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Abstract--We consider the abilities of a recently published neural network model to recognize and classify 
arbitrary patterns. We introduce a learning scheme based on Hebb's rule which allows the system's neuronal 
cells to specialize on different patterns during learning. The rule which was originally introduced by Kohonen 
is appropriately modified and applied to the competitive network under study. A variant of  the learning dynamics 
is then derived from an energy functional characterizing the specialization state of the network. Simulations are 
presented to demonstrate the specialization process for different pattern distributions. 
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1. INTRODUCTION 

The recent interest in natural and artificial neural 
networks has shed new light on an old question, the 
computational properties of systems which are com- 
posed of many subsystems. It was proposed by dif- 
ferent authors (see, e.g., Amari & Arbib, 1982; 
Grossberg, 1982; Haken, 1979; Hopfield, 1982; Ko- 
honen, 1977) that the collective phenomena showing 
up in such systems may be responsible for the as- 
tonishingly strong computational capabilities these 
systems demonstrate. 

In this article we follow the philosophy Synergetics 
has developed over the last 20 years (Haken, 1973~ 
1983, 1987a, 1988a) applying the idea that any kind 
of pattern or structure may be described as a unique 
entity. Despite the fact that a pattern in general is 
built from a huge number of elements of a material 
substrate, we shall consider patterns as the modes of 
behavior of systems consisting of many subsystems. 
In 1987, one of us (Haken, 1987b, 1988b) introduced 
a model of grandmother cells organized in a com- 
petitive network. In this model, every cell is respon- 
sible for the recognition of a whole pattern. Before 
a recognition process is started, the prototype pat- 
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terns need to be loaded into the synaptic connections 
between the input units of the network and the 
grandmother cells. 

In neural networks in general, the modes of be- 
havior may be seen as interaction patterns between 
their elements--the neurons. Whereas in the inani- 
mate world, interactions between elements are fixed 
by nature once and for ever; living beings have the 
capability to change these interactions, as it is dem- 
onstrated, for example, by the remarkable plasticity 
of synapses between real neurons. To study the adap- 
tive properties of the aforementioned competitive 
network model we consider in this paper the network 
equipped with a local learning mechanism of Hebb- 
type (Hebb, 1949) which enables it to extract infor- 
mation from the environment while already working 
in the recognition mode. The learning rules applied 
here resemble in many aspects the rules studied by 
Kohonen (1982, 1987) and enable the network to 
learn in an unsupervised fashion. 

An illustrative analogy from daily life--dunes of 
sand encountered at the beach--will serve to explain 
the main idea. Imagine a landscape of sandhills dis- 
tributed stochastically on the beach. The wind pro- 
vides an unspecific though fluctuating kinetic energy 
offer to the sandhills initially resting. The sandhills, 
originally constituting fluctuations, influence the air 
movement in such a way that a differentiation with 
respect to their use of kinetic energy sets in. Partic- 
ular fluctuations cooperate, others compete with 
each other establishing over time the collective spa- 
tial modes which are called dunes. Due to limited 
resources, the occurring modes compete for kinetic 
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~nergy leading finally to dominant and. on the other 
aand. extinct dune modes. 

Turning back to neural networks, we must first 
recall that every grandmother cell in the network 
ander study has connections to input cells which may 
9e lumped together to form a vector A called a syn- 
iptic filter, since the cells' action is just to perform 
t weighted sum of its inputs. If we now introduce a 
earning process according to these lines, i.e.. a dy- 
mmics of the synaptic filters A which results in 
:hanges of A proportional to the cells' firing state. 
:he original fluctuations get amplified. In order to 
9e competitive, the learning process has to be con- 
;trained to a redistribution of synaptic efficacies in 
:he filters A. Rather than being generally allowed. 
m increase of synaptic strength at one site must be 
~alanced by a decrease on the other sites of the same 
:ell. A cell already firing above average for a certain 
~attern will learn to respond to it even better the 
aext time that pattern is offered. A series of different 
~atterns presented to the system will thus lead au- 
omatically to different synaptic filters of the adap- 
:ive g r a n d m o t h e r  cells .  In o t h e r  words ,  the 
mvironmental input generates a sort of pattern for- 
nation process in the filters of grandmother ceils. 

More specifically, let a number of different pat- 
erns M be presented to the system in an arbitrary 
~rder. Then the K cells of the network will specialize 
into the different patterns and, depending on their 
requency of occurrence, will learn to represent them 
m their synaptic filters. 

This process of specialization const i tutes  the 
:heme of the present paper and we shall propose in 
~ubsequent sections a particular learning scheme to 
mplement the above ideas. We shall start with a 
;lightly modified version of the Hebb-like learning 
ute Kohonen (1982) has studied and we shall end 
~ith a learning rule derived from an optimization 
mnciple imposed on the specialization state of the 
grandmother cells. 

The further content is organized as follows: Sec- 
:ion 2 formulates the learning scheme algorithmi- 
:ally, section 3 presents selected simulation results. 
md section 4 discusses the relations to some other 
earning schemes known from the literature. 

2. THE NETWORK AND THE 
L E A R N I N G  A L G O R I T H M  

n its simplest form, the network consists of 2 layers 
)f units (cf. Figure 1): the input layer and the internal 
)rocessing layer. Input units, the state of which is 
:epresented by a real-valued vector q 

q,E 1-1.1] ,  i =  1 . . . .  N. ~ 'q ,2_  1. 

~¢here qi is the state of input unit i, communicate 
~ith the environment but have no internal commu- 
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FIGURE 1. Oeslgn of the overall system, informat~n flow is 
comiRg In throtqp input cells q, in layer t trod is ~ 
by layer I! o e k  d,. a mearmthe glolml f~ ldD = X, d L  

nication. Internal layer units, on the other hand. are 
described by activities dk(t) 

dk(t) E [-1.  1], k = 1 . . . . .  K 

and get inputs from the former layer via synaptic 
connections Ak: 

d o = ~Ak~q, ,  (1) 

as well as from the members of their own layer (via 
lateral connections). 

The lateral connections are fixed and implement 
a dynamical competition between the K cells such 
that, after a transient time tr, that cell k'  has maximal 
absolute activity ([dk, [ = I) which already started with 
the largest value [d°,[. The winner takes all, that is, 
dk(tr) = O, V k # k'.  and the dynamics may be 
described by the following differential equation 

Xd ) 
k r . 4 ~  k '  

= aA~ - 2D + a~). (2) 

The lateral connections are inhibitory and of  equal 
strength for all cells. Therefore, they may be sub- 
stituted by a coupling of each cell to the global_field 
D,  defined as 

D = E e l , .  
L. r 

The values d o serve as initial conditions for the 
competitive dynamics of the network. The dynamics 
itself was discussed in detail by Haken (1988b), and 
Haken and Fuchs (1988). Its ability to do face rec- 
ognition was tested in a series of simu|atiotrs relxn'ted 
in Fuchs and Haken (1988). 

We now address the problem of how to learn ad- 
equate synaptic connections A~. The indications of 
the preceding section shall help us to implement a 
suitable learning algorithm. The synaptic connec- 
tions should be able to vary over time 

Aki - Aki(t)- 

and follow a dynamical learning rule we shall specify 
below. 
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At the beginning, the connections Aki(0) are dis- 
tributed randomly. Thus, every cell starts out with 
an individual fluctuation for its synaptic filter A~, 
where the index k characterizes the kth grandmother 
cell, and has no predefined knowledge about the 
environment. The only condition we shall impose on 
the Ak just from the very beginning is that the con- 
nections should be normalized: 

Ak,(t)Ak,(t) : IIAk(t)ll 2 : 1, V k. (3) 
i 

Although this condition seems to be rather artificial 
and we shall relax it later on, for the moment, we 
consider it necessary in order to arrive at a truly 
length-neutral similarity measure. For a fixed q, this 
reads: 

d~ = ~ Ak~(t)qi = Ak(t) - q = IlAk(t)r[ [[q[[ cos(Ak(t),q) 

: cos(A,(t),q) iff IlAk(t)lr = Flqtl-- 1, V k. 

(4) 

Presentation of an input pattern 1 will thus cause 
different activities of the K grandmother cells deter- 
mined by A~ which later on become amplified by the 
competitive dynamics between cells. 

A natural choice for a learning rule is the following 
modified Hebb rule 

A,,(t) + ad~(t + 1)d°q, (5) 
Zk,(t + 1) = I[Ak~(t) + ad~(t + 1)d~qA[ ' 

where the parameter a controls the learning velocity. 
A similar rule was already applied by Kohonen 
(1982) and Oja (1982) and it will serve us to establish 
a competition between cells for the presented pat- 
terns. One should keep in mind, however, that dur- 
ing the learning process (5), the competition between 
grandmother cells is going on. In this way a time 
dependence of the learning velocity is introduced. 
We distinguish both of these dynamics by requiring 
different time-scales, the competitive learning dy- 
namics being five to ten times slower than the activity 
competition. 

For definitiveness, let us write down both dynam- 
ical equations in a version discretized in time: 

dk(t + 1) = dk(t)(2 - 20 + d~), (6) 

A~,(t + r) = Ak,(t) + adk(t + r)d~q, 
[IA~,(t) + adk(t + r)d~q,[[ " (7) 

The faster time-scale (6) is regarded as setting up the 
elementary time step, whereas the slower one is ex- 
pressed as an updating of the corresponding evolu- 
tion equation every rth elementary time step. In eqn 
(7), the actual outcome of the competition between 
grandmother cells, dk(t + r), enters the dynamics. 

An appropriate interpretation of this learning rule 
would read: Every cell k learns a pattern (adapts to 
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a pattern) q to such a degree as it is able to fire during 
competition after the presentation o f  q. 

If we now recall that q is one out of a whole set 
of training vectors 

q E {v I'l . . . . .  v '"}  

offered for discrete times T each, it becomes obvious 
that fluctuations initially present in synaptic connec- 
tions A~ experience amplification as a consequence 
of cells' firing in a series of presentations of training 
patterns. Through the training process, a third time- 
scale is introduced which is not allowed to be smaller 
than that of eqn (7), that is, 

T > r .  

The built-in tendency of the algorithm is that cells 
k try to fire with higher average activity as learning 
proceeds through the training steps. Stated in other 
words: Cells k tend to specialize on different patterns 
and to eventually divide the high-dimensional pat- 
tern space into portions the size of which is deter- 
mined by their respective frequency of presentation. 

Under the assumption of a stationary probability 
distribution of the environmental input vectors, a 
kind of stability should emerge in the sense that the 
total amount  of redistr ibuted synaptic strength 
reaches a minimum after enough training steps have 
been taken. 

Another sort of stabilization is found in nature, 
the regulation of learning velocity a according to 
global quantities such as the age or maturation state 
of an organism (Wiesel & Hubel 1963). Furthermore, 
as Kohonen (1987) has pointed out, from an algo- 
rithmic point of view the learning process of a cell 
may also be stopped depending on its activity dk(t), 
i.e., a = a(dk). Various detailed models are reason- 
able, for example, dependence on maximum firing 
rate d~ .... or on average firing rate (dk). The common 
effect in many of these models is a sharp falling off 
of the corresponding learning rate a when the spec- 
ified quantity exceeds a certain threshold. Due to the 
self-stabilization of competi t ive learning in our 
model, we shall not use any kind of external stabi- 
lization. 

As Oja (1982) has shown, learning rules of the 
above kind (5), (7), may be expanded under the 
condition a ~ 1. In our case, this yields (holding q) 
the succeeding formula for the development of con- 
nections Ak/: 

A~(t + v) = A~(t) 

+ adk(t + r)d~[q, - d~Ak,(t)] + O(a2), (8) 

where d~ is the last measurement of starting overlap 
before competition has set in. 

The normalization constraint for the filters Ak now 
has been abandoned. As is shown in the Appendix, 
the dynamics (8) nevertheless tends to normalize the 
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filters, IIAk(t)tl z ~ 1. during iterations. An appropri- 
ate starting state could be prepared by choosing ran- 
dom values 

0 <- Ak,(O) <- 1. A~(O) = O(1/N2).  

From (8) we can immediately derive a continuous 
equation (a has been absorbed into r,) 

r, Ak, = mkd°[q, - d~ Ak,], (9)  

where rnk may be either identical to d~ or equal to 
its time average over the fast dynamics of dk, rj 

m~ - (d~L,. 

A time-averaged quantity mk cancels out all fluc- 
tuations below the time-scale r,. In order to generate 
a map, however,  the relation between the two time- 
scales T~ and z r should not exceed values of 

rdr < 10. 

Learning under such conditions we shall call non- 
equilibrium learning. 

Here  the question arises whether or not it would 
be possible to generate the learning dynamics (9) 
from a scalar potential function. It turns out that a 
slightly altered dynamical law 

= mkd, [q, (2  - tA£1i =) - m'k,d~] (10)  T, Ak i 2 0 

may be generated as a derivative of the following 
scalar functional 

2 ,,'- [ 1 ] 
E ( A ' , q )  - - ~ ' ~  mkdk 1 - ~ A; t l  2 (11)  

a s  

OE 
r, A;, = (12) 

OA; 

The Appendix shows that eqn (10) again tends to 
normalize filters. Rewriting the potential (11) as 

E ( A ' , q )  = - ~  s-~ x 1~, (131 

where we introduced the following abbreviations: 

sk ~- mk(A~ - q) = mkd~, 

and 

we are led to the following interpretation: sk mea- 
sures the specialization of cell k on pattern q. The 
greater d o at the beginning of competit ion between 
the K cells and the greater rnk reflecting the success 
of the competing cell k during competition, the 
greater & will be. E(A',q) measures the specializa- 
tion of all cells. 

Extending this result to the case where different  
patterns q are given and the system is confronted 

with them in an arbitrary order, we see that (E)q will 
be minimal if all the cells are specialized to a maximal 
degree. A global quantitative measure for the spe- 
cialization of cells may be provided by the quantity 

Z S/, 
q 

which can be termed the specialization parameter  of 
the network. 

In other words: The learning rule follows imme- 
diately from the requirement that it should optimize 
the ensemble average (E)q which measures the spe- 
cialization state of the network. 

The next section will deal with the simulation of 
different situations using the learning rules defined 
above. 

3. SIMULATIONS 

In order  to demonstrate the feasibility of our ap- 
proach, we present below simulation results for the 
learning rules eqns (7), (8), and (10). In general, the 
behavior of the rules was very similar, so we have 
chosen one example for each rule. 

Simulation 1: K > M--Generating redundancy 

The first part of our simulation is devoted to the case 
where there are more grandmother  cells (K  -- 20) 
than prototype patterns (M = 6). The aim is to show 
how the nonequilibrium learning rule (7) enables the 
system to generate redundant  representations of pat- 
terns and stabilizes itself if the probabil i ty distribu- 
tion of input is held constant. 

We have chosen six one-dimensional analog pat- 
terns 

s i n ( i ,  m l ' °7 -  /'C/I(}) 

vS~ = ~ ,  [sin(/• m '~°'- ztltO)] 2' 

i -  [ . . . . .  64,  m = 1 . . . . .  0 (14 )  

. . . . . . . . . . . .  z . . . . . . . . . . . . . . . . . . . .  

. . . . . . . . . . . . . . .  [ . . . . . . . . . . . . . . . . . . .  

5 

F ~  2. The six one-dtlaemde~t~ ~ patterns of 
simulation 1. 
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FIGURE 3. Activities d~ = Am • v ~m) at the beginning. 
First row- Histograms for cells k = 1 , . . . ,  10 reporting the different answers to the prototype patterns m = 1 . . . . .  6. Second 
row: Histograms for cells k = 1 1 , . . . ,  20. Shown are the absolute values. 
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FIGURE 4. (a) Equilibrium learning. Activities dO = Am • v¢") after r = 300 training steps, phase I. First row: Same as Figure 
3, second row: Same as Figure 3. Cells 1,8,4,9 have specialized on patterns 1,2,3,4, respectively. (b) Equilibrium learning. 
Activities de = A, • v (m) after r = 600 training steps, Phase II. Cells 1,8,4,9,14,7 have specialized on patterns 1,2,3,4,5,6, 
respectively. All patterns are represented. (c) Nonequilibrium learning. Activities d~ = A , .  v (r") after r = 1,000 training steps, 
Phase I. All cells have specialized on patterns 1,2,3,4. (d) Nonequilibrium learning. Activities d~ = A, • v (m) after r = 4,000 
training steps, Phase II. All cells have specialized on patterns 3,4,5,6. Patterns 1,2 are completely forgotten. 
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TABLE 1 
Comparison of Expected (ex) and Measured (me) Outcome 
of Learning Under Nonequilibrium Conditions (¢ = 10t,) in 

Simulation 1. Out of 20 Grandmother Ceils ni ~ and n~? ~ 
Have Learned to Represent the Corresponding Patterns in 

Their Connections During Phase I and Phase II, 
Respectively 

Pattern n~ ~ n ?  ~ n~ ~ nP~ ~ 

1 10 5 0 0 
2 5 6 0 0 
3 2.5 4 4 5 
4 2.5 5 2 3 
5 0 0 6 6 
6 0 0 8 6 

(cf. Figure 2) represented by the activity of N = 64 
input cells q, E [ -  1, + 1]. Synaptic connections be- 
tween input layer and processing layer are initialized 
by random values Ak~, The resulting synaptic filters 
for the K grandmother cells are then, however, nor- 
malized according to eqn (3). 

Figure 3 shows the histograms of absolute activity 
values [d~[ of all cells k = 1 . . . . .  20 to stimulations 
with the six patterns (14) without competition. The 
dynamical equations (6), (7), are used to update ac- 
tivities during competition as well as synapses during 
learning. The elementary time step t~ = 1 is set by 
eqn (6), 

We now contrast two situations with respect to the 
time-scale of learning: 

(a) r = 300t,,: 

(b) r = lot,,: 

Equilibrium learning: Compet- 
ing cells have settled down in 
their equil ibr ium state before  
synapses are updated. 
Nonequilibrium learning: Com- 
peting cells are still undecided 
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concerning the winner when syn- 
apses are updated. 

In order to study stability of connection strengths 
once they have been formed, we trained in both of 
these situations with two different probability distri- 
butions of presented patterns following each other: 

Phase I: P(v i1~ . . . . .  v I°~) 
= (0.5, 0.25, 0.125, 0.0, 0.0), 

Phase II: p(¢ll  . . . . .  vl6/) 
= (0.0, 0.0, 0.2, 0.1, 0.3, 0,4). 

Whereas in Phase I patterns 5 and 6 are absent, in 
Phase II immediately following patterns 1 and 2 are 
not trained. 

Figures 4 a,b show the resulting synaptic connec- 
tions for equilibrium learning after 300 training steps 
(after Phase I) and after 600 training steps (after 
Phase II). Only one cell has become sensitive to an 
offered pattern regardless of its frequency of pre- 
sentation. The change in probability distribution had 
no consequences for cells already specialized to pat- 
terns 1 and 2. Although synaptic plasticity was not 
turned off, the corresponding cells remained spec- 
ialized on patterns which were not trained from steps 
300 through 600. This stabilization is a consequence 
of the slow time-scale on which equilibrium learning 
occurs, leading first to a relaxation of cells' compe- 
tition. 

Figures 5 a,b confirm this picture by demonstrat- 
ing the total  a m o u n t  of  r ed i s t r i bu t ed  synapt ic  
strength 

Y.. IA&,I = ~ (IAJt + r) - AJt)l) (15) 

in cells k during training. 
By contrast, Figures 4 c,d show the synaptic con- 

i, 9 - ;  

C 6 

9c7  

. / -  0 

:~ 0 4  

( ) 

C 2 

0 ! 

C 0 " . . . .  

/ 
: 

/ 

/ 

/ 

0 I 2 3, a 5 

elementary ti,me steps xIC ? 

FIGURE 6. Development of starting overlaps for cell 1 over elementary time steps. Solid lines: Nonequilibrium learning. Broken 
lines: Equilibrium learning. Display was suppressed in the latter case for t -< 3,000t.. 
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FIGURE 7, (a) Two geometrical prototype patterns, Activity of cells q~ is shown by ~ of the ~ 1 t  ~¢cle. 
Activities are normtllzed. (b) Devlllopnlent of c ~  strengths A1 and A2 duringteamlng. Between ~ ~ r = 225 
and r = 300 cells have dMded the pattern space into two portions. 

nections after 1,000 training steps in Phase I and 
4,000 training steps in Phase II under nonequilibrium 
learning conditions (recall the corresponding r). 
Every. cell has specialized to one of the offered pat- 
terns and a radical redistribution of synaptic strength 
occurred after the probability distribution of pre- 
sented patterns was changed. Thus, the self-stabili- 
zation of learned patterns did not affect the ability 
of cells to further adapt as new events (patterns) 
occurred. This seems to be an important property of 
the nonequilibrium learning rule in this system since 
it is able to deal with unexpected situations. 

Table 1 gives an overview of what has been ex- 
pected by assuming a cells' specialization distribution 

exactly following the probability distribution of pre- 
sentations and what was the actual outcome of the 
learning experiment. A shift to unfrequent patterns 
is observed like in Kohonen's learning scheme (Ko- 
honen. 1987). Figures 5 c.d show the total amount 
according to (t5) for one cell keeping the same pat- 
tern and one cell changing its pattern during Phase 
II. Though to a certain degree stable, the adaptive 
properties are the dominant phenomenon here. As 
one can see. a redundancy is reached by nonequili- 
brium learning. No grandmother cell remains idle 
and. on the other hand. a possible destruction of a 
cell usually will not result in a complete disappear- 
ance of the corresponding pattern. 
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FIGURE 8. Behavior of the ~ plmmwter s (cf. eqn (16)) over learning steps. 
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FIGURE 9. Fluctuations of the specialization parameter s, {s - (s)) over learning steps. Besides the initial fluctuations a 
transition at r = 266 is indicated. 

Figure 6 demonstrates how in both situations the 
starting overlap for all patterns approaches at a cer- 
tain cell its stable values near 1 and 0. In elementary 
time steps, the nonequilibrium learning rule is much 
faster than equilibrium learning. For comparison 
purposes, we have to use the physical time as it is 
quantified in elementary time steps t~ rather than the 
number of training steps, since training steps differ 
greatly in the number of elementary time steps re- 
quired for the equilibrium and nonequilibrium type 
of learning, respectively (see definitions above). 

In conclusion, the nonequilibrium mode of learn- 
ing has shown at least three advantages in being more 
adaptive, faster, and more effective, that is, more 
cells learn more patterns at the same time, than the 
equilibrium mode. 

• i 

. . . . . . . . .  / /  

,7, 

c~ ~ ' 

o : " ' 

0 C c  - - -  

0 5  k 
;, 50 0 ,3  150 200 250 300 $50 4,30 

t r a i n i r g  s te~s r 

FIGURE 10. Starting overlaps d o over training steps: Solid 
line: Cell 1, pattern f;  broken line: Cell 1, pattern 2; dotted 
line: Cell 2, pattern 1; broken/dotted line: Cell 2, pattern 2. 
At r = 266, the broken/dotted line becomes invisible, since 
it merges with the solid line. Together, they quickly approach 
d O = l .  

Simulation 2: K --- M- -Observ ing  a 
phase transition 

The second simulation is concerned with the simplest 
case of an equal number of prototype patterns and 
grandmother cells, M = K = 2. The two-dimen- 
sional geometric patterns v m, v ~2~ of Figure 7a are 
presented to a network of only two competing cells, 
the synapses of which are initialized by a random 
generator. Again, the patterns are normalized, but 
their a priori overlap is considerably high, v m • 
v (2) = 0.8. 

The patterns are trained in an alternating succes- 
sion according to the second learning equation (8) 
and competition was allowed for 500 elementary time 
steps before changing the pattern. Nonequilibrium 
conditions for learning were realized by r = 10t~. 

Figure 7b shows the development of connections 
strengths At, A2 taken at different numbers of learn- 
ing steps r. A fast adaptation of one cell to both of 
the (similar) patterns was accompanied by a nearly 
unchanged synaptic filter of the other. After 250 
learning steps, however, length of the vectors rep- 
resenting the synaptic filters approached more and 
more the value 1 forcing the cells to decide on which 
of the patterns to specialize. A sharp phase transition 
is observed if the order parameter for specialization, 

is measured (cf. Figure 8). The fluctuations of this 
parameter clearly show the transition in training step 
r = 266, see Figure 9. Figure 10 displays the evo- 
lution of the starting overlaps d~ for both cells and 
both patterns. Though cell 2 already was near to 
pattern 1, competitive learning forced it finally to 
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FIGURE 11. Devolol~no~ of sy~ptic connoetiorm of g~'lu~ln~liwr cells k = 1 . . . . .  20 in Slmu~tion 3: (It) Before le~n|ng: 
All ceils cover the whole surface. (b) Aftra" r = 1,000 t l l l lnhagttel~.  (c) Alter r = 2,000 training 8~)l~!r(d) After r = 4,000 
training steps. Synsptlc strength proportional to the radius of ~ circles. Co. 6 was not able to adihpt to any pattern. 

specialize on the alternative pattern, Intermediate 
overlaps greater than 1 reflect the fact that learning 
was started without normalizing the connection fil- 
ters. 

The fact that both patterns were represented a 
long time on one cell may be interpreted as a tend- 
ency towards hierarchical clustering whereby high 
similarities between patterns are detected first. 

Simalation 3: K < M - - L e a r ~ a u  to dassify 

The last part of simulations deals with a typical clas- 
sification situation where more patterns than recog- 
nizing cells are present. It will be shown that the 

high-dimensional space of patterns will be divided 
by the learning dynamics into nearly equal portions. 

The particular example we have chosen is an ar- 
rangement of sensory cells (input units) on a two- 
dimensional flat surface with N = 100 sensors q~j. 
These are connected to a processingtayer o f K  = 2. 
4, 8, 16, 20 grandmother ceils by initially randomized 
connections. No local constraint was implemented 
and the receptive field of every cellk therefore covers 
at the beginning the whole surface, see Figure l l a .  

A training presentation is provided by a high stim- 
ulation q~/at site i, j accompanied by a lower stim- 
ulation in its local neighborhood at sites i '  = i +_ l ,  

j '  = j - ' , - / . / =  1 , 2  . . . .  
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FIGURE 12. Starting overlaps d °, k = 1, . . . .  20 for the 
M = 100 patterns. (a) Before learning. (b) After r = 4,000 
training steps. Activity to a pattern v m" indicated by radius 
of circles at position m, n. 

The falling off is Gaussian in both dimensions. 
The idea here is that the system--if  equipped with 
a diffusionlike interaction on sensory surface--is 
able to develop local receptive fields. 

As is easily seen, the number of different patterns 
presented to the system is M = 100. The learning 
rule applied was eqn (10), discretized in time: 

Ak~(t + r) - Ak,(t) + m~(t + r)d°[q,(2 - llAkp] 2) 

- Ak~(t)d°]. (17) 

Figures 11 b,c,d show the synaptic connections 
after r = 1,000; 2,000; 4,000 training steps, respec- 
tively. Here, the sequence of training patterns was 

4 3 3  

fixed once and repeated again and again. Though the 
energy decreased during learning, the global mini- 
mum (all cells specialized) was not reached due to 
the gradient learning strategy, eqn (12). One cell 
remained in its original state generated by random 
synaptic connections. This result should not astonish 
since there is no guarantee in the algorithm to con- 
verge to the global optimum. 

After turning off competition, one can observe 
the reactions of cells to the M = 100 patterns (cf. 
Figure 12). 

Figures 13 a-d show the results of runs with 
smaller numbers of grandmother cells. Training here 
was a random series of events at the sensory surface. 
Clearly, the cells have to cover more and more sur- 
face each and to classify inputs into broader and 
broader classes. 

This simulation shows the following: 

(i) A diffusionlike interaction in sensory cells is suf- 
ficient in order to generate local receptive fields, 
if a suitable competition between cells is imple- 
mented. After maturation, learning and com- 
petition may be turned off. 

(ii) There is no built-in guarantee that the learning 
process will end up in the optimal solution, that 
is, maximal specialization of all cells. Rather, 
the general result will be a nearly optimal so- 
lution. 

(iii) The system is able to classify patterns and thus 
to learn from noisy input data. Though no pat- 
tern of the kind Figures 13 a-d was presented 
to the system, it nevertheless was able to de- 
velop a reasonable solution. As our unpublished 
results show, this carries over to other patterns. 
The system reaches a stable state characterized 
by small fluctuations in the redistributed syn- 
aptic strength. 

4. DISCUSSION 

The reader may have noticed many similarities of the 
presented learning scheme with Kohonen's learning 
algorithm and the formation of feature maps therein 
(Kohonen, 1987). As ours, Kohonen's learning could 
be termed nonequilibrium learning since it deals with 
an unrelaxed system at least if it is formulated dy- 
namically. The adaption of Kohonen's feature maps 
to the probability distribution of the input vectors is 
known for many years (Kohonen, 1982). Hints on 
bound effects and on a shift in representation space 
towards regions with smaller probability density are 
also present in our system. 

We see, however, the following major differences 
to Kohonen learning: 

(i) Our lateral interaction is uniform over the whole 
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cell space and constant in time. The only metric 
we have used is the similarity measure of over- 
lap between patterns. No neighborhood topol- 
ogy whatsoever was defined in order to get a 
low-dimensional patterns representation called 
"topological map." Our system, however, gen- 
erates a "scattered map" of the inputs, since if 
we turn off competition after a suitably defined 
maturation state of cells is reached, similar pat- 
terns will activate the same cells to a different 
degree with no reference to their respective spa- 
tial distribution• 

(ii) Stabilization of the learned representations is in 
our case a secondary effect of the specialization 
of cells leading to faster d ~  ~ah~._ring ~ -  
petition. No schedule for~:the sharpe~ngl-of 
neighborhood- interactions has_ to be:imple- 
mented in order to stabilize learning. Again, this 
contrasts to Kolionen's sctieme. 

(iii) In the;Iater stages of  learning, that is; when 
speci_a!ization progress is. ~si_derabte,~ a gen- 
eral acceleration of the process is observed 
which could be used by d+creasing the compe- 
tition time in later stages. 



Learning in a Competitive Network 

As in the multilayer system of Linsker (1986), we 
could differentiate between a learning and a mat- 
uration stage. After learning decreases (signaled by 
decreasing fluctuations in the total amount of redis- 
tributed synaptic strength) learning with velocity a 
and competition dynamics (2) may be turned off to 
allow a further layer of cells to develop connections. 
In this way, an effective information compression 
may be reached without destroying valuable parts of 
the input information. Like in Linsker's scheme, an 
energy function was proposed here to determine the 
learning dynamics by the trend to minimize or max- 
imize a certain function during the ongoing process. 
In our case, however, the synaptic connections as 
well as the patterns are continuous quantities. More- 
over, the system learns superpositions of patterns, 
not principal components in the statistical sense. 

The major difference to the competitive learning 
schemes of Grossberg (1987), Carpenter and Gross- 
berg (1987), and Rumelhart and Zipser (1986) may 
be seen in the self-stabilization of the process as well 
as in its nonequilibrium character. To study, how- 
ever, the relations between the proposed and other 
competitive learning systems (see, too, Mahlsburg, 
1973: Nass & Cooper, 1975; and Takeuchi & Amari, 
1979) goes far beyond the scope of the present paper 
and is left, together with a possible inclusion of local 
interactions and the extension to a multilayer system, 
for future investigation. 
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A P P E N D I X  

In this Appendix we want to show the normalizing features of 
dynamical laws (8) and (10). 

Squaring expression (8) for A,,(t + r) gives: 

I]Ak(t + r)]]: =]]Ak(t) + :ldkd~[q - d~A~(t)][[ ~ (1) 

=[JA~(t)Jl "~ + 2~dk(d~')2[l -IIA~(t)lr] + O(a ~) 

where we have used the approximation 

A~, • q ~ d~. (2)  

From eqn (1) we can see immediately, that the length of vector 
Ak will increase in time step t + v if it is smaller than 1 in step t 
and vice versa. A similar result holds for the continuous version 
(eqn (10)). 

For eqn (10) we proceed as follows: Multiplying (10) by A~, 
and summing over i gives on the left: 

l d  
v, ~] A~:/~ = ~ ~ ([PA.~Ir) (3) 

and on the right: 

2m~d~'2[1 -[IA~H2], (4) 

again with the approximation 

A;.(t)  - q ~ d~. (5)  

The equilibrium state is I]A~rl 2 = 1, Q.E.D. 


