individual grains.

3. Levels of mere material/spatial containment are per-

missive conception of composition. In this sense of

level, an entity at a higher level is constituted by

pieces. For example, to model climate we might divide

the atmosphere into cubic-kilometer pieces. Pieces are

to be contrasted with components. If we divide the

human body into cubic-centimeter pieces, we would

have a haphazard collection of things that do not have

clear contributions to the workings of the human body.

4. Dividing the human body into components, however,

involves the identification of how the part is relevant to

the behavior of the whole. This is the defining feature

of levels of mechanisms. On this conception of levels,

components at a lower level are organized together to

form components at a higher level, such that the

behaviors of the components are relevant to the

behavior of the whole.

An important aspect of thinking about mechanistic levels is

that they are defined within a hierarchically organized

mechanism; levels are not defined by objective kinds that

are independently identifiable from a mechanism. To ask

whether a given molecule and cell are at different levels

makes sense only in the context of a given mechanism,

which in turn makes sense only in a given model: the actual

levels are model dependent. So, there is no unique answer

to whether two items are at the same level; they are if they

are both components in the same mechanism without being

components of each other. However, under a different

decomposition hierarchy, those items can be at different

levels (for example, if one is a component of the other).

Thus, an elephant and a bacterium it carries can be at the

same level if they are components of the same mechanism,

but can be at different levels if the hierarchical mechanism

in question is the elephant and the components that make it

up include bacteria. In recent years, level identification has

also become an interesting topic of mathematical and

information theoretic analysis (Pfante 2014).

On timescales and levels

Levels and timescales, both of dynamics and evolution,

may be intimately related, but the relationship might be
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complicated. In abiotic systems it may be the case that

dynamics are faster at lower than at higher levels, but this

may be a relatively trivial observation in that the higher

levels are simply large-scale patterns of the lower level

entities, and the patterns to be observed and said to exist

must have a longer timescale. Thus, the large-scale weather

system depends for its existence on the Brownian motions

of the atmospheric molecules, whereas the process of self-

organization generating the pattern requires many times the

Brownian timescale to unfold. But here the weather sys-

tem’s timescale can only be defined in terms of the large-

scale spatial pattern. Bénard cells provide another example.

In this case, the lower level building blocks are much more

stable than the emergent higher level structures but the

low-level dynamic is much more rapid than the high-level

dynamic.

In biological systems the relationship is more varied,

and also more important. Living systems are not just

compositions of molecules; they themselves construct most

of their composite molecules. It is frequently claimed that

the timescale of biological (Darwinian) evolution is slower

than that of the individuals in the evolving population, so

this is also a case of the higher level (species) having a

slower timescale than the lower level (individuals or pop-

ulations of individuals). It is also the case that the inherent

rate of the appearance of new molecules in the genome is

much greater than the rate of evolution in the individual,

but in this case the evolution is largely suppressed by the

repair mechanisms available to the phenotype to ensure the

survival of the phenotype level, and hence also the survival

of the genotype. As a result, the rate of evolution of the two

levels is effectively the same—lower level variation

uncorrelated with high-level variation simply dies out.

In human systems, the situation may be even less

straightforward. A corporation may be considered to be a

higher level entity in that it has a distinct physical existence

(buildings, equipment, etc.) as well as a legal existence:

incorporation gives it much the same legal status as a

human being, and allows it to act in relevant respects as a

person. Yet it is composed of a collection of people, who as

employees become components of the corporate entity. The

timescale of their evolution in terms of their function (for

example, the products they make) may be slow relative to

the lifetime of an employee, or much faster. Financial

entities show an even greater range of evolutionary time-

scales, from a century or more in the case of savings banks

to years or even months in the case of derivatives or closed-

end funds. In the case of derivatives, the higher level

evolves much faster than the lower level of the instruments

being securitized. In human systems, we may even find

circular hierarchies when individuals are subject to the

constraints of various higher level organizations such as

their employer, their church, and the bylaws of the local

government, these organizations being in turn subject to the

laws and regulations of the national government, but the

national government being subject to a president/

king/dictator—an individual belonging to the lowest level

of the hierarchy. Note that humans have had the ability to

build entities—computers—faster than themselves that

now drive large parts of, e.g., financial exchanges.

At this point it would seem safe to say that for biological

and human systems the relationship between levels and

timescales is one that is fundamentally important. How-

ever, it is difficult to identify simple generalizations. The

problem is one that for the time being must be examined in

particular contexts.

On computational limits

Classical theoretical computer science investigates the

relationships between objects that can be described or

instantiated with algorithms, which are formalizations of

Hilbert’s concept of an ‘‘effective mathematical proce-

dure’’ (Hilbert 1901). Several different algorithmic models

exist, the most well-known being grammars in formal

languages (Post 1944), recursive functions (Church 1936),

and finite automata (Turing 1936). Less well known, but

relevant to our discussion, are automata that infer functions

from examples (Gold 1967; Valiant 1984). The objects

described or instantiated by these models include primarily

sets of finite (but indefinitely long) strings over finite

alphabets, known as formal languages, and functions

which map either strings onto strings or natural numbers

onto natural numbers.

The fundamental results of theoretical computer science

prove that there are hierarchies of sets of objects described

or instantiated by abstract models of algorithms, such that

variations in the models determine which level of the

hierarchy the model describes or instantiates. In our terms,

this means that even abstract mathematical models of

algorithms define classes of innovations that are achievable

by varying the models. Each of these classes of innovations

are open-ended in the sense that there is no final or ultimate

model; a model can always be extended so as to make a

new class of objects accessible.

Consider some examples from automata theory. Turing

machines are finite automata with indefinitely extensible

memory. The finitude of this model implies that there is a

hierarchy of three classes of sets or functions that can be

described or instantiated: those that can be computed, those

that can be enumerated, and those which are beyond

computation. Augmenting the Turing machine model with

access to a hypothetical (not actually implementable)

external set, known as an oracle, produces an infinite, strict

hierarchy of classes beyond these three [known as the

Kleene–Post Hierarchy (Rogers 1987; Soare 1987)], and
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therefore open-ended innovation in our sense. Restricting

the Turing machine model by limiting access to memory

produces another strict hierarchy which corresponds very

closely to a hierarchy of formal languages known as the

Chomsky Hierarchy (Chomsky 1956): random access to

memory yields the class of languages describable by con-

text-sensitive grammars, access to only the last item

remembered yields the context-free grammars, and no

access to memory yields the regular languages. Again,

expanding a grammar with new types of production rules

changes the level of the formal language hierarchy, moving

up a well-defined hierarchy.

The branch of theoretical computer science known as

computational complexity proves that restricting the num-

ber of steps or the amount of memory an automaton can use

also produces strict hierarchies of formal lan-

guages (Hartmanis and Stearns 1965). Thus, for example,

Turing machines that can run for a number of steps

bounded by an exponential function of the input size can

recognize languages that such machines bounded by a

polynomial number of steps cannot. Similarly, automata

that can access no more memory locations than some

exponential of the input size can recognize languages that

such automata with a polynomial bound cannot. Many of

the most important problems in computer science involve

understanding when different resource bounds or different

types of automata (such as deterministic versus nondeter-

ministic) produce genuine innovation, in the sense that one

variation can recognize languages that the other cannot.

For example, the famous P versus NP problem asks whe-

ther adding nondeterminism to polynomially bounded

Turing machines is an innovation or not. If it is, then the

hundreds of critically important practical problems in NP

cannot be solved by algorithms that run in a reasonable

amount of time (Garey and Johnson 1979; Cook 1971;

Karp 1972). Unfortunately, we do not know the answers to

most of these questions.

In summary, there are three lessons to learn from the-

oretical computer science that are relevant to this paper.

First, enumeration can indeed provide innovation, since

algorithms exist to enumerate some sets that no algorithm

can fully describe. But this fact requires the abstraction of

what an algorithm can do ‘‘in the limit’’, including the

possibility that the algorithm never halts. Which brings us

to the second lesson: computational complexity theory

does indeed provide a context in which one can prove that

certain variations in finite computations, such as allowing

exponentially more memory access, generate innovations.

Unfortunately, this theory breaks down precisely where it

becomes useful: with reasonable limits on the number of

steps or the amount of memory that a computation requires.

Therefore, theoretical computer science is a useful frame-

work in which to study open-ended innovation, but only in

an abstract, mathematical sense. In particular, it does not

currently directly explain open-ended innovation in phys-

ical systems such as computer simulations or biology.
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