
Neural Architecture Transfer
Zhichao Lu , Student Member, IEEE, Gautam Sreekumar , Erik Goodman , Wolfgang Banzhaf ,

Kalyanmoy Deb , Fellow, IEEE, and Vishnu Naresh Boddeti ,Member, IEEE

Abstract—Neural architecture search (NAS) has emerged as a promising avenue for automatically designing task-specific neural networks.

Existing NAS approaches require one complete search for each deployment specification of hardware or objective. This is a computationally

impractical endeavor given the potentially large number of application scenarios. In this paper, we proposeNeural Architecture Transfer (NAT)

to overcome this limitation. NAT is designed to efficiently generate task-specific custommodels that are competitive under multiple conflicting

objectives. To realize this goal we learn task-specific supernets fromwhich specialized subnets can be sampledwithout anyadditional training.

The key to our approach is an integrated online transfer learning andmany-objective evolutionary search procedure. A pre-trained supernet is

iteratively adaptedwhile simultaneously searching for task-specific subnets.We demonstrate the efficacy of NATon 11 benchmark image

classification tasks ranging from large-scalemulti-class to small-scale fine-grained datasets. In all cases, including ImageNet, NATNets

improve upon the state-of-the-art under mobile settings (� 600MMultiply-Adds). Surprisingly, small-scale fine-grained datasets benefit the

most fromNAT. At the same time, the architecture search and transfer is orders ofmagnitudemore efficient than existing NASmethods.

Overall, experimental evaluation indicates that, across diverse image classification tasks and computational objectives, NAT is an appreciably

more effective alternative to conventional transfer learning of fine-tuningweights of an existing network architecture learned on standard

datasets. Code is available at https://github.com/human-analysis/neural-architecture-transfer

Index Terms—Convolutional neural networks, neural architecture search, AutoML, transfer learning, evolutionary algorithms

Ç

1 INTRODUCTION

IMAGE classification is a fundamental task in computer
vision, where given a dataset and, possibly, multiple objec-

tives to optimize, one seeks to learn a model to classify
images. Solutions to address this problem fall into two catego-
ries: (a) Sufficient Data: A custom convolutional neural net-
work architecture is designed and its parameters are trained
from scratch using variants of stochastic gradient descent,
and (b) Insufficient Data: An existing architecture designed
on a large scale dataset, such as ImageNet [1], along with its
pre-trained weights (e.g., VGG [2], ResNet [3]), is fine-tuned
for the task at hand. These two approaches have emerged as
themainstays of present day computer vision.

Success of the aforementioned approaches is primarily
attributed to architectural advances in convolutional neural
networks. Initial efforts at designing neural architectures relied
on human ingenuity. Steady advances by skilled practitioners
has resulted in designs, such as AlexNet [4], VGG [2], GoogLe-
Net [5], ResNet [3], DenseNet [6] and many more, which have
led to performance gains on the ImageNet Large Scale Visual
Recognition Challenge [1]. In most other cases, a recent large
scale study [7] has shown that, across many tasks, transfer

learning by fine-tuning ImageNet pre-trained networks out-
performs networks that are trained from scratch on the same
data.

Moving beyond manually designed network architectures,
Neural Architecture Search (NAS) [8] seeks to automate this
process and find not only good architectures, but also their
associated weights for a given image classification task. This
goal has led to notable improvements in convolutional neural
network architectures on standard image classification bench-
marks, such as ImageNet, CIFAR-10 [9], CIFAR-100 [9] etc., in
terms of predictive performance, computational complexity
andmodel size. However, apart from transfer learning by fine-
tuning the weights, current NAS approaches have failed to
deliver new models for both weights and topology on custom
non-standard datasets. The key barrier to realizing the full
potential of NAS is the large data and computational require-
ments for employing existingNAS algorithms on new tasks.

In this paper, we introduce Neural Architecture Transfer
(NAT) to breach this barrier. Given an image classification
task, NAT obtains custom neural networks (both topology
and weights), optimized for possibly many conflicting objec-
tives, and does so without the steep computational burden
of running NAS for each new task from scratch. A single
run of NAT efficiently obtains multiple custom neural net-
works spanning the entire trade-off front of objectives.

Our solution builds upon the concept of a supernet [10]
which comprises of many subnets. All subnets are trained
simultaneously through weight sharing, and can be sampled
very efficiently. This procedure decouples the network train-
ing and the search phases of NAS. A many-objective1 search
can then be employed on top of the supernet to find all

� Zhichao Lu is with the Southern University of Science and Technology,
Shenzhen, Guangdong 518055, China. E-mail: luzc@sustech.edu.cn.

� Gautam Sreekumar, Erik Goodman, Wolfgang Banzhaf, Kalyanmoy Deb,
and Vishnu Naresh Boddeti are with the Michigan State University, East
Lansing, MI 48824 USA. E-mail: {sreekum1, goodman, banzhafw, kdeb,
vishnu}@msu.edu.

Manuscript received 1 May 2020; revised 28 Oct. 2020; accepted 31 Dec. 2020.
Date of publication 19 Jan. 2021; date of current version 4 Aug. 2021.
(Corresponding author: Vishnu Naresh Boddeti.)
Recommended for acceptance by H. J. Escalante, J. Vanschoren, W.-W. Tu,
Y. Yu, S. Escalera, N. Pillay, R. Qu, N. Houlsby, and T. Zhang.
Digital Object Identifier no. 10.1109/TPAMI.2021.3052758

1. Problems having more than three objectives are called many-
objective problems [11].

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021 2971

0162-8828 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4618-3573
https://orcid.org/0000-0002-4618-3573
https://orcid.org/0000-0002-4618-3573
https://orcid.org/0000-0002-4618-3573
https://orcid.org/0000-0002-4618-3573
https://orcid.org/0000-0003-4677-8240
https://orcid.org/0000-0003-4677-8240
https://orcid.org/0000-0003-4677-8240
https://orcid.org/0000-0003-4677-8240
https://orcid.org/0000-0003-4677-8240
https://orcid.org/0000-0002-2419-0692
https://orcid.org/0000-0002-2419-0692
https://orcid.org/0000-0002-2419-0692
https://orcid.org/0000-0002-2419-0692
https://orcid.org/0000-0002-2419-0692
https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0002-6382-3245
https://orcid.org/0000-0001-7402-9939
https://orcid.org/0000-0001-7402-9939
https://orcid.org/0000-0001-7402-9939
https://orcid.org/0000-0001-7402-9939
https://orcid.org/0000-0001-7402-9939
https://orcid.org/0000-0002-8918-9385
https://orcid.org/0000-0002-8918-9385
https://orcid.org/0000-0002-8918-9385
https://orcid.org/0000-0002-8918-9385
https://orcid.org/0000-0002-8918-9385
https://github.com/human-analysis/neural-architecture-transfer
mailto:luzc@sustech.edu.cn
mailto:sreekum1@msu.edu
mailto:goodman@msu.edu
mailto:banzhafw@msu.edu
mailto:kdeb@msu.edu
mailto:vishnu@msu.edu

network architectures that provide the best trade-off among
the objectives. However, training such supernets for each task
from scratch is very computationally and data intensive. The
key idea of NAT is to leverage an existing supernet and effi-
ciently transfer it into a task-specific supernet, whilst simulta-
neously searching for architectures that offer the best trade-off
between the objectives of interest. Therefore, unlike standard
supernet-based NAS, we combine supernet transfer learning
with the search process. At the conclusion of this process,
NAT returns (i) subnets that span the entire objective trade-off
front, and (ii) a task-specific supernet. The latter can now be
utilized for all future deployment-specific NAS, i.e., new and
different hardware or objectives, without any additional
training.

The core of NAT’s efficiency lies in only adapting the sub-
nets of the supernet that will lie on the efficient trade-off front
of the new dataset, instead of all possible subnets. But, the
structure of the corresponding subnets is unknown before
adaptation. We resolve this “chicken-and-egg problem” by
adopting an online procedure that alternates between the two
primary stages of NAT: (a) supernet adaptation of subnets that
are at the current trade-off front, and (b) evolutionary search for
subnets that span the many-objective trade-off front. A picto-
rial overview of the entireNATmethod is shown in Fig. 1.

In the adaptation stage, we first construct a layer-wise
empirical distribution from the promising subnets returned
by evolutionary search. Then, subnets sampled from this
distribution are fine-tuned. In the search stage, to improve
the efficiency of the search, we adopt a surrogate model to
quickly predict the objectives of any sampled subnet with-
out a full-blown and costly evaluation. Furthermore, the
predictor model itself is also learned online from previously
evaluated subnets. We alternate between these two stages
until our computational budget2 is exhausted. The key con-
tributions of this paper are:

– We introduce Neural Architecture Transfer as a NAS-
powered alternative to fine-tuning based transfer
learning. NAT is powered by a simple, yet highly
effective online supernet fine-tuning and online
accuracy predicting surrogate model.

– We demonstrate the scalability and practicality of
NAT on multiple datasets corresponding to different
scenarios; large-scale multi-class (ImageNet [1],
CINIC-10 [12]), medium-scale multi-class (CIFAR-10,
CIFAR-100 [9]), small-scale multi-class (STL-10 [13]),
large-scale fine-grained (Food-101 [14]), medium-
scale fine-grained (Stanford Cars [15], FGVC Aircraft
[16]) and small-scale fine-grained (DTD [17], Oxford-
IIIT Pets [18], Oxford Flowers102 [19]) datasets.

– Under mobile settings (�600M MAdds), NATNets
lead to state-of-the-art performance across all these
tasks. For instance, on ImageNet, NATNet achieves
a Top-1 accuracy of 80.5 percent at 600MMAdds.

– We also demonstrate the utility of NAT in searching
for a backbone for semantic segmentation, a dense
prediction task. On Cityscapes [20], NAT matches
the mIoU performance of Auto-DeepLab [21] while
using 4� fewer MAdds.

– Finally we demonstrate the scalability and utility of
NAT across many objectives and on dense image
prediction. Optimizing accuracy, model size and one
of MAdds, CPU or GPU latency, NATNets dominate
MobileNetV3 [22] across all objectives. We also con-
sider a 12 objective problem of finding a common
architecture across eleven datasets while minimizing
MAdds. The best trade-off NATNet dominates all
models across these datasets under mobile settings.

2 RELATED WORK

Recent years havewitnessed growing interests in neural archi-
tecture search. The promise of being able to automatically
search for task-dependent network architectures is particularly
appealing as deep neural networks are widely deployed in
diverse applications and computational environments. Early
methods [33], [34] made efforts to simultaneously evolve the
topology of neural networks along with weights and hyper-
parameters. These methods perform competitively with hand-
crafted networks on simple control tasks with shallow fully
connected networks. Recent efforts [35] primarily focus on
designing deep convolutional neural network architectures.

The development of NAS largely happened in two phases.
Starting from NASNet [8], the focus of the first wave of meth-
ods was primarily on improving the predictive accuracy of
CNNs including Block-QNN [36], Hierarchical NAS [37], and

Fig. 1. Overview: Given a dataset and objectives to optimize, NAT designs custom architectures spanning the objective trade-off front. NAT com-
prises of two main components, supernet adaptation and evolutionary search, that are iteratively executed. NATalso uses an online accuracy predic-
tor model to improve its computational efficiency.

2. We manually set the computational budget to a maximum of 1
day on a 8-GPU (NVIDIA 2080Ti) server. This is equivalent to the
computational resources available to a small lab.

2972 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

AmoebaNet [38], etc. These methods relied on Reinforcement
Learning (RL) or Evolutionary Algorithm (EA) to search for an
optimal modular structure that is repeatedly stacked together
to form a network architecture. The search was typically car-
ried out on relatively small-scale datasets (e.g., CIFAR-10/100
[9]), following which the best architectures were transferred to
ImageNet for validation. A steady stream of improvements
over state-of-the-art on numerous datasets were reported. The
focus of the second wave of NAS methods was on improving
the search efficiency.

A few methods have also been proposed to adapt NAS
to other scenarios. These include meta-learning based
approaches [39], [40] with application to few-shot learning
tasks. XferNAS [41] and EAT-NAS [42] illustrate how architec-
tures can be transferred between similar datasets or from
smaller to larger datasets. Some approaches [43], [44] proposed
RL-based NAS methods that search on multiple tasks during
training and transfer the learned search strategy, as opposed
to searched networks, to new tasks at inference. Next, we pro-
vide short overviews onmethods that are closely related to the
technical approach in this paper. Table 1 provides a compara-
tive overviewofNAT to existingNAS approaches.

Performance Prediction. Evaluating the performance of an
architecture requires a computationally intensive process
of iteratively optimizing model weights. To alleviate this
computational burden, regression models have been learned
to predict an architecture’s performance without actually
training it. Baker et al. [45] use a radial basis function to esti-
mate the final accuracy of architectures from its accuracy in
the first 25 percent of training iterations. PNAS [23] uses a
multilayer perceptron (MLP) and a recurrent neural network
to estimate the expected improvement in accuracy if the cur-
rent modular structure (which is later stacked together to
form a network) is expanded with a new branch. Conceptu-
ally, both of these methods seek to learn a prediction model
that extrapolate (rather than interpolate), resulting in poor
correlation in prediction. OnceForAll [31] also uses a MLP to
predict accuracy from architecture encoding. However, the
model is trained offline for the entire search space, thereby
requiring a large number of samples for learning (16K sam-
ples -> 2 GPU-days for just constructing the surrogate

model). Instead of using uniformly sampled architectures to
train the prediction model to approximate the entire land-
scape, ChamNet [29] trains many architectures through full
SGD and selects only 300 samples of high accuracy with
diverse efficiency (Multiply-adds, Latency, Energy) to train a
prediction model offline. In contrast, NAT learns a prediction
model in an online fashion only on the samples at the current
trade-off front as we explore the search space. Such an
approach only needs to interpolate over amuch smaller space
of architectures constituting the current trade-off front. Con-
sequently, this procedure significantly improves both the
accuracy and the sample complexity of constructing the pre-
dictionmodel.

Weight Sharing. Approaches in this category involve train-
ing a supernet that contains all searchable architectures as its
subnets. They can be broadly classified into two categories
depending on whether the supernet training is coupled with
architecture search or decoupled into a two-stage process.
Approaches of the former kind [24], [26], [46] are computation-
ally efficient but return sub-optimal models. Numerous stud-
ies [47], [48], [49] allude to weak correlation between
performance at the search and final evaluation stages. Meth-
ods of the latter kind [10], [31], [50] use performance of subnets
(obtained by sampling the trained supernet) as a metric to
select architectures during search. However, training a super-
net beforehand for each new task is computationally prohibi-
tive. In this work, we take an integrated approach where we
train a supernet on large-scale datasets (e.g., ImageNet) once
and couple it with our architecture search to quickly adapt it to
a new task. An elaborated discussion connecting our method
to existing approaches is provided in the supplementary
materials, which can be found on the Computer Society Dig-
ital Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2021.3052758.

Multi-Objective NAS.Methods that considermultiple objec-
tives for designing hardware specific models have also been
developed. The objectives are optimized either through (i)
scalarization, or (ii) Pareto-based solutions. The former
include, ProxylessNAS [26], MnasNet [27], ChamNet [29],
MobileNetV3 [22], and FBNetV2 [32] which use a scalarized
objective or an additional constraint to encourage high

TABLE 1
Comparison of NATand Existing NAS Methods

y indicates methods that scalarize multiple objectives into one composite objective or as an additional constraint, see text for details.

LU ETAL.: NEURAL ARCHITECTURE TRANSFER 2973

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3052758
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2021.3052758

accuracy and penalize compute inefficiency at the same time,
e.g., maximize Acc � ðLatency=TargetÞ�0:07. Conceptually, the
search of architectures is still guided by a single objective and
only one architecture is obtained per search. Empirically,mul-
tiple runs with different weighting of the objectives are
needed to find an architecture with the desired trade-off, or
multiple architectures with different complexities. Methods
in the latter category include [25], [51], [52], [53], [54] and aim
to approximate the entire Pareto-efficient frontier simulta-
neously—i.e. multiple architectures with different complexi-
ties are obtained in a single run. These approaches rely on
heuristics (e.g., EA) to efficiently navigate the search space
allowing practitioners to visualize the trade-off between the
objectives and to choose a suitable network a posteriori to the
search. NAT falls into the latter category and uses an accuracy
predictionmodel andweight sharing for efficient architecture
transfer to new tasks.

3 PROPOSED APPROACH

Neural Architecture Transfer consists of three main compo-
nents: an accuracy predictor, an evolutionary search routine,
and a supernet. NAT starts with an archiveA of architectures
(subnets) created by uniform sampling from our search space.
We evaluate the performance fi of each subnet (aai) using
weights inherited from the supernet. The accuracy predictor
is then constructed from ðaai; fiÞ pairs which (jointly with any
additional objectives provided by the user) drives the subse-
quent many-objective evolutionary search towards optimal
architectures. Promising architectures at the conclusion of the
evolutionary process are added to the archiveA. The (partial)
weights of the supernet corresponding to the top-ranked sub-
nets in the archive are fine-tuned. NAT repeats this process
for a pre-specified number of iterations. At the conclusion, we
output both the archive and the task-specific supernet. Net-
works that offer the best trade-off among the objectives can be
post-selected from the archive. Detailed descriptions of each
component ofNAT are provided in the following subsections.
Fig. 1 and Algorithm 1 provide an overview of our entire
approach.

3.1 Problem Formulation

The problem of neural architecture search for a target data-
set D ¼ fDtrn;Dvld;Dtstgwith many objectives can be formu-
lated as the following bilevel optimization problem [55],

minimize FF ðaaÞ ¼ �
f1ðaa;ww�ðaaÞÞ; . . . ; fmðaa;ww�ðaaÞÞ

�T
;

subject to ww�ðaaÞ 2 argmin Lðww; aaÞ;
aa 2 Va; ww 2 Vw;

(1)

where the upper-level variable aa defines a candidate archi-
tecture, and the lower-level variable wwðaaÞ denotes its associ-
ated weights. Lðww; aaÞ is the cross-entropy loss on the
training data Dtrn for an architecture aa. FF : V! Rm consti-
tutes m (user-) desired, possibly competing, objectives—
e.g., predictive performance on validation dataDvld, number
of parameters (#Params), multiply-adds (#MAdds), latency
/ power consumption / memory footprint on specific hard-
ware etc.

The bi-level optimization is typically solved in an itera-
tive fashion, with an inner optimization loop over the
weights of the network for a given architecture, and an
outer optimization loop over the network architectures
themselves. The computational challenge of solving this
problem stems from both the upper and lower level optimi-
zation. Learning optimal weights of a network in the lower
level necessitates costly iterations of stochastic gradient
descent over multiple epochs. Similarly, searching the opti-
mal architecture on the upper level is prohibitive due to the
discrete nature of the architecture description, size of search
space and our desire to optimize many, possibly conflicting,
objectives.

3.2 Search Space and Encoding

The search for optimal network architectures can be per-
formed over many different search spaces. The generality of
the chosen search space has a major influence on the quality
of results that are feasible. We adopt a modular design for
overall structure of the network, consisting of a stem, multi-
ple stages and a tail (see Fig. 2a). The stem and tail are com-
mon to all networks and not searched. Each stage in turn
comprises of multiple layers, and each layer itself is an
inverted residual bottleneck structure [56].

-Network. We search for the input image resolution and
the width multiplier (a factor that scales the # of output
channels of each layer uniformly [57]). Following previous
work [27], [28], [31], we segment the CNN architecture into
five sequentially connected stages. The stages gradually
reduce the feature map size and increase the number of
channels (Fig. 2a Left).

-Stage: We search over the number of layers, where only
the first layer uses stride 2 if the feature map size decreases,
and we allow each block to have minimum of two and max-
imum of four layers (Fig. 2aMiddle).

-Layer: We search over the expansion ratio (between the #
of output and input channels) of the first 1� 1 convolution
and the kernel size of the depth-wise separable convolution
(Fig. 2a Right).

Overall, we search over four primary hyperparameters of
CNNs i.e., the depth (# of layers), the width (# of channels),

2974 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

the kernel size, and the input resolution. The resulting vol-
ume of our search space is approximately 3:5� 1019 for
each combination of image resolution and width multiplier.

To encode these architectural choices, we use an integer
string of length 22, as shown in Fig. 2b. The first two values
represent the input image resolution and width multiplier,
respectively. The remaining 20 values denote the expansion
ratio and kernel size settings for each of the 20 layers. The
available options for expansion ratio and kernel size are [3,
4, 6] and [3, 5, 7], respectively. It is worth noting that we
sort the layer settings in ascending #MAdds order, which is
beneficial to the mutation operator used in our evolutionary
search algorithm.

3.3 Accuracy Predictor

The main computational bottleneck of NAS arises from the
nested nature of the bi-level optimization problem. The
inner optimization requires the weights of the subnets to be
thoroughly learned prior to evaluating its performance.
Methods like weight-sharing [31], [46], [50] allow sampled
subnets to inherit weights among themselves or from a
supernet, avoiding the time-consuming process (typically

requiring hours) of learning weights through SGD. How-
ever, standalone weight-sharing still requires inference on
validation data (typically requiring minutes) to assess per-
formance. Therefore, simply having to evaluate the subnets
can still render the overall process computationally prohibi-
tive for methods [8], [27], [38] that sample thousands of
architectures during search.

To mitigate the computational burden of fully evaluating
the subnets, we adopt a surrogate accuracy predictor that
regresses the performance of a sampled subnet without per-
forming training or inference. By learning a functional rela-
tion between the integer-strings (subnets in the encoded
space) and the corresponding performance, this approach
decouples the evaluation of an architecture from data-proc-
essing (including both SGD and inference). Consequently,
the evaluation time reduces from hours/minutes to sec-
onds. We illustrate this concept in Fig. 3. The effectiveness
of this idea, however, is critically dependent on the quality
of the surrogate model. Below we identify three desired
properties of such a model:

1) Reliable prediction: high rank-order correlation3

between predicted and true performance.
2) Consistent prediction: the quality of the prediction

should be consistent across different datasets.
3) Sample efficiency: minimizing the number of train-

ing examples necessary to construct an accurate pre-
dictor model, since each training sample requires
costly training and evaluation of a subnet.

Current approaches [23], [29], [31] that use surrogate
based accuracy predictors, however, do not satisfy property
(1) and (3) simultaneously. For instance, PNAS [23] uses
1,160 subnets to build the surrogate but only achieves a
rank-order correlation of 0.476. Similarly, OnceForAll [31]
uses 16,000 subnets to build the surrogate. The poor sample
complexity and rank-order correlation of these approaches,
is due to the offline learning of the surrogate model. Instead
of focusing on models that are at the trade-off front of the
objectives, these surrogate models are built for the entire
search space. Consequently, these methods require a signifi-
cantly larger and more complex surrogate model.

Fig. 2. The architectures in our search space are variants of Mobile-
NetV2 family of models [22], [27], [28], [56]. (a) Each networks consists
of five stages. Each stage has two to four layers. Each layer is an
inverted residual bottleneck block. The search space includes, input
image resolution (R), width multiplier (W), the number of layers in each
stage, the # of output channels (expansion ratio E) of the first 1� 1 con-
volution and the kernel size (K) of the depth-wise separable convolution
in each layer. (b) Networks are represented as 22-integer strings, where
the first two correspond to resolution and width multiplier, and the rest
correspond to the layers. Each value indicates a choice, e.g., the third
integer (L1) takes a value of “1” corresponds to using expansion ratio of
3 and kernel size of 3 in layer 1 of stage 1.

Fig. 3. Top Path: A typical process of evaluating an architecture in NAS
algorithms. Bottom Path: Accuracy predictor aims to bypass the time-
consuming components for evaluating a network’s performance by
directly regressing its accuracy f from aa (architecture in the encoded
space).

3. Low mean square error is also desirable, but not necessary since
the selection of architectures in the subsequent evolutionary search
compares relative performance between architectures.

LU ETAL.: NEURAL ARCHITECTURE TRANSFER 2975

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2. Accuracy Predictor (RBF Ensemble)

Input: Training dataX, training targets Y , ensemble sizeK
1 k 0 // initialize an counter.
2 pool ; // initialize a pool to store all models.
3 while k < K do
4 (~X; ~Y Þ randomly create a subset of the training data.
5 idx randomly pick a subset of the features in training

data.
6 rbf fit a RBF model from ~X½:; idx� and ~Y .
7 pool pool [(rbf, idx) // append the fitted model to the

pool.
8 k kþ 1
9 end
10 Return a pool ofK RBF models.

We overcome the aforementioned limitation by restrict-
ing the surrogate model to the search space that constitutes
the current objective trade-off. Such a solution significantly
reduces the sample complexity of the surrogate and
increases the reliability of its predictions. We adopt four
low-complexity predictors, namely, Gaussian Process (GP)
[29], Radial Basis Function (RBF) [45], Multilayer Perceptron
(MLP) [23], and Decision Tree (DT) [58]. Empirically, we
observe that RBFs are consistently better than the other
three models if the # of training samples is more than 100.
To further improve RBF’s performance, especially under a
high sample efficiency regime, we construct an ensemble of
RBF models. As outlined in Algorithm 2, each RBF model is
constructed with a subset of samples and features randomly
selected from the training instances. The correlation
between predicted accuracy and true accuracy from an
ensemble of 500 RBF models outperforms all other models
across all regimes. Fig. 4 compares the performance of the
different surrogate models we considered. Practically, we
observed that the RBF ensemble can be learned under a
minute.

3.4 Many-Objective Evolutionary Search

Given the accuracy predictor, we employ a customized evo-
lutionary algorithm (EA) to search for optimal architectures
that offer the best trade-off between many objectives. The
EA is an iterative process in which initial architectures,
selected from the archive of previously explored architec-
tures, are gradually improved as a group, referred to as a
population. In every generation (iteration), a group of off-
spring (i.e., new architectures) are created by applying

variations through crossover and mutation (described
below) operations on the most promising architectures, also
known as parents, found so far in the population. Every
member of the population, i.e., both parents and offspring,
competes for survival and reproduction (becoming a par-
ent) in each generation. See Fig. 1 (bottom right shaded in
green) for a pictorial overview, and Algorithm 3 for the
pseudocode.

Algorithm 3. Evolutionary Search

Input: Accuracy predictor Sf , additional objectives ~f , archive
of archsA, max. # of generationsG, population sizeK,
crossover probability pc, mutation probability pm.

1 g 0 // initialize an generation counter.
2 f SfðAÞ // compute accuracy of all archs in archive.
3 P Selection(A; f; ~fðAÞ;K) // initialize the parent popula-

tion with top-K ranked archs from A.
4 while g < G do
5 // choose parents through tournament selection for

mating.
6 P Binary Tournament Selection(P)
7 // create offspring population by crossover between

parents.
8 Q Crossover(P; pc)
9 // induce randomness to offspring population through

mutation.
10 Q Mutation(Q; pm)
11 R P [Q // merge parent and offspring population.
12 // survive the top-K archs to next generation.
13 P Selection(R;SfðRÞ; ~fðRÞ; K)
14 g gþ 1
15 end
16 Return parent population P .

Crossover exchanges information between two or more
population members to create two or more new members.
Designing an effective crossover between non-standard
solution representations can be difficult and has been
largely ignored by existing EA-based NAS algorithms [37],
[38], [59]. Here we adopt a customized, homogeneous cross-
over that uniformly picks integers from parent architectures
to create offspring architectures. This crossover operator
offers two properties: (1) it preserves common integers
shared between parents; and (2) it is free of additional
hyperparameters. Fig. 5a visualizes our implementation of
the crossover operation. We generate two offspring architec-
tures with each crossover, and an offspring population of
the same size as the parent population is generated in each
generation.

Mutation is a local operator that perturbs a solution to
produce a new solution in its vicinity. In this work, we use a
discretized version of the polynomial mutation (PM) opera-
tor [60] and apply it to every solution created by the cross-
over operator. For a given architecture aa, PM is carried out
integer-wise with probability pm, and the mutated ith inte-
ger, ai, of the mutated offspring is:

a0i ¼
ai þ ðð2uÞ1=ð1þhmÞ � 1Þðai � a

ðLÞ
i Þ; for u � 0:5;

ai þ ð1�
�
2ð1� uÞ�1=ð1þhmÞÞðaðUÞi � aiÞ; for u > 0:5

(
;

(2)

Fig. 4. Accuracy predictor performance as a function of training samples.
For each model, we show the mean and standard deviation of the Spear-
man rank correlation on 11 datasets (Table 3). The size of RBF ensem-
ble is 500.

2976 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

where u is a uniform random number in the interval ½0; 1�.
a
ðLÞ
i and a

ðUÞ
i are the lower and upper bounds of ai, respec-

tively. Each mutated value in an offspring is rounded to the
nearest integer. The PM operator inherits the parent-centric
convention, in which the offspring are intentionally created
around the parents. The centricity is controlled via an index
hyperparameter hm. In particular, high-values of hm tend to
create mutated offspring around the parent, and low-values
encourage mutated offspring to be further away from the
parent architecture. See Fig. 5b for a visualization of the
effect of hm. It is the worth noting that the PM operator was
originally proposed for continuous optimization where dis-
tances between variable values are naturally defined. In
contrast, in context of our encoding, our variables are cate-
gorical in nature, indicating a particular layer hyperpara-
meter. So we sort the searched subnets in ascending order
of #MAdds, such that hm now controls the difference in
#MAdds between the parent and the mutated offspring.

We apply PM to every member in the offspring popula-
tion (created from crossover). We then merge the mutated
offspring population with the parent population and select
the top half using many-objective selection operator
described in Algorithm 4. This procedure creates the parent
population for the next generation. We repeat this overall
process for a pre-specified number of generations and out-
put the parent population at the conclusion of the evolution.

3.5 Many-Objective Selection

In addition to high predictive accuracy, real-world appli-
cations demand NAS algorithms to simultaneously bal-
ance a few other conflicting objectives that are specific to
the deployment scenarios. For instance, mobile or embed-
ded devices often have restrictions in terms of model
size, multiply-adds, latency, power consumption, and
memory footprint. With no prior assumption on the cor-
relation among these objectives, a scalable (to the number
of objectives) selection is required to drive the search
towards the high dimensional Pareto front. In this work,
we adopt the reference point guided selection originally
proposed in NSGA-III [11], which has been shown to be
effective in handling problems with as many as 15 objec-
tives. In the remainder of this section, we provide an
overview of NSGA-III procedure and refer readers to the
original publication for more details.

Algorithm 4. Reference Point Based Selection

Input: A set of archs R, their objectives F , number of archs to
select N , reference directions Z.

1 // put archs into different fronts (rank levels) based on
domination.

2 ðF1; F2; . . .Þ non_dominated_sort(F)
3 S ;, i 1
4 while jSj þ jFij < N do S S [Fi; i iþ 1
5 FL Fi // next front is the split front where we cannot

accommodate all archs associated with it.
6 if jSj þ jFLj ¼ N then S S [FL

7 else
8 ð ~S; ~FLÞ Normalize(S; FL) // normalize the objectives

based the ideal and nadir points derived from R.
9 d compute orthogonal dist to Zi for each i
10 r count #associated solutions forZi based on d for each i.
11 // remaining archs from FL to fill up S.
12 S S [Niching(~FL, N � jSj, r, d)
13 end
14 Return S.

Domination is a widely-used partial ordering concept for
comparing two objective vectors. For a generic many-objec-
tive optimization problem: minaaaa f1ðaaÞ; . . . ; fmðaaÞf g, where
fið�Þ are the objectives (say, loss functions) to be optimized
and aa is the representation of a neural network architecture.
For two given solutions aa1 and aa2, solution aa1 is said to
dominate aa2 (i.e., aa1 	 aa2) if following conditions are
satisfied:

1) aa1 is no worse than aa2 for all objectives ðfiðaa1Þ �
fiðaa2Þ, 8i 2 f0; . . . ;mgÞ, and

2) aa1 is strictly better than aa2 in at least one objective 9
i 2 f0; . . . ;mg j fiðaa1Þ < fiðaa2ÞÞ.

A solution aai is said to be non-dominated if these conditions
hold against all the other solutions aaj (with j 6¼ i) in the
entire search space of aa.

With the above definition, we can sort solutions to different
ranks of domination, where solutions in the same rank are
non-dominated to each other, and there exists at least one solu-
tion in lower rank that dominates any solution in the higher
rank. Thus, a lower non-dominated ranked set is lexicographi-
cally better than a higher ranked set. This process is referred as
non_dominated_sort, and it is the first step in the selection pro-
cess. During the many-objective selection process, the lower
ranked sets are chosen one at a time until no more sets can be
included to maintain the population size. The final accepted
set may have to be split to choose only a part. For this purpose,
we choose the most diverse subset based on a diversity-main-
tainingmechanism.We first create a set of reference directions
from a set of uniformly distributed (in (m� 1)-dimensional
space) reference points in the unit simplex by using Das-and-
Dennismethod [61]. Thenwe associate each solution to a refer-
ence direction based on orthogonal distance of the solution
from the direction. Then, for every reference direction, we
choose the closest associated solution in a systematic manner
by adaptively computing a niche count r so that every refer-
ence direction gets an equal opportunity to choose a represen-
tative closest solution in the selected population. The
domination and diversity-preserving procedures are easily
scalable to any number of objectives and importantly are free

Fig. 5. (a) Crossover Operator: new offspring architectures are created
by recombining integers from two parent architectures. The probability of
choosing from either one of the parents is equal. (b) Mutation Operator:
histograms showing the probabilities of mutated values with current
value at 5 under different hyperparameter hm settings.

LU ETAL.: NEURAL ARCHITECTURE TRANSFER 2977

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

from any user-defined hyperparameter. See Algorithm 4 for
the pseudocode and Fig. 6 for a graphical illustration. A more
elaborated discussion on the necessity of the reference point
based selection is provided in the supplementary materials,
available online, under Section 2.

3.6 Supernet Adaptation

Instead of training every architectures sampled during search
from scratch, NAS with weight sharing [24], [46] inherits
weights frompreviously-trainednetworks or froma supernet.
Directly inheriting the weights obviates the need to optimize
the weights from scratch and speeds up the search from thou-
sands of GPUdays to only a few. In thiswork,we focus on the
supernet approach [10], [31]. It involves first training a large
network model (in which searchable architectures become
subnets) prior to the search. Then the performance of the sub-
nets, evaluated with the inherited weights, is used to guide
the selection of architectures during search. The key to the
success of this approach is that the performance of the subnets
with the inherited weights be highly correlated with the per-
formance of the same subnet when thoroughly trained from
scratch. Satisfying this desideratum necessitates that the
supernet weights be learned in such a way that all subnets are
optimized simultaneously.

Algorithm 5. Adapt Supernet

Input: Supernet Sw, archive of archs A, training data Dtrn,
number of epochs E.

1 e 0 // initialize an epoch counter.
2 Distr construct the distribution from A following Eq. (3).
3 while e < E do
4 for each batch in Dtrn do
5 subnet sample from Distr.
6 w set forward path of Sw according to subnet.
7 L compute cross-entropy loss on data batch.
8 rw compute the gradient by @L=@w
9 Sw one step of SGD.
10 end
11 e eþ 1
12 end
13 Return supernet Sw.

Existing methods [30], [53] attempt to achieve the above
goal by imposing fairness in training the supernet, where the
probabilities of training any particular subnet for each batch
of data is uniform in expectation. However, we argue that
simultaneously training all the subnets in the search space
is practically not feasible and, more importantly, not neces-
sary. First, it is evident from existing NAS approaches [26],
[62] that different objectives (#Params, #MAdds, latency on
different hardware, etc.) require different architectures in
order to be efficient. In other words, not all subnets are
equally important for the task at hand. Second, only a tiny
fraction4 of the search space can practically be explored by a
NAS algorithms.

Based on the aforementioned observations, we propose a
simple yet effective supernet training routine that only
focuses on training the subnets recommended by the evolu-
tionary search algorithm in Section 3.5. Specifically, we seek
to exploit the knowledge gained from the search process so
far. Recall that our algorithm uses an archive to keep track of
the promising architectures explored so far. For each value in
our architecture encoding, we construct a categorical distribu-
tion from architectures in the archive, where the probability
for ith integer taking on the j value is computed as:

pðXi ¼ jÞ ¼ # of architectures with option j at ith integer

total # of architectures in the archive
:

(3)

In each training step (batch of data), we sample an integer-
string from the above distribution5. We then activate the sub
parts of the supernet corresponding to the architecture
decoded from the integer-string. Only weights corresponding
to the activated sub parts in the supernet will be updated in
each step. See Algorithm 5 for pseudocode. A more in-depth
discussion connecting our proposed approach to the existing
supernet-based NAS approaches is provided in the supple-
mentarymaterials, available online, under Section 1.

4 EXPERIMENTAL EVALUATION

In this section, we present experimental results to evaluate
the efficacy of Neural Architecture Transfer on multiple image
classification tasks. In addition, we also investigate the scal-
ability of our approach to more than two objectives. For all
the experiments in this section, we use the same set of
hyperparmaters (see Table 2) for the different components
of NAT. These choices were guided by the ablation studies
described in Section 5.

4.1 Datasets

We consider eleven image classification datasets for evalua-
tion with sample size varying from 2,040 to 180,000 images
(20 to 18,000 images per class; Table 3). These datasets span
a wide variety of image classification tasks, including super-
ordinate-level recognition (ImageNet [1], CIFAR-10 [9],
CIFAR-100 [9], CINIC-10 [12], STL-10 [13]); fine-grained rec-
ognition (Food-101 [14], Stanford Cars [15], FGVC Aircraft

Fig. 6. (a) An example (assuming minimization of all objectives) of
the selection process in Algo 4: We first create reference directions
Z by joining reference points with the ideal solution (origin). Then
through non_dominated_sort, three non-dominated solutions are identi-
fied, associated with reference directions Zð1Þ, Zð3Þ and Zð5Þ. We then
select the remaining solutions by the orthogonal distances to the refer-
ence directions with no associated solutions—i.e. Zð2Þ and Zð4Þ. This
selection is scalable to larger # of objectives. A tri-objective example is
shown in (b).

4. For example, AmoebaNet [38] samples a large number of 27K
architectures which is still only about 10�13 percent of its search space.

5. A visualization of such distributions is shown in Fig. 3 of supple-
mentary material, available online.

2978 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

[16], Oxford-IIIT Pets [18], Oxford Flowers102 [19]); and tex-
ture classification (DTD [17]). We use the ImageNet dataset
for training the supernet, and use the other ten datasets for
architecture transfer.

4.2 Supernet Preparation

Our supernet is constructed by setting the architecture
encoding at the maximum value, i.e. four layers in each
stage and every layer uses expand ratio of six and kernel
size of seven. Adapting subnets of a supernet with ran-
domly initialized weights leads to training instability and
large variance in its performance. Therefore, we warm-up
the supernet weights on ImageNet following the progressive
shrinking algorithm [31], where the supernet is first trained
at full-scale, with subnets corresponding to different
options (expand ratio, kernel size, # of layers) being gradu-
ally activated during the training process. This procedure,
which takes about 6 days on a server with eight V100 GPUs,
is optimized with only the cross-entropy loss i.e., a single
objective. We note that supernet preparation expense is a
one-time cost that amortizes over any subsequent transfer
to different datasets and objective combinations we show in
the following subsections.

4.3 ImageNet Classification

Before we evaluate our approach for architecture transfer to
other datasets, we first validate its effectiveness on the
ImageNet-1K dataset. This experiment evaluates the effec-
tiveness of NAT in adapting and searching for architectures
that span trade-off between two objectives. For this experi-
ment, we consider accuracy and #MAdds as the two objec-
tive of interest. We randomly sample 50,000 images from
the original ImageNet training set as the validation set to
guide the architecture search. We run NAT for 30 iterations,
and from the final archive of architectures, we select four
models ranging from 200M MAdds to 600M MAdds (for
high-end mobile devices). Following [31], we fine-tune6

each model to further boost the performance. Our fine-tune
training largely follows [27]: RMSProp optimizer with
decay 0.9 and momentum 0.9; batch normalization momen-
tum 0.99; weight decay 1e-5. We use a batch size of 512 and

an initial learning rate of 0.012 that gradually reduces to
zero following the cosine annealing schedule. Our regulari-
zation settings are similar as in [28]: we use augmentation
policy [63], drop connect ratio 0.2, and dropout ratio 0.2.

Table 4 shows the performance of NAT models obtained
through bi-objective optimization of maximizing accuracy
and minimizing #MAdds. Our models, referred to as NAT-
M{1,2,3,4}, are in ascending order of #MAdds (Fig. 7). Fig. 8
shows the full #MAdds-accuracy trade-off curve compari-
son between NAT and existing NAS methods.

Results indicate that NATNets completely dominate (i.e.
better in both #MAdds and accuracy) all existing designs,
both manual and from other NAS algorithms, under mobile
settings (�600M MAdds). Compared to manually. designed
networks, NAT is noticeably more efficient. NAT-M1 is 2.3
percent and 1.5 percent more accurate than MobileNetV3 [22]
and FBNetV2-F4 [32] respectively, while being equivalent in
efficiency (i.e. #MAdds, CPU and GPU latency). Further-
more, NATNets are consistently 6 percent more accurate than
MobileNetV2 [56] scaled by width multiplier from 200M to
600M #MAdds. Our largest model, NAT-M4, achieves a
new state-of-the-art ImageNet top-1 accuracy of 80.5 percent
under mobile settings (�600M #MAdds). Interestingly, even
though this experiment did not explicitly optimize for CPU
or GPU latency, NATNets are faster than those (MobileNet-
V3 [22], MNasNet [27]) that explicitly do optimize for
latency.

4.4 Scalability to Datasets

Existing NAS approaches are rarely applied to datasets
beyond standard ones (i.e. CIFAR-10 [9] and ImageNet [1]),
where the classification task is at superordinate-level and
the # of training images are sufficiently large. Instead, they
adopt a conventional transfer learning setup [7], in which
the architectures found by searching on standard bench-
mark datasets are transferred as is, with weights fine-tuned
to new datasets. We argue that such a process is conceptu-
ally contradictory to the goal of NAS. The architectures
transferred from standard datasets are sub-optimal either
with respect to accuracy, efficiency or both. On the other
hand, by transferring both architecture and weights NAT
can indeed design bespoke models for each dataset.

We evaluated NAT on ten image classification datasets
(see Table 3) that present different challenges in terms of
diversity in classes (superordinate versus fine-grained) and
size of training set (large versus small). For each dataset, we
run NAT with two objectives: maximize top-1 accuracy on

TABLE 2
Hyperparameter Settings

Category Parameter Setting

Global Archive size 300
Number of iterations 30

Accuracy predictor Train size 100
Ensemble size 500

Evolutionary search Population size 100
Number of generations per iteration 100
Crossover probability 0.9
Mutation probability 0.1
Mutation index hm 1.0

Supernet Number of epochs per iteration 5

TABLE 3
Benchmark Datasets for Evaluation

6. Section 5.5 studies the impact of this fine-tuning step.

LU ETAL.: NEURAL ARCHITECTURE TRANSFER 2979

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

validation data (20 percent randomly separated from the
training set) and minimize #MAdds. We start from the
supernet trained on ImageNet (which is created once before
all experiments; see Section 4.2) and adapt it to the new
dataset. During this procedure, the last linear layer is reset
depending on the number of categories in the new dataset.
NAT is now applied for a total of 30 iterations. In each itera-
tion the supernet is adapted for 5 epochs using SGD with a
momentum of 0.9. The learning rate is initialized at 0.01 and
annealed to zero in 150 epochs (30 iterations with five
epochs in each). All hyperparameters are set at default

values from Table 2. For each dataset, the overall NAT pro-
cess takes slightly under a day on a server with eight 2080Ti
GPUs.

Fig. 9 shows the accuracy and #MAdds trade-off for each
dataset across a wide range of models, including NATNets,
existing NAS and hand-designed models. Across all datasets,
NATNets consistently achieve better accuracy while being an
order of magnitude more efficient (#MAdds) than existing
models, suggesting that searching directly on the targeted
datasets is a more effective alternative to the conventional
transfer learning that fine-tunes weights of architectures
learned on standard datasets (i.e. ImageNet and CIFAR-10).
Under mobile settings (�600M), NATNets achieve the state-
of-the-art on these datasets, and a new state-of-the-art accuracy
on both STL-10 [13] and CINIC-107 [12] datasets. Surprisingly,
on small scale datasets e.g., Oxford Flowers102 [19], Oxford-
IIIT Pets [18], DTD [17] and STL-10 [13], we observe that NAT-
Nets are significantly more effective than conventional fine-
tuning. Even on fine-grained datasets such as Stanford Cars
and FGVC aircraft, where conventional fine-tuning did not
improve upon training from scratch, NATNets improve accu-
racywhile also being significantlymore efficient.

Fig. 10 shows a visualization of architectures with 350M
MAdds for each dataset. The lack of similarity in the net-
works suggest that different datasets require different archi-
tectures to be efficient in accuracy-MAdds, and NAT is able
to generate these customized networks for each dataset.

TABLE 4
ImageNet-1K Classification [1]: NATNets Comparison With Manual and Automated

Design of Efficient Convolutional Neural Networks

Model Method #Params #Multi-Adds CPU Lat (ms) GPU Lat (ms) Top-1 Acc (%) Top-5 Acc (%)

NAT-M1 WS+EA 6.0M 225M 9.1 30 77.5 93.5
MobileNetV2 [56] manual 3.5M 300M 8.3 23 72.0 91.0
SPOS NAS [30] WS+EA 3.4M 328M - - 74.7 92.0
ProxylessNAS [26] RL/gradient 4.0M 465M 8.5 27 75.1 92.5
MnasNet-A1 [27] RL 3.9M 312M 9.3 31 75.2 92.5
MobileNetV3 [22] RL/NetAdapt 5.4M 219M 10.6 33 75.2 -
MUXNet-m [54] EA 3.4M 218M 14.7 42 75.3 92.5
FBNetV2-F4 [32] gradient 7.0M 238M 15.6 44 76.0 -

NAT-M2 WS+EA 7.7M 312M 11.4 37 78.6 94.3
MUXNet-l [54] EA 4.0M 318M 19.2 74 76.6 93.2
EfficientNet-B0 [28] RL/scaling 5.3M 390M 14.4 46 77.1 93.2
AtomNAS-C+ [64] WS+shrinkage 5.9M 363M - - 77.6 93.5
AutoNL-L [65] gradient 5.6M 353M - - 77.7 93.7
DNA-c [66] gradient 5.3M 466M 14.5 67 77.8 93.7

NAT-M3 WS+EA 9.1M 490M 16.1 62 79.9 94.9
ResNet-152 [3] manual 60M 11.3B 66.7 176 77.8 93.8
MixNet-L [67] RL 7.3M 565M 29.4 105 78.9 94.2
EfficientNet-B1 [28] RL/scaling 7.8M 700M 19.5 67 79.1 94.4

NAT-M4 WS+EA 9.1M 0.6B 17.3 78 80.5 95.2
BigNASModel-L [68] WS 6.4M 0.6B - - 79.5 -
OnceForAll [31] WS+EA 9.1M 0.6B 16.5 72 80.0 94.9
Inception-v4 [69] manual 48M 13B 84.6 206 80.0 95.0
Inception-ResNet-v2 [69] manual 56M 13B 99.1 289 80.1 95.1

Models are grouped into sections for better visualization. Our results are underlined and the best result in each section is in bold. CPU latency (batchsize=1) is
measured on Intel i7-8700K and GPU latency (batchsize=64) is measured on 1080Ti. “WS” stands for weight sharing. All methods are under single crop and sin-
gle model condition, without any additional data.

Fig. 7. ImageNet Architectures from Trade-Off Front. 7. According to [70] for STL-10, and [71] for CINIC-10.

2980 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

Additional visualization of architectures searched on all
datasets is provided in supplementary materials, available
online, under Section 3.

4.5 Scalability to Objectives

Practical applications of NAS can rarely be considered from
the point of view of a single objective, and most often, they
must be evaluated from many different, possibly compet-
ing, objectives. We demonstrate the scalability of NAT to
more than two objectives, and evaluate its effectiveness.

We use NAT to simultaneously optimize for three objec-
tives—namely, model accuracy on ImageNet, model size
(#params), and model computational efficiency. We con-
sider three different metrics to quantify computational

efficiency—#MAdds, CPU latency, and GPU latency. In
total, we run three instances of three-objective search—i.e.
maximize accuracy, minimize #params, and minimize one
of #MAdds, CPU latency or GPU latency. We follow the set-
tings from the ImageNet experiment in Section 4.3, except
the fine-tuning step.

After obtaining the non-dominated (trade-off) solutions,
we first visualize the objectives in Fig. 11. We observe that
Pareto surfaces emerge at higher model complexity regime
(i.e. high #params, #MAdds, etc.), shown in the 3D scatter
plot in the top row, suggesting that trade-offs exist between
model size (#params) and model efficiency (#MAdds and
latency). In other words, #params and {#MAdds, CPU, GPU
latency} are not completely correlated—e.g., a model with a
fewer #params is not necessarily more efficient in #MAdds
or latency than another model with more #params. This is
one of the advantages of using a many-objective optimiza-
tion algorithm compared to optimizing a single scalarized
objective (such, as a weighted-sum of objectives [26], [27]).

Fig. 11 visualizes, in 2D, the top-1 accuracy as a trade-off
with each one of the four considered efficiency metrics
in the bottom row. The 2D projection is obtained by ignor-
ing the third objective. For better visualization we only
show the architectures that are close to the performance
trade-off of MobilNetV3 [22]. NATNets obtained directly
from the three-objective search i.e., before any fine-tuning
of their weights, consistently outperform MobileNetV3 on
ImageNet along all the objectives (top-1 accuracy, #params,
#MAdds, CPU and GPU latency). Additionally, we compare
to MUXNets [54] which are also obtained from a three-
objective NAS optimizing {top-1 accuracy, #params, and
#MAdds}. However, MUXNets adopt a search space that is

Fig. 8. MAdds versus ImageNet Accuracy. NATNets outperform other
models in both objectives. In particular, NAT-M4 achieves a new state-
of-the-art top-1 accuracy of 80.5 percent under mobile setting (�600M
MAdds). NAT-M1 improves MobileNetV3 top-1 accuracy by 2.3 percent
with similar #MAdds.

Fig. 9.MAdds versus Accuracy trade-off curves comparing NATand existing architectures on a diverse set of datasets. The datasets are arranged in
ascending order of training set size. Methods shown in the legend pre-train on ImageNet and fine-tune the weights on the target dataset. Methods
with names annotated in sub-figures train from scratch or use external training data.

LU ETAL.: NEURAL ARCHITECTURE TRANSFER 2981

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

specifically tailored for reducing model size. Therefore, in
comparison to MUXNets, we observe that NATNets per-
form favourably on all the remaining three efficiency met-
rics, except for #params. Primarily driven by curiosity in
terms of pushing the scalability of our approach with
respect to number of objectives, we provide an application
to 12 objective problem in the supplementary materials,
available online, under Section 6.

4.6 Utility on Dense Image Prediction

Dense image prediction is another series of important com-
puter vision tasks, that assigns a label to each pixel in the
input image [72], [73]. Success in these tasks relies on both
feature extraction via a backbone CNN, e.g., ResNet [3], and
feature aggregation, e.g., FPN [74], at multiple scales. In this
section, we use NAT to design efficient backbone feature
extractors for semantic segmentation, to demonstrate its
utility beyond image classification.

Similar to previous studies, we start from the supernet
trained on ImageNet (which is created once before all
experiments; see Section 4.2). We remove the last classifica-
tion layer and pair it with the BiSeNet segmentation heads
[75], a lightweight semantic segmentation framework for
real-time performance. We modify the searched input reso-
lutions from [192, ..., 256] to [512, ..., 1280] and keep other
searched options the same as before. NAT is applied to min-
imize #MAdds and maximize mIoU on validation data (20
percent randomly sampled from the training set) for 20 iter-
ations. In each iteration, the supernet is adapted for 2K itera-
tions using SGD with a momentum of 0.9 and weight decay
of 5� 10�4. We use a batch size of eight for each GPU. We
use an initial learning rate of 0.01 and follow the “poly”
learning rate schedule from the original BiSeNet [75], in

Fig. 10. Efficient architectures (350M MAdds) obtained by NAT on ten
diverse image classification datasets.

Fig. 11. Top row: NATNets obtained from tri-objective search to maximize ImageNet top-1 accuracy, minimize model size (#Params), and minimize
{#MAdds, CPU latency, GPU latency} from left to right. Pareto surfaces emerge at higher model complexity regime (i.e. top right corner) suggesting
that trade-offs exist between model size (#params) and model efficiency (#MAdds and latency). Bottom row: 2D projections from above 3D scatter,
showing top-1 accuracy versus each of the four efficiency related measurements. The first two 2D projections are from the first 3D scatter, and the
remaining two 2D projections are from the second and third 3D scatters, respectively. To better visualize (the comparison with MobileNetV3 [22] and
MUXNet [54]), partial solutions from the non-dominated frontiers are shown. All top-1 accuracy shown are without fine-tuning.

2982 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

which the initial learning rate is multiplied by ð1�
iter

max iterÞ0:9 in each iteration. All other hyperparameters are
set at default values from Table 2. On the Cityscapes dataset
[20], the overall NAT process takes a day on a server with
six Titan RTX GPUs.

Fig. 12 compares the mIoU-MAdds trade-off obtained by
NAT and the original BiSeNet [75] on the Cityscapes dataset.
Empirically, we observe that NAT based backbones consis-
tently outperform the original BiSeNets, which are based on
ResNets. To realize the full potential of the searched NAT-
Nets, we further fine-tune the obtained models for 4K itera-
tions. As shown in Table 5, the resulting NAT model yields
comparable performance against state-of-the-art methods,

including PSPNet [76], DeepLabv3 [77], Auto-DeepLab-S
[21], while being 4x - 28xmore efficient in #Madds.

5 ABLATION STUDY

In this section, we provide additional experiments towards
quantifying the impacts of the main components introduced
in NAT and hyperparameter analysis.

5.1 Accuracy Predictor Performance

In this subsection, we assess the effectiveness of different
accuracy predictor models. We first uniformly sampled 350
architectures from our search space and trained them using
SGD for 150 epochs on ImageNet. Each one of them is fine-
tuned for 50 epochs on the other ten datasets (Table 3).
From the 350 pairs of architectures and top-1 accuracy com-
puted on each dataset, we reserved a subset (randomly cho-
sen) of 50 pairs for testing, and the remaining 300 pairs are
then available for training the predictor models.

Fig. 4 compares the mean (over 11 datasets) Spearman
rank correlation between the predicted and the true accu-
racy for each accuracy predictor as the training sample size
is varied from 50 to 300. Empirically, we observe that radial
basis function (RBF) has higher Spearman rank correlation
compared to the other three models. The proposed RBF
ensemble model further improves performance over the
standalone RBF model across all training sample size
regimes. Fig. 13 shows a visualization of the comparative
performance of predictor models on different datasets.
From the trade-off perspective of minimizing number of
training examples (which reduces the overall computational
cost) and maximizing Spearman rank correlation in predic-
tion (which improves the accuracy in ranking architectures
during search), we chose the RBF ensemble as our accuracy
predictor model and a training size of 100 for all our
experiments.

5.2 Search Efficiency

The overall computation cost consumed by a NAS algorithm
can be factored into three phases: (1)Prior-search: Cost incurred
prior to architecture search, e.g., training supernet in case of
one-shot approaches [10], [31] or constructing accuracy predic-
tor [29], etc; (2) During-search: Cost associated with measuring
the performance of candidate architectures sampled during

Fig. 12. MAdds versus Cityscapes mIoU. NAT obtained backbone fea-
ture extractors (green curve) significantly outperform the original BiSe-
Net, which are based on ResNets (R18 - R152). With further fine-tuning
of 4K iterations, NAT achieves the state-of-the-art performance (red
curve).

TABLE 5
Cityscapes Semantic Segmentation [20]: All Results are

Based on Single-Scale Inputs From Validation Set

Method #Params #Multi-Adds mIoU (%)

BiSeNet [75] 13.4M 67B 74.8
PSPNet [76] 65.9M 2,017B 78.4
DeepLabv3+ [77] 43.5M 1,551B 79.6
Auto-DeepLab-S [21] 10.2M 333B 79.7

NAT + BiSeNet (ours) 8.8M 73B 79.7

Fig. 13. Top row: Spearman rank correlation between predicted accuracy and true accuracy of different surrogate models across many datasets.
Each accuracy predictor is constructed from 250 samples (trained architectures). Error bars show mean and standard deviation over ten runs. Bot-
tom row: Goodness of fit visualization of RBF ensemble, the best accuracy predictor.

LU ETAL.: NEURAL ARCHITECTURE TRANSFER 2983

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

search through inference. It also includes the cost of training
the supernet in case it is coupled with the search, like in [24]
and NAT; (3) Post-search: Cost associated with choosing a final
architecture, and/or fine-tuning/re-training the final architec-
tures from scratch. For comparison, we select representative
NAS algorithms, including those based on reinforcement
learning (RL), gradients, evolutionary algorithm (EA), and
weight sharing (WS). Table 6 shows results for ImageNet and
CIFAR-10. The former is the dataset on which the supernet is
trained and the latter is a proxy for transfer learning to a non-
standard dataset. NAT consistently achieves better perfor-
mance, both in terms of top-1 accuracy and model efficiency
(e.g., #MAdds), compared to the baselines while computa-
tional cost is similar or lower. The primary computational cost
of NAT is the prior-search training of supernet for 1200 hours.
Weemphasize, again, that it is a one-time cost that is amortized
across all subsequent deployment scenarios (e.g., 10 additional
datasets in Section 4.4).

Comparing the search phase contribution to the success
of different NAS algorithms is challenging and ambiguous
due to substantial disparities in search spaces and training
procedures. So, we conduct the following controlled experi-
ment where we replace only the evolutionary search com-
ponent in the NAT pipeline with (1) a random search that
uniformly samples (with possible repetition) from the
search space, and (2) NSGANet [51], another multi-objective
EA-based NAS algorithm. This experiment is under a bi-
objective setup: maximize top-1 accuracy and minimize
#MAdds. We run each method five times on three datasets
to capture the variance in performance due to inherent
stochasticity in the optimization initialization. We use
hypervolume [78], a widely-used metric for comparing
algorithms under multiple objectives, as the evaluation met-
ric. Fig. 14 shows the mean and the standard deviation of
the hypervolume achieved by each method. The evolution-
ary search component in NAT is 3� - 5� more sample effi-
cient than the baselines for the same hypervolume.

5.3 Analysis of Crossover

Crossover is a standard operator in evolutionary algo-
rithms, but has largely been avoided by existing EA-based
NAS methods [37], [38], [59]. But as we demonstrate here,
a carefully designed crossover operation can significantly

improve search efficiency. We run the evolutionary search
of NAT with and without the crossover operator on four
datasets; ImageNet [1], CIFAR-10 [9], Oxford Flowers102
[19], and Stanford Cars [15]. The hyperparameters that we
compare are:

1) w/ crx: crossover probability of 0.9; mutation proba-
bility of 0.1; mutation index hm of 3.

2) w/o crx: crossover probability of 0.0; mutation proba-
bility of 0.2; mutation index hm of 3.

We double the mutation probability when crossover is
not used to compensate for the reduced exploration ability
of the search. On each dataset, we run each setting to maxi-
mize the top-1 accuracy 11 times and report the median per-
formance as a function of the number of architecture
sampled in Fig. 15a. On all four datasets, the crossover oper-
ator significantly improves the efficiency of the evolutionary

TABLE 6
Comparing the Relative Search Efficiency of NAT to Other Methods

Method Type Top-1 Acc. (%) #MAdds (M) Estimated Search Cost (GPU hours)

Prior-search During-search Post-search Total

ImageNet MnasNet [27] gradient 75.2 312 - - - 91ky
OnceForAll [31] WS+EA 76.9 230 1,200 40 75 1.3k
NAT (ours) WS+EA 77.5 225 1,200 150 75 1.4k

CIFAR-10 NASNet [8] RL 97.4 569 - 10,000z 6000� 16k
PNASNet [23] SMBO 96.6 588 - 600z 36 0.6k
DARTS [24] WS+gradient 97.3 595 - 96 36 0.1k
AmoebaNet [38] EA 97.5 555 - 13,500z 2400� 16k
NAT (ours) transfer+EA 98.4 468 - 150 - 0.1k

“–” denotes for not applicable, “WS” stands for weight sharing and “SMBO” stands for sequential model-based optimization [79].
y is taken from [32], z estimate based on the # of models evaluated during search (20K in [8], 1.2K in [23], 27K in [38]).
� denotes re-ranking stage where top 100-250 models undergo extended training and evaluation for 300 epochs before selecting the final model.

Fig. 14. Top left: A sketch visualizing the hypervolume metric [78]. In
case of bi-objective, it measures the dominated area achieved by a
multi-objective algorithm. A larger hypervolume indicates a better Pareto
front achieved. Rest: Search efficiency comparison between NAT,
NSGANet [51], and random search under a bi-objective setup. Mean
hypervolume over five runs are plotted with shaded region showing the
standard deviation.

2984 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

search algorithm. To further validate, we sweep over the
probability of crossover while maintaining the rest of the
settings. The median performance (over 11 runs) deterio-
rates as the crossover probability is reduced from 0.9 to 0.2
(see Fig. 15b).

5.4 Analysis of Mutation Hyperparameters

The mutation operator used in NAT is controlled via two
hyperparameters—namely, the mutation probability pm
and mutation index hm. To identify the optimal hyperpara-
meter values, we conduct the following parameter sweep
experiments. Setting the rest of the hyperparameters to their
default values (see Table 2), we sweep the value of pm from
0.1 to 0.8, and hm from 1.0 to 20. And for each setting, we
run NAT eleven times on four datasets (same as the cross-
over experiment) to maximize the top-1 accuracy. Figs. 16a
and 16b show the effect of mutation probability pm
and mutation index hm, respectively. We observe that
increasing the mutation probability has an adverse effect on

performance. Similarly, low values of hm, which encourages
the mutated offspring to be further away from parent archi-
tectures, improves the performance. Based on these obser-
vations, we set the mutation probability pm and mutation
index hm parameters to 0.1 and 1.0, respectively, for all our
experiments in Section 4.

5.5 Effectiveness of Supernet Adaptation

Recall that NAT adopts any supernet trained on a large-
scale dataset, e.g., ImageNet, and seeks to efficiently transfer
to a task-specific supernet on a given dataset. Here, we com-
pare this procedure to a more conventional approach of
adapting every subnet (candidate architectures in search)
directly. Specifically, we consider the following,

1) Supernet Adaptation: fine-tune supernet for 5 epochs
in each iteration and use accuracy from inherited
weights (without further training) to select architec-
tures during search (adopted in NAT).

Fig. 15. Ablation study on the crossover operator. (a) The median performance from eleven runs of our evolutionary algorithm with and without the
crossover operator. (b) The median performance deteriorates as the crossover probability reduces from 0.9 to 0.2.

Fig. 16. Hyperparameter study on (a) mutation probability pm and (b) mutation index parameter hm. For each study, we run NATeleven times on four
datasets to maximize top-1 accuracy and report the median performance.

LU ETAL.: NEURAL ARCHITECTURE TRANSFER 2985

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

2) Subnet Adaptation: fine-tune each subnet for 5 epochs
from the inherited weights, then measure the
accuracy.

We apply these two approaches to a bi-objective search
of maximizing top-1 accuracy and minimizing #MAdds on
four datasets, including CIFAR-10, CIFAR-100, Oxford
Flowers102, and STL-10. Fig. 17 compares the final Pareto
fronts. Adapting the supernet yields significantly better per-
formance than adapting individual subnets. Furthermore,
we select a subset of searched subnets after subnet adaptation
and fine-tune their weights for an additional 150 epochs.
We refer to this as additional fine-tuning in Fig. 17. Empiri-
cally, we observe that further fine-tuning can match the per-
formance of supernet adaptation on datasets with larger
training samples per class (e.g., 4,000 in CIFAR-10). On
datasets with fewer samples per class (e.g., 20 in Flowers
102), there is still a large performance gap between supernet
adaptation and additional fine-tuning. Overall the results sug-
gest that supernet adaptation is more effective on tasks with
limited training samples.

5.6 Towards Quantifying Architectural
Advancement

Comparing the architectural contribution to the success of
different NAS algorithms can be difficult and ambiguous
due to substantial differences in training procedures, e.g.,
data augmentation, training hyperparameters, etc. There-
fore, to quantify the architectural advancement made by
NAT alone, we train NAT-M1 from randomly initialized
weights (instead of inheriting them from the supernet) with
standard training hyperparameters (see Table 7). We then
compare the outcome to two other recently proposed effi-
cient models, MobileNetV3 [22] and FBNetV2 [32]. The
results are summarized in Table 8, where we observe that
the NAT searched model, NAT-M1, is 0.5 – 1.0 percent
more accurate on ImageNet than compared models using
similar or less #MAdds.

To further quantify the architectural advancement
made by NAT, we use NAT-M1 as a drop-in replacement
of the backbone feature extractor for three dense image

prediction tasks, including object detection, semantic seg-
mentation, and instance segmentation. More specifically,
we replace the EfficientNet-B0 [28] in EfficientDet-D0 [84]
for object detection; the ResNet-18 [3] in BiSeNet [75] for
semantic segmentation; and the ResNet-50 [3] in YOLACT
[85] for instance segmentation. For comparison, we apply
the same procedure to both MobileNetV3 and FBNetV2 as
well. The results are reported in Table 8. In general, our
NAT searched model, NAT-M1, is consistently better than
peer competitors across all tasks and datasets using similar
or less #MAdds. Specifically, NAT-M1 is better than the
compared models on all three datasets for semantic segmen-
tation, achieving 1.0 – 2.3 higher mIoU.

Finally, we break down the effect of different training set-
tings and additional fine-tuning for the Top-1 accuracy of
the searched models in Table 9. The advance setting in
Table 7 also uses knowledge distillation [31], [68].

Fig. 17. Comparing the performance of adapting supernet, adapting subnet and additional fine-tuning under a bi-objective search setup on four data-
sets. Details are provided in Section 5.5.

TABLE 7
Details of Training Hyperparameter Settings

Advance settings are in addition to standard settings.

TABLE 8
Comparison Between NAT Searched Model and Representative
Models on ImageNet Classification Under Standard Training
Setup, and as Feature Extractors on MS COCO [86] Object

Detection Task, PASCALVOC [87] Instance Segmentation Task
and Semantic Segmentation Tasks

TABLE 9
Effect of Different Training Setups

Training Settings Random

Initialization

Inherited from Supernet

standard advanced w/o fine-tune w/ fine-tune

NAT-M1 75.7 77.1 75.9 77.5

NAT-M2 76.9 78.0 77.4 78.6
NAT-M3 78.2 79.1 78.9 79.9

NAT-M4 78.8 79.5 79.4 80.5

Details of the standard and advanced settings under Random Initialization
are provided in Table 7.

2986 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

6 CONCLUSION

This paper considered the problem of designing custom neu-
ral network architectures that trade-off multiple objectives
for a given image classification task. We introduced Neural
Architecture Transfer (NAT), a practical and effective
approach for this purpose. We described our efforts to har-
ness the concept of a supernet and an evolutionary search
algorithm for designing task-specific neural networks trad-
ing-off accuracy and computational complexity. We also
showed how to use an online regressor, as a surrogate model
to predict the accuracy of subnets in the supernet. Experi-
mental evaluation on eleven benchmark image classification
datasets, ranging from large-scale multi-class to small-scale
fine-grained tasks, showed that networks obtained by NAT
outperform conventional fine-tuning based transfer learning,
while being orders of magnitude more efficient under mobile
settings (�600M Multiply-Adds). NAT was especially effec-
tive for small-scale fine-grained tasks where fine-tuning pre-
trained ImageNet models is ineffective. Finally, we also dem-
onstrated the utility of NAT in optimizing up to twelve objec-
tives with a subsequent trade-off analysis procedure for
identifying a single preferred solution. Overall, NAT is the
first large scale demonstration of many-objective neural
architecture search for designing custom task-specific models
on diverse image classification datasets.

ACKNOWLEDGMENTS

This work was supported by the National Science Founda-
tion under Cooperative Agreement No. DBI-0939454. Any
opinions, findings, and conclusions or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of the National Science
Foundation.

REFERENCES

[1] O. Russakovsky et al., “Imagenet large scale visual recognition
challenge,” Int. J. Comput. Vis., vol. 115, no. 3, pp. 211–252, 2015.

[2] K. Simonyan and A. Zisserman, “Very deep convolutional net-
works for large-scale image recognition,” in Proc. Int. Conf. Learn.
Representations, 2015.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proc. Annu.
Conf. Neural Inf. Process. Syst., 2012, pp. 1097–1105.

[5] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[6] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2261–2269.

[7] S. Kornblith, J. Shlens, and Q. V. Le, “Do better imagenet models
transfer better?,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Rec-
ognit., 2019, pp. 2656–2666.

[8] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8697–8710.

[9] A. Krizhevsky et al., “Learning multiple layers of features from
tiny images,” Citeseer, 2009.

[10] G. Bender, P.-J. Kindermans, B. Zoph, V. Vasudevan, and Q. Le,
“Understanding and simplifying one-shot architecture search,” in
Proc. 35th Int. Conf. Mach. Learn., 2018, pp. 550–559.

[11] K. Deb and H. Jain, “An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting
approach, part I: Solving problems with box constraints,” IEEE
Trans. Evol. Computation, vol. 18, no. 4, pp. 577–601, Aug. 2014.

[12] L. N. Darlow, E. J. Crowley, A. Antoniou, and A. J. Storkey, “Cinic-10
is not imagenet or cifar-10,” School Inform., Univ. Edinburgh, 2018.
[Online]. Available: https://arxiv.org/abs/1810.03505

[13] A. Coates, A. Ng, and H. Lee, “An analysis of single-layer net-
works in unsupervised feature learning,” in Proc. 14th Int. Conf.
Artif. Intell. Statist., 2011, pp. 215–223.

[14] L. Bossard, M. Guillaumin, and L. Van Gool, “Food-101–mining
discriminative components with random forests,” in Proc. Eur.
Conf. Comput. Vis., 2014, pp. 446–461.

[15] J. Krause, M. Stark, J. Deng, and L. Fei-Fei, “3D object representa-
tions for fine-grained categorization,” in Proc. IEEE Workshop 3D
Representation Recognit., 2013, pp. 554–561.

[16] S. Maji, J. Kannala, E. Rahtu, M. Blaschko, and A. Vedaldi, “Fine-
grained visual classification of aircraft,” 2013, arXiv:1306.5151.

[17] M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, and A. Vedaldi,
“Describing textures in the wild,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2014, pp. 3606–3613.

[18] O. M. Parkhi, A. Vedaldi, A. Zisserman, and C. Jawahar, “Cats
and dogs,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2012,
pp. 3498–3505.

[19] M. Nilsback and A. Zisserman, “Automated flower classification
over a large number of classes,” in Proc. 6th Indian Conf. Comput.
Vis. Graph. Image Process., 2008, pp. 722–729.

[20] M. Cordts et al., “The cityscapes dataset for semantic urban scene
understanding,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2016, pp. 3213–3223.

[21] C. Liu, L.-C. Chen, F. Schroff, H. Adam, W. Hua, A. L. Yuille, and
L. Fei-Fei, “Auto-deeplab: Hierarchical neural architecture search
for semantic image segmentation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 82–92.

[22] A. Howard et al., “Searching for mobilenetv3,” in Proc. IEEE/CVF
Int. Conf. Comput. Vis., 2019, pp. 1314–1324.

[23] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 19–35.

[24] H. Liu, K. Simonyan, and Y. Yang, “DARTS: Differentiable archi-
tecture search,” in Proc. Int. Conf. Learn. Representations, 2019.

[25] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective
neural architecture search via lamarckian evolution,” in Proc. Int.
Conf. Learn. Representations, 2019.

[26] H. Cai, L. Zhu, and S. Han, “ProxylessNAS: Direct neural architec-
ture search on target task and hardware,” in Proc. Int. Conf. Learn.
Representations, 2019.

[27] M. Tan et al., “Mnasnet: Platform-aware neural architecture search
for mobile,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2019, pp. 2815–2823.

[28] M. Tan and Q. V. Le, “Efficientnet: Rethinking model scaling for
convolutional neural networks,” in Proc. Int. Conf. Mach. Learn.,
2019, pp. 6105–6114.

[29] X. Dai et al., “Chamnet: Towards efficient network design through
platform-aware model adaptation,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2019, pp. 11390–11399.

[30] Z. Guo et al., “Single path one-shot neural architecture search
with uniform sampling,” in Proc. Eur. Conf. Comput. Vis., 2020,
pp. 544–560.

[31] H. Cai, C. Gan, T. Wang, Z. Zhang, and S. Han, “Once for all:
Train one network and specialize it for efficient deployment,” in
Proc. Int. Conf. Learn. Representations, 2020.

[32] A. Wan et al., “Fbnetv2: Differentiable neural architecture search
for spatial and channel dimensions,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2020, pp. 12962–12971.

[33] X. Yao, “Evolving artificial neural networks,” Proc. IEEE, vol. 87,
no. 9, pp. 1423–1447, Sep. 1999.

[34] K. O. Stanley and R. Miikkulainen, “Evolving neural networks
through augmenting topologies,” Evol. Computation, vol. 10, no. 2,
pp. 99–127, 2002.

[35] B. Zoph and Q. V. Le, “Neural architecture search with reinforce-
ment learning,” in Proc. Int. Conf. Learn. Representations, 2017.

[36] Z. Zhong, J. Yan, W. Wu, J. Shao, and C. Liu, “Practical block-wise
neural network architecture generation,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2018, pp. 2423–2432.

[37] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuo-
glu, “Hierarchical representations for efficient architecture
search,” in Proc. Int. Conf. Learn. Representations, 2018.

[38] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolu-
tion for image classifier architecture search,” in Proc. AAAI Conf.
Artif. Intell., 2019, pp. 4780–4789.

[39] D. Lian et al., “Towards fast adaptation of neural architectures
with meta learning,” in Proc. Int. Conf. Learn. Representations, 2020.

LU ETAL.: NEURAL ARCHITECTURE TRANSFER 2987

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

https://arxiv.org/abs/1810.03505

[40] T. Elsken, B. Staffler, J. H. Metzen, and F. Hutter, “Meta-learning
of neural architectures for few-shot learning,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 12362–12372.

[41] M. Wistuba, “XferNAS: Transfer neural architecture search,” 2019,
arXiv: 1907.08307.

[42] J. Fang et al., “EAT-NAS: Elastic architecture transfer for accel-
erating large-scale neural architecture search,” 2019, arXiv:
1901.05884.

[43] C. Wong, N. Houlsby, Y. Lu, and A. Gesmundo, “Transfer learn-
ing with neural autoML,” in Proc. 32nd Int. Conf. Neural Inf. Pro-
cess. Syst., 2018, pp. 8366–8375.

[44] E. Kokiopoulou, A. Hauth, L. Sbaiz, A. Gesmundo, G. Bartok, and
J. Berent, “Fast task-aware architecture inference,” 2019, arXiv:
1902.05781.

[45] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural
architecture search using performance prediction,” 2017, arXiv:
1705.10823.

[46] H. Pham, M. Guan, B. Zoph, Q. Le, and J. Dean, “Efficient neural
architecture search via parameters sharing,” in Proc. 35th Int. Conf.
Mach. Learn., 2018, pp. 4095–4104.

[47] L. Li and A. Talwalkar, “Random search and reproducibility for
neural architecture search,” 2019, arXiv: 1902.07638.

[48] S. Xie, A. Kirillov, R. Girshick, and K. He, “Exploring randomly
wired neural networks for image recognition,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2019, pp. 1284–1293.

[49] K. Yu, C. Sciuto, M. Jaggi, C. Musat, and M. Salzmann,
“Evaluating the search phase of neural architecture search,” in
Proc. Int. Conf. Learn. Representations, 2020.

[50] A. Brock, T. Lim, J. Ritchie, and N. Weston, “SMASH: One-shot
model architecture search through hypernetworks,” in Proc. Int.
Conf. Learn. Representations, 2018.

[51] Z. Lu et al., “NSGA-Net: Neural architecture search using multi-
objective genetic algorithm,” in Proc. Genetic Evol. Computation
Conf., 2019, pp. 419–427.

[52] J.-D. Dong, A.-C. Cheng, D.-C. Juan, W. Wei, and M. Sun, “DPP-
net: Device-aware progressive search for pareto-optimal neural
architectures,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 540–555.

[53] X. Chu, B. Zhang, R. Xu, and J. Li, “Fairnas: Rethinking evaluation
fairness of weight sharing neural architecture search,” 2019, arXiv:
1907.01845.

[54] Z. Lu, K. Deb, and V. N. Boddeti, “MUXConv: Information multi-
plexing in convolutional neural networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2020, pp. 12041–12050.

[55] J. Bracken and J. T. McGill, “Mathematical programs with optimiza-
tion problems in the constraints,” Operations Res., vol. 21, no. 1, pp.
37–44, 1973. [Online]. Available: http://www.jstor.org/stable/169087

[56] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen,
“MobilenetV2: Inverted residuals and linear bottlenecks,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 4510–4520.

[57] A. G. Howard et al., “Mobilenets: Efficient convolutional neural
networks for mobile vision applications,” 2017, arXiv: 1704.04861.

[58] Y. Sun, H. Wang, B. Xue, Y. Jin, G. G. Yen, and M. Zhang,
“Surrogate-assisted evolutionary deep learning using an end-to-
end random forest-based performance predictor,” IEEE Trans.
Evol. Computation, vol. 24, no. 2, pp. 350–364, Apr. 2020.

[59] E. Real et al., “Large-scale evolution of image classifiers,” in Proc.
34th Int. Conf. Mach. Learn., 2017, pp. 2902–2911.

[60] K. Deb and R. B. Agrawal, “Simulated binary crossover for contin-
uous search space,” Complex Syst., vol. 9, no. 2, pp. 115–148, 1995.

[61] I. Das and J. E. Dennis, “Normal-boundary intersection: A new
method for generating the pareto surface in nonlinear multicrite-
ria optimization problems,” SIAM J. Optim., vol. 8, no. 3, pp. 631–
657, Mar. 1998. [Online]. Available: https://doi.org/10.1137/
S1052623496307510

[62] B. Wu et al., “FBNet: Hardware-aware efficient convnet design via
differentiable neural architecture search,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2019, pp. 10726–10734.

[63] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment:
Practical automated data augmentation with a reduced search
space,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops, 2020, pp. 3008–3017.

[64] J. Mei et al., “Atomnas: Fine-grained end-to-end neural archi-
tecture search,” in Proc. Int. Conf. Learn. Representations, 2020.

[65] Y. Li et al., “Neural architecture search for lightweight non-
local networks,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2020, pp. 10297–10306.

[66] C. Li et al., “Blockwisely supervised neural architecture search
with knowledge distillation,” in Proc. IEEE Conf. Comput. Vis. Pat-
tern Recognit., 2020, pp. 1986–1995.

[67] M. Tan and Q. V. Le, “Mixconv: Mixed depthwise convolutional
kernels,” in Proc. British Mach. Vis. Conf., 2019, p. 74.

[68] J. Yu et al., “BigNAS: Scaling up neural architecture search with
big single-stage models,” in Proc. Eur. Conf. Comput. Vis., 2020, pp.
702–717.

[69] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-
v4, inception-resnet and the impact of residual connections on
learning,” in Proc. 31st AAAI Conf. Artif. Intell., 2017, pp. 4278–
4284.

[70] X. Wang, D. Kihara, J. Luo, and G.-J. Qi, “Enaet: Self-trained
ensemble autoencoding transformations for semi-supervised
learning,” 2019, arXiv: 1911.09265.

[71] N. Nayman, A. Noy, T. Ridnik, I. Friedman, R. Jin, and L. Zelnik,
“XNAS: Neural architecture search with expert advice,” in Proc.
Advances Neural Inf. Process. Syst., 2019, pp. 1977–1987.

[72] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.
Yuille, “Deeplab: Semantic image segmentation with deep convo-
lutional nets, atrous convolution, and fully connected CRFs,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848,
Apr. 2018.

[73] A. Newell, K. Yang, and J. Deng, “Stacked hourglass networks for
human pose estimation,” in Proc. Eur. Conf. Comput. Vis., 2016,
pp. 483–499.

[74] T.-Y. Lin, P. Doll�ar, R. Girshick, K. He, B. Hariharan, and
S. Belongie, “Feature pyramid networks for object detection,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 936–944.

[75] C. Yu, J. Wang, C. Peng, C. Gao, G. Yu, and N. Sang,
“BiSeNet: Bilateral segmentation network for real-time seman-
tic segmentation,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 334–349.

[76] H. Zhao, J. Shi, X. Qi, X. Wang, and J. Jia, “Pyramid scene parsing
network,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2017,
pp. 6230–6239.

[77] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam,
“Encoder-decoder with atrous separable convolution for semantic
image segmentation,” in Proc. Eur. Conf. Comput. Vis., 2018,
pp. 833–851.

[78] E. Zitzler and L. Thiele, “Multiobjective optimization using evolu-
tionary algorithms — a comparative case study,” in Parallel Prob-
lem Solving From Nature — PPSN V, A. E. Eiben, T. B€ack, M.
Schoenauer, and H.-P. Schwefel, Eds. Berlin, Germany: Springer,
1998, pp. 292–301.

[79] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Sequential model-
based optimization for general algorithm configuration,” in Proc.
Int. Conf. Learn. Intell. Optim., 2011, pp. 507–523.

[80] P. Goyal et al. “Accurate, large minibatch SGD: Training imagenet
in 1 hour,” 2017, arXiv: 1706.02677.

[81] E. D. Cubuk, B. Zoph, J. Shlens, and Q. V. Le, “Randaugment:
Practical automated data augmentation with a reduced search
space,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.
Workshops, 2020, pp. 3008–3017.

[82] Z. Zhong, L. Zheng, G. Kang, S. Li, and Y. Yang, “Random erasing
data augmentation,” in Proc. AAAI Conf. Artif. Intell., 2020,
pp. 13001–13008.

[83] G. Huang, Y. Sun, Z. Liu, D. Sedra, and K. Q. Weinberger, “Deep
networks with stochastic depth,” in Proc. Eur. Conf. Comput. Vis.,
2016, pp. 646–661.

[84] M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient
object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2020, pp. 10778–10787.

[85] D. Bolya, C. Zhou, F. Xiao, and Y. J. Lee, “YOLACT: Real-time
instance segmentation,” in Proc. IEEE/CVF Int. Conf. Comput. Vis.,
2019, pp. 9156–9165.

[86] T.-Y. Lin et al., “Microsoft COCO: Common objects in context,” in
Proc. Eur. Conf. Comput. Vis., 2014, pp. 740–755.

[87] M. Everingham, S. A. Eslami, L. Van Gool, C. K. Williams, J.
Winn, and A. Zisserman, “The pascal visual object classes
challenge: A retrospective,” Int. J. Comput. Vis., vol. 111, no. 1,
pp. 98–136, 2015.

[88] H. Caesar, J. Uijlings, and V. Ferrari, “COCO-stuff: Thing and
stuff classes in context,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2018, pp. 1209–1218.

2988 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

http://www.jstor.org/stable/169087
https://doi.org/10.1137/S1052623496307510
https://doi.org/10.1137/S1052623496307510

Zhichao Lu (Student Member, IEEE) received the
BSc and PhD degrees in electrical and computer
engineering from Michigan State University, East
Lansing, in 2013 and 2020, respectively. He is cur-
rently a postdoc research fellow with the Depart-
ment of Computer Science and Engineering,
Southern University of Science and Technology,
Shenzhen, China. His research interests include
the field of evolutionary machine learning, notably
machine learning assisted evolutionary algorithms,
automatedmachine learning, and in particular evo-

lutionary neural architecture search. He received the Best Paper Award at
GECCO2019 under evolutionarymachine learning track.

Gautam Sreekumar received the BTech degree
in electrical engineering from the Indian Institute
of Technology Madras. He is currently working
toward the PhD degree at the Department of
Computer Science and Engineering, Michigan
State University. His research interests include the
field of deep neural networks, particularly evolu-
tionary neural architecture search for vision tasks.

Erik Goodman is currently the PI and executive
director of the BEACON Center for the Study of
Evolution in Action, an NSF Science and Technol-
ogy Center headquartered at Michigan State Uni-
versity, funded at $47.5 million for 2010-20. He
received the PhD degree, Computer and Com-
munication Sciences, University of Michigan,
1972. Assistant professor-full professor, Michigan
State University, 1971-, Electrical and Computer
Engineering, Mechanical Engineering, Computer
Science and Engineering. Director, Case Center

for Computer-Aided Engineering and Manufacturing, 1983-2002; Direc-
tor. Co-founder and VP Technology, Red Cedar Technology, Inc., which
develops design optimization software, now owned by Siemens. Chair
and Senior Fellow, International Society for Genetic and Evolutionary
Computation; Founding Chair, ACM SIG on Genetic and Evolutionary
Computation (SIGEVO), 2005.

Wolfgang Banzhaf is currently the John R.
Koza chair for Genetic Programming and a
professor at the Department of Computer Sci-
ence and Engineering, Michigan State University.
His research interests include the field of bio-
inspired computing, notably evolutionary compu-
tation and complex adaptive system, and in par-
ticular genetic programming. He is founding
editor-in-chief of the Springer journal Genetic
Programming and Evolving Machines, senior fel-
low, International Society for Genetic and Evolu-

tionary Computation, and won the EvoStar Award for sustained
contributions to the field of Evolutionary Computation in Europe.

Kalyanmoy Deb (Fellow, IEEE) received the
bachelor’s degree in mechanical engineering
from IIT Kharagpur, in India, and the master’s and
PhD degrees from the University of Alabama,
Tuscaloosa, in 1989 and 1991, respectively. He is
the Koenig Endowed chair professor with the
Department of Electrical and Computer Engineer-
ing, Michigan State University, East Lansing,
Michigan. He is largely known for his seminal
research in evolutionary multi-criterion optimiza-
tion. He has published more than 544 interna-

tional journal and conference research papers. His current research
interests include evolutionary optimization and its application in design,
modeling, AI, and machine learning. He is a recipient of the IEEE CIS
EC Pioneer Award in 2018, the Lifetime Achievement Award from Clari-
vate Analytics in 2017, the Infosys Prize in 2012, and the Edgeworth-
Pareto Award in 2008. He is a fellow ASME. For more information,
please visit http://www.coin-lab.org

Vishnu Naresh Boddeti (Member, IEEE) received
the PhD degree in electrical and computer engi-
neering program from Carnegie Mellon University,
in 2013. He is currently an assistant professor at
the Computer Science Department, Michigan
State University. His research interests include
computer vision, pattern recognition and machine
learning. He received the Best Paper Award at
BTAS 2013, the Best Student Paper Award at
ACCV 2018, and the Best Paper Award at GECCO
2019.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

LU ETAL.: NEURAL ARCHITECTURE TRANSFER 2989

Authorized licensed use limited to: Michigan State University. Downloaded on August 06,2021 at 13:21:38 UTC from IEEE Xplore. Restrictions apply.

http://www.coin-lab.org

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

